
Spectral Bloom Filters

Saar Cohen
School of Computer Science

Tel Aviv University

saarco@cs.tau.ac.il

Yossi Matias∗
School of Computer Science

Tel Aviv University

matias@cs.tau.ac.il

ABSTRACT
A Bloom Filter is a space-efficient randomized data struc-
ture allowing membership queries over sets with certain al-
lowable errors. It is widely used in many applications which
take advantage of its ability to compactly represent a set,
and filter out effectively any element that does not belong to
the set, with small error probability. This paper introduces
the Spectral Bloom Filter (SBF), an extension of the original
Bloom Filter to multi-sets, allowing the filtering of elements
whose multiplicities are below a threshold given at query
time. Using memory only slightly larger than that of the
original Bloom Filter, the SBF supports queries on the mul-
tiplicities of individual keys with a guaranteed, small error
probability. The SBF also supports insertions and deletions
over the data set. We present novel methods for reducing the
probability and magnitude of errors. We also present an effi-
cient data structure and algorithms to build it incrementally
and maintain it over streaming data, as well as over materi-
alized data with arbitrary insertions and deletions. The SBF
does not assume any a priori filtering threshold and effec-
tively and efficiently maintains information over the entire
data-set, allowing for ad-hoc queries with arbitrary param-
eters and enabling a range of new applications.

1. INTRODUCTION
Bloom Filters are space efficient data structures which

allow for membership queries over a given set [2]. The Bloom
Filter uses k hash functions, h1, h2, . . . , hk to hash elements
into an array of size m. For each element s, the bits at
positions h1(s), h2(s), . . . , hk(s) in the array are set to 1.
Given an item q, we check its membership in the data-set
by examining the bits at positions h1(q), h2(q), . . . , hk(q).
The item q is reported to be contained in the data-set if
(and only if) all the bits are set to 1. This method allows
a small probability of producing a false positive error (it
may return a positive result for an item which actually is
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not contained in the set), but no false-negative error, while
gaining substantial space savings. Bloom Filters are widely
used in many applications.

This paper introduces the Spectral Bloom Filter (SBF),
an extension of the original Bloom Filter to multi-sets, al-
lowing estimates of the multiplicities of individual keys with
a small error probability. This expansion of the Bloom Fil-
ter is spectral in the sense that it allows filtering of elements
whose multiplicities are within a requested spectrum. The
SBF extends the functionality of the Bloom Filter and thus
makes it usable in a variety of new applications, while re-
quiring only a slight increase in memory compared to the
original Bloom Filter. We present efficient algorithms to
build an SBF, and maintain it for streaming data, as well
as arbitrary insertions and deletions. The SBF can be con-
sidered as a high-granularity histogram. It is considerably
larger than regular histograms, but unlike such histograms
it supports queries at high granularity, and in fact at the
single item level, and it is substantially smaller than the
original data set.

1.1 Previous work
As the size of data sets encountered in databases, in com-

munication, and in other applications keeps on growing,
it becomes increasingly important to handle massive data
sets using compact data structures. Indeed, there is exten-
sive research in recent years on data synopses [14] and data
streams [1].

The applicability of Bloom Filters as an effective, compact
data representation is well recognized. Bloom Filters are
often used in distributed environments to store an inventory
of items stored at every node. In [10], it is proposed to
be used within a hierarchy of proxy servers to maintain a
summary of the data stored in the cache of each proxy. This
allows for a scalable caching scheme utilizing several servers.
The Summary Cache algorithm proposed in the same paper
was implemented in the Squid web proxy cache software [9,
23], with a variation of this algorithm called Cache Digest
implemented in a later version of Squid.

In Peer-to-Peer systems, an efficient algorithm is needed
to establish the nearest node holding a copy of a requested
file, and the route to reach it. In [22], a structure called
“Attenuated Bloom Filter” is described. This structure is
basically an array of simple Bloom Filters in which compo-
nent filters are labeled with their level in the array. Each
filter summarizes the items that can be reached by perform-
ing a number of hops from the originating node that is equal
to the level of that filter. The paper proposes an algorithm
for efficient location of information using this structure.



The use of Bloom Filters was proposed in handling joins,
especially in distributed environments. Bloomjoin is a scheme
for performing distributed joins [17], in which a join between
relations R and S over the attribute X is handled by build-
ing a Bloom Filter over R.X and transmitting it to S. This
Bloom Filter is used to filter tuples in S which will not con-
tribute to the join result, and the remaining tuples are sent
back to R for completion of the join. The compactness of
the Bloom Filter saves significant transmission size.

Bloom Filters were also proposed in order to improve per-
formance of working with Differential Files [15]. A differen-
tial file stores changes in a database until they are executed
as a batch. This reduces overheads caused by sporadic up-
dates and deletions to large tables. When using a Differen-
tial File, its contents must be taken into account when per-
forming queries over the database, with as little overhead as
possible. A Bloom Filter is used to identify data items which
have entries within the differential file, thus saving unneces-
sary access to the file. Another area in which Bloom Filters
can be used is checking validity of proposed passwords [18]
against previous passwords used and a dictionary. Recently,
Broder et al [4] used Bloom Filters in conjunction with hot
list techniques presented in [13] to efficiently identify popu-
lar search queries in the Alta-Vista search engine.

Several improvements have been proposed over the origi-
nal Bloom Filter. In [21] the data structure was optimized
with respect to its compressed size, rather than its normal
size, to allow for efficient transmission of the Bloom Filter
between servers, as proposed in [10]. Another improvement
proposed in [18] is imposing a locality restriction on the hash
functions, to allow for faster performance when using exter-
nal storage. In [10] a counter has been attached to each bit
in the array to count the number of items mapped to that
location. This provides the means to allow deletions in a
set, but still does not support multi-sets. To maintain the
compactness of the structure, these counters were limited to
4 bits, which is shown statistically to be enough to encode
the number of items mapped to the same location, based on
the maximum occupancy in a probabilistic urn model, even
for very large sets. However this approach is not adequate
when dealing with frequencies of multi-sets, in which items
may appear hundreds and thousands of times.

The concept of multiple hashing (while not precisely in
the form of Bloom Filters) was used in several recent works,
such as supporting iceberg queries [11] and tracking large
flows in network traffic [8]. Both handle queries which cor-
respond to a very small subset of the data (the tip of the
iceberg) defined by a threshold, while having to efficiently
explore the entire data. These implementations assume a
prior knowledge of the threshold and avoid maintaining a
synopsis over the full data set. A recent survey describes
several applications and extensions of the Bloom Filter, with
emphasis on network applications [3].

Current implementations of Bloom Filters do not address
the issue of deletions over multi-sets. An insert-only ap-
proach is not enough when using widely used data warehouse
techniques, such as maintaining a sliding window over the
data. In this method, while new data is inserted into the
data structure, the oldest data is constantly removed. When
tracking streaming data, often we would be interested in the
data that arrived in the last hour or day, for example. In
this paper we show that the SBF provides this functional-
ity as a built-in ability, under the assumption that the data

leaving the sliding window is available for deletion, while al-
lowing (approximate) membership and multiplicity queries
for individual items. An earlier version of this work appears
in [20].

1.2 Contributions
This paper presents the Spectral Bloom Filter (SBF), a

synopsis which represents multisets that may change dynam-
ically in a compact and efficient manner. Queries regarding
the multiplicities of individual items can be answered with
high accuracy and confidence, allowing a range of new ap-
plications. The main contributions of this paper are:

• The Spectral Bloom Filter synopsis, which provides
a compact representation of data sets while support-
ing queries on the multiplicities of individual items.
For a multiset S consisting of n distinct elements from
U with multiplicities {fx : x ∈ S}, an SBF of N +
o(N) + O(n) bits can be built in O(N) time, where
N = k

P
x∈S dlog fxe. For any given q ∈ U , the SBF

provides in O(1) time an estimate f̂q, so that f̂q ≥ fq,

and an estimate error (f̂q 6= fq) occurs with low proba-
bility (exponentially small in k). This allows effective
filtering of elements whose multiplicities in the data
set are below a threshold given at query time, with a
small fraction of false positives, and no false negatives.
The SBF can be maintained in O(1) expected amor-
tized time for inserts, updates and deletions, and can
be effectively built incrementally for streaming data.
We present experiments testing various aspects of the
SBF structure.

• We show how the SBF can be used to enable new ap-
plications and extend and improve existing applica-
tions. Performing ad-hoc iceberg queries is an example
where one performs a query expected to return only a
small fraction of the data, depending on a threshold
given only on query time. Another example is spec-
tral Bloomjoins, where the SBF reduces the number
of communication rounds among remote database sites
when performing joins, decreasing complexity and net-
work usage. It can also be used to provide a fast ag-
gregative index over an attribute, which can be used
in algorithms such as bifocal sampling.

The following novel approaches and algorithms are used
within the SBF structure:

• We show two algorithms for SBF maintenance and
lookup, which result with substantially improved lookup
accuracy. The first, Minimal Increase, is simple, ef-
ficient and has very low error rates. However, it is
only suitable for handling inserts. This technique was
independently proposed in [8] for handling streaming
data. The second method, Recurring Minimum, also
improves error rates dramatically while supporting the
full insert, delete and update capabilities. Experi-
ments show favorable accuracy for both algorithms.
For a sequence of insertions only, both Recurring Min-
imum and Minimal Increase significantly improve over
the basic algorithm, with advantage for Minimal In-
crease. For sequences that include deletions, Recur-
ring Minimum is significantly better than the other
algorithms.



• One of the challenges in having a compact representa-
tion of the SBF is to allow effective lookup into the i’th
string in an array of variable length strings (represent-
ing counters in the SBF). We address this challenge by
presenting the string-array index data structure which
is of independent interest. For a string-array of m
strings with an overall length of N bits, a string-array
index of o(N) + O(m) bits can be built in O(m) time,
and support access to any requested string in O(1)
time.

1.3 Paper outline
The rest of this paper is structured as follows. In Section

2 we describe the basic ideas of the Spectral Bloom Filter as
an extension of the Bloom Filter. In Section 3, we describe
two heuristics which improve the performance of the SBF
with regards to error ratio and size. Section 4 deals with
the problem of efficiently encoding the data in the SBF,
and presents the string-array index data structure which
provides fast access while maintaining the compactness of
the data structure. Section 5 presents several applications
which use the SBF. Experimental results are presented in
Section 6, followed by our conclusions.

2. SPECTRAL BLOOM FILTERS
This section reviews the Bloom Filter structure, as pro-

posed by Bloom in [2]. We present the basic implementation
of the Spectral Bloom Filter which relies on this structure,
and present the Minimum Selection method for querying the
SBF. We briefly discuss the way the SBF deals with inser-
tions, deletions, updates and sliding window scenarios.

2.1 The Bloom Filter
A Bloom Filter is a method for representing a set S =

{s1, s2, . . . , sn} of keys from a universe U , by using a bit-
vector V of m = O(n) bits. It was invented by Burton
Bloom in 1970 [2].

All the bits in the vector V are initially set to 0. The
Bloom Filter uses k hash functions, h1, h2, . . . , hk mapping
keys from U to the range {1 . . . m}. For each element in
s ∈ S, the bits at positions h1(s), h2(s), . . . , hk(s) in V are
set to 1. Given an item q ∈ U , we check its membership in
S by examining the bits at positions h1(q), h2(q), . . . , hk(q).
If one (or more) of the bits is equal to 0, then q is certainly
not in S. Otherwise, we report that q is in S, but there may
be false positive error: the bits hi(q) may be all one even
though q 6∈ S, if other keys from S were mapped into these
positions. We call this bloom error and denote it by Eb.

The probability for a false positive error is dependent on
the selection of the parameters m, k. After the insertion of
n keys at random to the array of size m, the probability
that a particular bit is 0 is exactly (1− 1/m)kn. Hence the
probability for a bloom error in this situation is

Eb =

 
1−

�
1− 1

m

�kn
!k

≈
�
1− e−kn/m

�k

.

The right-hand expression is minimized for k = ln(2) · (m
n

),

in which case the error rate is (1/2)k = (0.6185)m/n. Thus,
the Bloom Filter is highly effective even for m = cn using a
small constant c. For c = 8, for example, the false positive
error rate is slightly larger than 2%. Let γ = nk/m; i.e, γ is
the ratio between the number of items hashed into the filter

and the number of counters. Note that in the optimal case,
γ = ln(2) ≈ 0.7.

2.2 The Spectral Bloom Filter
The Spectral Bloom Filter (SBF) replaces the bit vector V

with a vector of m counters, C. The counters in C roughly
represent multiplicities of items, all the counters in C are ini-
tially set to 0. In the basic implementation, when inserting
an item s, we increase the counters Ch1(s), Ch2(s), . . . , Chk(s)

by 1. The SBF stores the frequency of each item, and it also
allows for deletions, by decreasing the same counters. Con-
sequently, updates are also allowed (by performing a delete
and then an insert).

SBF basic construction and maintenance
Let S be a multi-set of keys taken from a universe U . For
x ∈ U let fx be the frequency of x in S. Let

vx = {Ch1(x), Ch2(x) . . . , Chk(x)}
be the sequence of values stored in the k counters repre-
senting x’s value, and v̂x = {v̂1

x, v̂2
x . . . , v̂k

x} be a sequence
consisting of the same items of vx, sorted in non-decreasing
order; i.e. mx = v̂1

x is the minimal value observed in those
k counters.

To add a new item x ∈ U to the SBF, the counters
{Ch1(x), Ch2(x) . . . , Chk(x)} are increased by 1. The Spectral
Bloom Filter for a multi-set S can be computed by repeat-
edly inserting all the items from S. The same logic is applied
when dealing with streaming data. While the data flows, it
is hashed into the SBF by a series of insertions.

Querying the SBF
A basic query for the SBF on an item x ∈ U returns an
estimate on fx. We define the SBF error, denoted ESBF ,
to be the probability that for an arbitrary element z (not

necessarily a member of S), f̂z 6= fz. The basic estimator,

denoted as the Minimum Selection (MS) estimator is f̂x =
mx. The proof of the following claim as well as of other
claims are omitted due to space limitation, and are given in
the full paper [5].

Claim 1. For all x ∈ U , fx ≤ mx. Furthermore, fx 6=
mx with probability ESBF = Eb ≈

�
1− e−kn/m

�k

.

The above claim shows that the error of the estimator is one-
sided, and that the probability of error is the bloom error.
Hence, when testing whether fx > 0 for an item x ∈ U , we
obtain identical functionality to that of a simple Bloom Fil-
ter. However, an SBF enables more general tests of fx > T
for an arbitrary threshold T ≥ 0, for which possible errors
are only false-positives. For any such query the error prob-
ability is ESBF .

Deletions and sliding window maintenance
Deleting an item x ∈ U from the SBF is achieved simply by
reversing the actions taken for inserting x, namely decreas-
ing by 1 the counters {Ch1(x), Ch2(x) . . . , Chk(x)}. In sliding
windows scenarios, in cases data within the current window
is available (as is the case in data warehouse applications),
the sliding window can be maintained simply by preforming
deletions of the out-of-date data.



Distributed processing
The SBF is easily extended to distributed environment. It
allows simple and fast union of multi-sets, for example when
a query is required over several sets. Once a query is required
upon the entire collection of sets, SBFs can be united simply
by addition of their counter vectors. This property can be
useful for partitioning a relation into several tables covering
parts of the relation. Other features of the SBF relevant to
distributed execution of joins are presented in Section 5.3.

SBF multiplication
Several applications, such as Bloomjoins (see Section 5.3),
can be implemented efficiently by multiplying SBF. The
multiplication requires the SBF to be identical in their pa-
rameters and hash functions. The counter vectors are lin-
early multiplied to generate an SBF representing the join of
the two relations. The number of distinct items in a join
is bounded by the maximal number of distinct items in the
relations, resulting in an SBF with fewer values, and hence
better accuracy.

External memory SBF
While Bloom Filters are relatively compact, they may still
be too large to fit in main memory. However, their ran-
dom nature prevents them from being readily adapted to
external memory usage because of the multiple (up to k)
external memory accesses required for a single lookup. In
[18], a multi-level hashing scheme was proposed, in which
a first hash function hashes each value to a specific block,
and the hash functions of the Bloom Filter hash within that
block. The analysis in [18] showed that the accuracy of the
Bloom Filter is affected by the segmentation of the available
hashing domain, but for large enough segments, the differ-
ence is negligible. The same analysis applies in the SBF
case, since the basic mechanism remains the same.

SBF implementation
The major issues that need to be resolved for this data struc-
ture are maintaining the array of counters, where we must
consider the total size of the array, along with the compu-
tational complexity of random access, inserts and deletions
from the array, and query performance, with respect to two
error metrics: the error rate (similar to the original Bloom
Filter), and the size of the error.

3. OPTIMIZATIONS
In this section we present two methods that significantly

improve the query performance that is provided by the SBF
when the threshold is greater than 1; both in terms of re-
ducing the probability of error ESBF , as well as reducing
the magnitude of error, in case there is one. For member-
ship queries (i.e., threshold equals 1), the error remains un-
changed.

3.1 Minimal Increase
The Minimal Increase (MI) algorithm uses a pretty simple

logic: since we know for sure that the minimal counter is the
most accurate one, if other counters are larger it is clear that
they have some extra data because of other items hashed to
them. Knowing that, we don’t increase them on insertion
until the minimal counter catches up with them. This way
we minimize redundant insertions and in fact, we perform

the minimal number of increases needed to maintain the
property of ∀x ∈ U, mx ≥ fx, hence its name.

Minimal Increase When performing an insert of an item
x, increase only the counters that equal mx (its mini-
mal counter). When performing lookup query, return
mx. For insertion of r occurrences of x this method can
be executed iteratively, or instead increase the small-
est counter(s) by r, and set every other counter to the
maximum of their old value and mx + r.

A similar method appeared in [8], referred to as Conserva-
tive Update. We develop this method further and set some
claims as to its performance and abilities. The performance
of the Minimal Increase algorithm is quite powerful:

Claim 2 (Minimal Increase Performance). For ev-
ery item x ∈ U , the error probability in estimating fx using
the MI algorithm, ESBF , is at most Eb, and the error size
is at most that of the MS algorithm. Its counters hold the
minimal values which maintains mx ≥ fx.

The Minimal Increase algorithm is rather complex to an-
alyze, as it is dependent upon the distribution of the data
and the order of its introduction. For the simple uniform
case we can quantify the error rate reduction:

Claim 3. When the items are drawn at random from a
uniform distribution over U , the MI algorithm decreases the
error ESBF by a factor of k.

Thus, the MI algorithm is strictly better than the MS algo-
rithm for any given item, and can result with significantly
better performance. This is indeed demonstrated in the ex-
perimental studies. Note that no increase in space is re-
quired here.

Minimal Increase and deletions..Along with the obvi-
ous strength of this method, it is important to note that
even though this approach provides very good results while
using a very simple operation scheme, it does not allow dele-
tions. In fact, when allowing deletions the Minimal Increase
algorithm introduces a new kind of errors - false-negative
errors. This result is salient in the experiments dealing with
deletions and sliding-window approaches, where the Mini-
mal Increase method becomes unattractive because of its
poor performance, mostly because of false negative errors.

3.2 Recurring Minimum
The main idea of the next heuristics is to identify the

events in which bloom errors occur, and handle them sep-
arately. We observe that for multi-sets, an item which is
subject to Bloom Error is typically less likely to have recur-
ring minimum among its counters. For item x with recurring
minimum, we report mx as an estimate for fx, with error
probability typically considerably smaller than Eb. For the
set consisting of all items with a single minimum, we use a
secondary SBF. Since the number of items kept in the sec-
ondary SBF is only a small fraction of the original number
of items, we have improved SBF parameters (compared to
the primary SBF), resulting with overall effective error that
can be considerably smaller than Eb.

let Ex be the event of an estimation error for item x:
mx 6= fx (i.e., mx > fx). Let Sx be the event where x has
a single minimum, and Rx be the event in which x has a
recurring minimum (over two or more counters).



Table 1 shows experimental results when using a filter
with k = 5, n = 1000, secondary SBF size of ms = m/2,
various γ values and Zipfian data with skew 0.5. Values
shown are γ, usual Bloom Error Eb, fraction of cases with
recurring minimum (P (Rx)), fraction of estimation errors in
those cases (P (Ex|Rx)), the γ parameter for the secondary
SBF γs = n(1 − P (Rx))k/ms, Es

b - the calculated Bloom
Error for the secondary SBF. The next column shows the
expected error ratio which is calculated by

ERM = P (Rx)P (Ex|Rx) + (1− P (Rx))Es
b

The last column is the ratio between the original error ratio
and the new error ratio. Note that for the (recommended)
case of γ = 0.7, the SBF error (ERM ) is over 18 times smaller
than the Bloom Error.

Note that the Recurring Minimum method requires ad-
ditional space for the secondary SBF. This space could be
used, instead, to reduce the Bloom Error within the basic,
Minimum Selection method. Table 2 compares the error ob-
tained by using additional memory, presented as a fraction
of the original memory m, to increase the size of the primary
SBF within the Minimum Selection method, vs. using it as
a secondary SBF within the Recurring Minimum method.
The error ratio row shows the ratio between the error of
Minimum Selection and the error of the Recurring Minimum
methods. In the Minimum Selection method, when we in-
creased the primary SBF, we increased k from its original
value k = 5, maintaining γ at about 0.7 (so as to have max-
imum impact of the additional space). The new value for k
is shown in the table. A ratio over 1 shows advantage to the
Recurring Minimum method. For instance, when having ad-
ditional 50% in space, Recurring Minimum performs about
3.3 times better than Minimum Selection (note that as per
Table 1 the total improvement is by a factor of about 18).

The algorithm.The algorithm works by identifying poten-
tial errors during insertions and trying to neutralize them.
It has no impact over “classic” Bloom Error (false-positive
errors) since it can only address items which appear in the
data; it reduces the size of error for items which appear in
the data and are “stepped over” by other items. The algo-
rithm is as follows:

When adding an item x, increase the counters of x in the
primary SBF. Then check if x has a recurring minimum. If
so, continue normally. Otherwise (if x has a single mini-
mum), look for x in the secondary SBF. If found, increase
its counters, otherwise add x to the secondary SBF, with an
initial value that equals its minimal value from the primary
SBF.

When performing lookup for x, check if x has a recurring
minimum in the primary SBF. If so return the minimum.
Otherwise, perform lookup for x in secondary SBF. If re-
turned value is greater than 0, return it. Otherwise, return
minimum from primary SBF.

A refinement of this algorithm which improves its accu-
racy but requires more storage uses a Bloom Filter Bf of size
m to mark items which were moved to secondary SBF. When
an item x is moved to the secondary SBF, x is inserted into
Bf as well, and this marks that x should be handled in the
secondary SBF from now on. When inserting an item and
it exists in Bf it is handled in the secondary SBF, otherwise
it is handled as in the original algorithm. When performing
lookup for x, Bf is checked to determine which SBF should

be examined for x’s frequency.
The additional Bloom Filter might have errors in it, but

since only about 20% of the items have a single minimum
(as seen in the tables), the actual γ of Bf is about a fifth
of the original γ. For γ = 0.7, k = 5, this implies a Bloom
Error ratio of (1− e−0.7/5)5 = 3.8 · 10−5, which is negligible
when compared with other errors of the algorithm.

Deletions and sliding window maintenance
Deleting x when using Recurring Minimum is essentially re-
versing the increase operation: First decrease its counters
in the primary SBF, then if it has a single minimum (or if
it exists in Bf ) decrease its counters in the secondary SBF,
unless at least one of them is 0. Since we perform insertions
both to the primary and secondary SBF, there can be no
false negative situations when deleting items. Sliding win-
dow is easily implemented as a series of deletions, assuming
that the out-of-scope data is available.

Analysis.Since the primary SBF is always updated, in case
the estimate is taken from the primary SBF, the error is at
most that of the MS algorithm. In many cases it will be
considerably better, as potential bloom error are expected
to be identified in most cases. When the secondary SBF
provides the estimate, errors can happen because of Bloom
errors in the secondary SBF (which is less probable than
Bloom errors in the primary SBF), or due to late detection of
single minimum events (in which case the magnitude of error
is expected to be much smaller than in the MS algorithm).
A full analysis is given in the full paper.

3.3 Methods comparison
We compare the three methods.

Error rates. The MS algorithm provides the same error
rates as the original Bloom Filter. Both RM and MI meth-
ods perform better over various configurations, with MI be-
ing the most accurate of them. These results are consistent
in the experimental results, taken over data with various
skews and using several γ values. For example, with opti-
mal γ and various skews, MI performs about 5 times better
in terms of error ratio than the MS algorithm. The RM al-
gorithm is not as good, but is consistently better than the
MS algorithm.
Memory overhead. The RM algorithm requires an addi-
tional memory for storing the secondary SBF, so it is not
always cost-effective to use this method. The MI algorithm
is the most economical, since it needs the minimal number
of insertions. Note that, as seen in the experiments, when
using the same overall amount of memory for each method,
the RM algorithm still performed better than the MS algo-
rithm (but MI outperforms it).
Complexity. The RM algorithm is the most complex method,
because of the hashing into two SBFs, but this happens only
for items with non-recurring minimum. As shown above,
this happens for about 20% of the cases, which accounts for
20% increase in the average complexity of the algorithm.
When using the flags array in the RM algorithm, the com-
plexity naturally increases.The MS method is the simplest.
Updates/Deletions. Both the MS and RM methods sup-
port these actions. The MI algorithm does not, and may
produce false-negative errors if used. Experiments show that
in these cases, the MI algorithm becomes practically unus-
able. For example, using sliding window, the additive error



γ Eb P (Rx) P (Ex|Rx) γs Es
b ERM Eb/ERM

1 0.101 0.657 0.0045 0.686 0.03 0.0132 7.59
0.83 0.057 0.697 0.0028 0.502 0.0096 0.0048 11.7
0.7 0.032 0.812 0.002 0.263 0.0006 0.0017 18.48

0.625 0.021 0.799 0.0012 0.251 0.00054 0.001 20.3
0.5 0.009 0.969 0 0.031 2.65 · 10−8 8.21 · 10−10 11480352

Table 1: Error rates with recurring minimum and without it. Eb is the usual Bloom Error, P (Rx) is the ratio
of recurring minimum, P (Ex|Rx) is the ratio of errors given recurring minimum, γs, E

s
b are the secondary BF

parameters (with size m/2), ERM is ESBF for recurring minimum, and the last column is the gain.

memory increase 1 0.5 0.33 0.25 0.2 0.1
Error Ratio 0.641 3.341 4.546 3.628 2.496 0.562
Modified k 10 7 6 6 6 5

Table 2: Effect of increased memory for primary SBF and secondary SBF, with original k = 5.

of the MI algorithm is 1 to 2 orders of magnitude larger than
that of the RM algorithms, for various skews.

4. DATA STRUCTURES
While the data structure implementation of the (origi-

nal) Bloom Filter is a simple bit-vector, the implementa-
tion of the SBF presents a different challenge. The SBF
of a multiset of M items, consists of a sequence of counters
C1, C2, . . . , Cm, where Ci is the number of items hashed into
i, so that

Pm
i=1 Ci = k ·M . Let N =

Pm
i=1 dlog Cie; then,

k(n−1+log M) ≤ N ≤ kn log(M/n), where n is the number
of distinct items in the set. The goal is to have a compact en-
coding of the SBF which is as close to N as possible. Clearly,
a straight-forward implementation of allocating log M bits
per counter is excluded. In this section we show:

Theorem 4. An SBF of size N+o(N)+O(m) bits can be
constructed in O(N) time, supporting lookup in O(1) time.
Furthermore, the SBF can be maintained so that insertions,
deletions and updates take each O(1) expected amortized time.

The basic representation of the SBF consists of embed-
ding the counters Ci in their dlog Cie-bit binary represen-
tation, consecutively in a base array of size N bits. (For
simplicity of exposition, we will omit below the ceiling op-
erator.) In the static case the counters are placed without
any gap between them, totaling N bits, whereas to support
dynamic changes we add ε′m slack bits between counters,
where ε′ > 0 is a small constant. This representation intro-
duces a challenge in executing the lookup operations, since
locations of various strings are not known due to their vari-
able sizes.

In Section 4.1 we address this challenge, presenting a data
structure that enables effective “random access” to the i’th
substring, for any i, in a sequence consisting of arbitrary
variable length substrings. Section 4.2 shows how to handle
the dynamic problem, supporting inserts and deletes over
the data set represented by the SBF. The proposed SBF
implementation is general, with no assumption made on the
distribution of the data. Finally, in Section 4.3, we show an
alternative method which requires only O(m) bits in addi-
tion to the base array (rather than o(N)+O(m)), but which
is less efficient when performing lookups.

4.1 The String-Array Index
We first define a general access problem related to the one

encountered in the context of the SBF.

Variable length access problem.Let {s1, s2, . . . , sm} be
binary strings of arbitrary lengths. Let S = s1s2 . . . sm be
the concatenation of those substrings, with length |S| = N .
Given an arbitrary i, 1 ≤ i ≤ m, return the position of si in
S, and optionally, si itself.

Note that the lookup problem for the SBF compact base-
array representation is the variable length access problem
with two additional constraints: (i) ∀i, |si| ≤ log M ; and (ii)
the strings roughly represent the frequencies of items in the
given data set, and the order between them is determined
at random using the hash functions of the SBF. We describe
a data structure, the string-array index , that addresses the
general, unconstrained variable length access problem.

The string-array index uses a combination of various in-
stances of three types of simple data structures, which hold
offset data for given sequences of some σ items, totaling
some T bits:

1. Coarse Vector - this is the backbone of the string-array
index, and its role is to effectively reduce a given prob-
lem into a set of smaller sub-problems. It partitions
the given sequence into σ/σ′ subsequences of σ′ items
each, and provides offset information for the begin-
ning of each subsequence, using an array of fixed-sized
offsets. The coarse vector requires (σ/σ′) log T bits,
and reduces the access problem (for a given i) into a
problem with σ′ items and some T ′ < T length.

2. Offset Vector - provides a straightforward representa-
tion of the σ offsets in an array, requiring σ log T bits,
and supports O(1) lookup time. It is used when σ is
small relative to T ; in particular when σ log T ¿ T ,
and it can therefore be stored for such subsequences
within the required space bounds. If T À σ log N then
the offsets are with respect to the base array.

3. Lookup Table - a global array, whose indices represent
all possible sequences and queries over those sequences,
for a sufficiently small T . It requires 2O(T ) bits, which
is o(N) for T = o(log N). A problem with a sufficiently
small T can use it for O(1) lookup time, by storing ad-
ditional appropriate encoding information that maps
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Figure 1: The String-Array Index data structure.

it into its appropriate array index.

For a given variable length access problem consisting of
m strings totaling N bits, a string-array index can be con-
structed as follows.

Lemma 5 (String-Array Index). The string-array in-
dex data structure of size o(N) + O(m) bits can be built in
O(m) time, and subsequently support access to any requested
item si in O(1) time.

The string-array index is depicted in Figure 1; it consists
of two levels of arrays of pointers to sub-sequences of S.
The first level consists of a coarse offset array C1, which
holds m/ log N offsets of the positions of log N -size groups
of items in the SBF base array. Since offsets are at most N ,
they can be represented using log N bits, for a total size of
m bits. The offset in C1

j points to the (j log N)’th item in
S, i.e., to sr where r = (j log N). Thus, for any i, one access
to C1 can provide us with the pointer to a subsequence S′

of log N items in S, that includes si.
The second level enables effective access within such sub-

sequences S′. If a subsequence is of size larger than log3 N
bits, then it is supported by a simple offset vector, consist-
ing of the log N offsets of the individual items of the subse-
quence, in the SBF base array; each offset is of log N bits,
totaling log2 N bits for the entire offset vector. The total
size of all such offset vectors is at most N/ log N bits.

Each subsequence S′ whose size is at most log3 N bits is
supported by a level-2 coarse offset array C2

j , which parti-
tions S′ to chunks of log log N items. It holds log N/ log log N
offsets of the log log N -size chunks S′′ inside S′. Since offsets
are at most log3 N , each can be represented using 3 log log N
bits, totaling 3 log N bits per a subarray C2

j . The total size
of all such subarrays is hence at most 3m.

A lookup using the string-array index requires 2 lookups
through the coarse offset arrays, which provides with ei-
ther the exact position of the requested item in the SBF
base array, or a pointer to the beginning of a subsequence
S′′ of log log N items, which includes the requested item.
The items within each subsequence S′′ are accessed either
through an offset vector built for S′′, or using a global lookup
table shared by all subsequences, depending on the size of
S′′. We use a threshold T0 = (log log N)3, to determine
which method is used. Let S′′ be of size T = T (S′′) bits.

If T > T0, we keep for S′′ an offset vector; since T ≤
log3 N , each offset can be represented using 3 log log N bits,
and the offset vector for S′′ will consist of such log log N
offsets, totaling size 3(log log N)2 ¿ T (S′′). Hence, the total
size of all such offset vectors is o(N).

It remains to deal with S′′ such that T ≤ T0. We keep
a single global lookup table, that will serve all such sub-
problems. An entry to the lookup table consists of a string
representing a subsequence S′′ and an index i, 1 ≤ i ≤
log log N . For each such entry, the lookup table will return
the offset from the beginning of S′′ in the SBF base array,
of the i’th item in S′′.

The lookup table consists of a simple array LT , whose
indices represent all binary combinations representing the
entries 〈S′′, i〉, and for each entry the result is precomputed
and stored in the array LT . Each entry can be represented
as the T -bit subarray of the SBF base array representing
S′′, and a secondary subarray L(S′′) consisting of an en-
coding of the lengths of the items in S′′, so as to allow
unique interpretation of the T -bit subarray representing S′′.
The encoding in L(S′′) has the property that the size of
each code word is proportional to the encoding length of
the value it represents. This is obtained using, e.g., Elias
Encoding (see Section 4.3). The length of L(S′′) is either
O(log log N) or o(T ). In addition to the representation of S′′

(including L(S′′)) the entry includes the index i (consisting
of log log log N bits).

It is easy to see that since T ≤ T0, the total size of LT
is o(N) bits, and that all its entries can be computed in
o(N) time. The subarray L(S′′) is stored for each S′′ whose
size T is less than T0 as part of the SBF. The offset of the
ith item in such S′′ is obtained by looking up at LT the
value corresponding to the entry consisting of the 〈S′′, i〉, as
determined using L(S′′).

In summary, the string-array index consists of the follow-
ing components: the coarse offset array C1, an array C2

consisting of all level-2 coarse offset arrays C2
j , the offset

vectors of first level and second level sequences, the global
lookup table LT , and the length arrays L(S′′). The total
size of the string-array index is o(N) + O(m), its construc-
tion takes O(m) time, and it can be used as discussed to
solve the variable length access problem in O(1) time. The
lemma follows.

Note that when actually implementing a string-array in-
dex, several of the structures could be eliminated or altered
due to practical considerations. In particular, even for rela-
tively large values of N , one should not be concerned with
paying O(log log N) factor overhead for a fraction of the data
structure.

The SBF can now be constructed as stated in Theorem 4:
the base-array is built in O(N) time by updating the coun-
ters Ci as the input data set items are hashed one by one.
Subsequently, building the string-array index over the base
array. This requires using during construction time a tempo-
rary array of O(m log M) bits. Next subsection shows how
to construct the SBF incrementally, as well as how to sup-
port update operations, without using any temporary array,
and within the storage bounds of N + o(N) + O(m) bits.

4.2 Handling updates
We show how to extend the string-array index data struc-

ture described above, to allow dynamic changes in the data-
set, for a base array of an SBF. When one of the coun-



ters increases its bit-size in the base array, additional space
needs to be allocated within the base array to accommo-
date the enlarged substring. It is also necessary to update
the string-array index structure to reflect the changes made
in the base-array. Delete operations only affect individual
counters, and do not affect their positions, and hence the
string-array index. To remain within storage bounds, af-
ter a long sequence of deletions the entire data structure is
rebuilt, with amortized constant time per deletion.

To support inserts, we allocate a slack of extra bits in the
base array. In particular, we add εm slack bits, one every
1/ε items, for some ε > 0. A counter which needs to expand
“pushes” the item next to it, which in turn pushes the next
item, until a slack is encountered. For each item, the near-
est slack is initially allocated within a distance of at most
1/ε items. However, upon expansion, the nearest slack may
not be available, in case at least one of the items between
the expanded item and the slack was already expanded. In
such case, farther slack will need to be used. The cost of
expansion is linear in the number of items that need to be
pushed, assuming that each item fits into machine word.

The next lemma bounds the expected distance from an
expanded item to the nearest available slack, using the fact
that items location is determined at random by the hash
functions of the SBF. For purpose of simplicity, we assume
full randomness. It is assumed that the number of inserts
is at most ε′m, for some ε′ > 0. After ε′m inserts, the base
array is refreshed by moving counters so that that slacks are
again placed in 1/ε intervals, and the string-array index is
updated accordingly.

Lemma 6. Suppose that the size of some counter Cj in-
creases, and that the total number of insertions is at most
ε′m, for ε′ = ε/2e. Then, the number of items between Cj

and the first available slack, denoted `j , satisfies E(`j) =
O(1/ε).

Proof. Suppose first that Cj increases for the first time.
A slack is available within the sub-array of i/ε items follow-
ing Cj , if the number di of expansions of items within this
sub-array is less than i. Since items are hashed into the base
array at random, then for any sequence of ε′m insertions, di

is bounded by a binomial with parameters (ε′m, i/(εm)).
Hence, E(di) ≤ iε′m/(εm) = iε′/ε. The probability that
items within i chunks will need to move upon an insertion is

bounded by Pi = Pr(di ≥ i) = Pr(di ≥ ε
ε′E(di)) ≤ (e ε′

ε
)i,

with the last inequality due to Chernoff bounds. Hence,

E(`j) ≤
P∞

i=1 i/ε·Pi ≤
P∞

i=1(i/ε)·(e ε′
ε
)i = 1/ε

P∞
i=1 i( 1

2
)i ≤

2/ε.
It remains to account for repeated expansions of particu-

lar counters. Suppose that a counter Cj has a sequence of
x expansions. For the last expansion, it is guaranteed that
the nearest x−1 slack bits are not available. Further, items
within the nearest x− 1 chunks of size 1/ε might also have
been expanded resulting with additional slack unavailabil-
ity. On the other hand, the additional expected cost can be
amortized against the 2x updates to Cj which are required
to facilitate x expansions. The expected amortized cost per
repeated expansion remains O(1).

The string-array index is updated when items are moved.
The update of the structure has the same computational
complexity as that of updating the base array itself, since es-
sentially only offset information about items that are pushed

needs to be changed in the string-array index. The expected
amortized cost per update therefore remains O(1). Since re-
freshing the entire base array and updating the string-array
index takes O(m) time, the amortized cost of such refresh
and update is O(1/ε′) per update.

4.3 An alternative approach
The data structure can be made more compact, while sac-

rificing lookup performance, by using the C1 and C2 indexes
and not building any further structures. Once the problem
is reduced to log log N items, we allow a serial scan of the
sub-group in order to access the requested item. To allow
that, we need a compact prefix-free encoding that can be
read sequentially. For this purpose we use a combination
of Elias encoding and a method which is more compact for
small counters.

In this scenario, a sub-group consists of log log N items.
Using the encodings presented in this section, each counter
with value c can be encoded with close to log c bits. There-
fore, this approach requires N bits to encode the actual
counters in the original vector, with additional o(m) bits
for the structures of C1 and C2, while on average a lookup
costs log log N . The same approach described in section 4.2
can be used to allow dynamic maintenance of the structure.

Elias encoding
The Elias encoding [7] consists of the following method: Let
B(n) be the binary representation of the integer, with length
L(n). A binary prefix code B1(n) is created by adding a
prefix of L(n)− 1 zeroes to the beginning of B(n). Now we
create the sequence representing n by encoding B1(L(n))
followed by B(n) with its leading 1 removed1. The total
length of this representation is

L2(n) = blog2 nc+ 2blog2 (blog2 nc+ 1)c+ 1

The steps method
Elias encoding is a strong and simple method to create an
encoding which is prefix-free while being compact. However,
for very small numbers the overhead of log log n bits is sub-
stantial and should be avoided. For example, to encode the
number 1 (actually encoding the number 2) we need 4 bits.
In sets, most counters will be 1, so for an optimal hit ratio
of 0.5, the average is 2.5 bits per counter.

To solve that problem, we use compact encoding for small
numbers. For example, using 0 to represent 0, 10 to repre-
sent 1 and 11 means the number is bigger than 1, with the
Elias encoding of this number following the prefix. This re-
duces the cost to 1.5 bits per counter. It is further reduced
if we encode longer sequences, reducing the overhead to an ε
as small as we choose. Full details are omitted due to space
limitations).

5. APPLICATIONS
In this section we explore a range of applications which

may take advantage of the abilities of the SBF. The SBF en-
ables new applications which use its properties to efficiently
perform tasks such as ad-hoc iceberg queries. Other appli-
cation (such as Bloomjoins or Range queries) are extensions
of methods or abilities of the regular Bloom Filter.

1The Elias encoding does not encode the number 0. There-
fore, when encoding n, we actually encode n + 1, this does
not effectively change the size expectations



5.1 Aggregate queries over specified items
Spectral Bloom Filters hold mostly accurate information

over each and every item of the data set, and therefore
can approximately answer any (aggregate) query regarding
a given subset of the items, so that the error ratio is ex-
pected to be ESBF , and the size of the error is expected to
be smaller than the average frequency of items in the set, f̄ .
For example, queries of the kind

SELECT count(a1) FROM R WHERE a1 = v

In performing this query, the SBF acts as an aggregate
index built upon the attribute a1 and providing the (mostly)
accurate frequency of v in the relation. Other aggregates,
such as average,sum,max etc. can be easily implemented
using this basic ability. The SBF behaves very much like
a histogram where each item has its own bucket. Since the
SBF keeps the full information, it is very versatile in its uses,
while requiring storage relative to the size of the set.

5.2 Ad-hoc iceberg queries
In some cases we are interested in monitoring insertions,

and want to set some triggers that will alert us once an
item with a high count is inserted. For example, a com-
pany which tracks customers can create a calculation that
reports their likeliness to churn. Once a customer with a
high churning probability contacts the company, the com-
pany representative should be alerted, so he can offer him
special deals. The threshold for such special treatment is
dynamic, and depends on many factors, so the calculation
cannot be executed a priori.

This example presents a sort of an Iceberg query, in which
the threshold against which items are tested upon insertion
is dynamic and possibly changes between queries. Other
methods, proposed in [11, 19] require a certain preprocess-
ing the data given a static threshold. When the threshold
changes, the methods of [11, 19] require rescanning of the
data using the new threshold (or in the case of streaming
data [19], it cannot be done), while the SBF does not re-
quire any additional scan of the data, other than one that
examines the data against the counts stored in the SBF.

5.3 Spectral Bloomjoins
Bloomjoins [17] are a method for performing a fast dis-

tributed join between relations R1 and R2 residing on dif-
ferent database servers - R1 in site 1 and R2 in site 2, based
on attribute a. Both relations have a BF built on attribute
a. The Bloomjoin method is executed in the following steps:
R1 sends its BF (B1) to R2, R2 is scanned and tuples with
a match in B1 are sent back to site 1 as R′2. At site 1, R1

is joined with R′2 to produce final result. This method is
economical in network usage, since in the first transmission,
only a synopsis is sent, and the second transmission usually
contains a small fraction of the tuples, since a filtering stage
was executed.

SBFs can be used to perform distributed aggregative queries,
such as the following query, which filter the results using a
given threshold:

SELECT R.a,count(*) FROM R,S

WHERE R.a = S.a GROUP BY R.a

HAVING count(*) [>,=] T

Since in most schemas the join between the relations will

be a one-to-many join, the detail table S can send its SBF to
R’s site. The Bloom Filters are multiplied and R is scanned,
testing each tuple in SBFRS against the threshold T . Re-
sults can be reported immediately since no value is repeated
more than once in R. When using “>” (or “≥”) as the filter
operator, there is only a small fraction ρ of false positive
errors, E(ρ) = ESBF , and no false negatives. Since the er-
rors are one-sided, they can be eliminated by retrieving the
accurate frequencies for the items in the result set, resulting
in a fraction of ρ extra accesses to the data. The effective-
ness of this method increases as the size of the result set
decreases. When using the “=” operator, two-sided errors
are possible, with recall of 1−ESBF , and possibly additional
false-alarms.

The SBF’s ability to maintain counters can also be used
in queries which perform no filtering, such as the following:

SELECT R.a,count(*) FROM R,S

WHERE R.a = S.a GROUP BY R.a

To perform this query using a Bloomjoin, the full scheme
described in [17] must be executed, with Bloom Filters and
tuple stream sent back and forth between the sites. However,
using SBF multiplication, a shorter scheme can be executed,
assuming that both S and R have a SBF representing the
attribute a present, and R being the primary query site: S
sends its SBF (SBFS) to R’s site, where SBFS and SBFR

are multiplied to create SBFSR. Next, R is scanned, and
each tuple is checked against SBFSR for existence. If it
exists, the item and its frequency are reported.

This scheme does not guarantee exact results. Items which
appear in R and not in S may be reported because of er-
rors in SBFS . Also, the frequencies reported are subject to
Bloom Error and may be higher than their actual value. To
ensure the uniqueness of items in the results, we suggest the
use of a validating SBF for that purpose. This method saves
the transmission of data back to the main site. If the main
site has to be the one reporting the results, the final answer
may be sent back to it, with minuscule network usage.

Advantages.Using SBF for Bloomjoins simplifies and short-
ens the algorithm for performing the distributed joins. While
the SBF itself is slightly larger than a Bloom Filter of the
same parameters, this is balanced by the shorter operation
scheme, requiring less SBFs to be sent between sites, and
therefore saving bandwidth.

5.4 Bifocal sampling
A Spectral Bloom Filter can be plugged into various schemes

that require an index on a relation for count queries. One
such application is Bifocal Sampling [12], where using an
SBF one can get similar join estimations without using an
expensive index. The paper deals with joining two relations
with unknown properties by dividing each relation to two
distinct groups: dense and sparse tuples. The join size is
estimated by combining the groups in all ways possible, cre-
ating a dense-dense join and sparse-any joins. In the sparse-
any case, a join of type t-index [16] is used, meaning for
each tuple in a sample of one relation, a query on the other
relation is performed to determine the frequency of the join
attribute in the second relation. By replacing the t-index
with an SBF, the multiplicities used for estimation are re-
placed by their approximations, resulting with only a small



additional error to the overall estimate.

Advantages.The SBF provides an efficient approximation
to the t-index scheme, and enables a more space-efficient
implementation of Bifocal Sampling.

6. EXPERIMENTS
We have tested the accuracy of the various SBF algo-

rithms described in Section 3, as well as the space efficiency
of the encoding methods described in Section 4.3.

Algorithms comparisons.We have tested and compared
the three lookup schemes from Section 3: Minimum Selec-
tion (MS), Recurring Minimum (RM), and Minimal Increase
(MI). The SBF was implemented using hash functions of
modulo/multiply type: given a value v, its hash value H(v),
0 ≤ H(v) < m is computed by H(v) = dm(αv mod 1)e,
where α is taken uniformly at random from [0, 1]. We mea-
sured two parameters; the first is the mean squared additive
error, which is calculated by

Eadd =

vuutPi∈v

�
f̂i − fi

�2

n

The second is the error ratio Eratio, computed as the frac-
tion of the queries that return erroneous results. Thus,
E(Eratio) = ESBF , and for MS, it is Eb. Each reported
result is the average over 5 independent experiments with
the same parameters.

Two sets of tests were conducted; in both we used syn-
thetic data produces by a Zipfian distribution. We used
integers as data values, and the data set was constructed
of 1000 distinct values, with M = 100, 000. We have also
conducted experiments in which M , and hence the average
item frequency, was changed, generating smaller (and big-
ger) data sets. The observed behavior was consistent with
the experiments reported here.

In the first set of tests, the skew of the data was changed,
from θ = 0 (uniform data) to θ = 2 (very skewed data). The
results are shown in Figure 3a,b (solid lines). As can be seen,
the MI algorithm has the best performance both in terms of
additive error and error ratio, and is very stable with regard
to changes in the skew. The RM algorithm outperforms the
MS algorithm in both parameters, but in most cases is no
match to the MI algorithm.

In the second set of tests, the storage size m was changed,
to produce γ = nk/m ranging from about 0.12 to about 2.
The results are shown in Figure 2a,b. For a fair comparison
between the algorithms, in this and in all other experiments
the RM algorithm used m as an overall storage size; that is
the sizes of the primary and the secondary SBFs together
being m. This causes the actual γ of the RM algorithm in
its primary SBF to be larger than that of the MS and MI al-
gorithms. These experiments show that all three algorithms
behave similarly, with RM and MI being almost identical in
their error ratios. The MI algorithm performs best in terms
of additive error when m is small (and γ increases). This is
due to the fact that it performs a minimal number of actual
insertions into the base array, which becomes critical as the
error ratio increases.

The third experiment tested the behavior of the various
schemes when the number of hash functions (k) changes.

The data used was again Zipfian with a skew of 0.5, in all
configurations γ was fixed at 0.7 by increasing m along with
k. The results are shown in Figure 2c. In the k = 1 case,
all the methods perform the same (as they should). The
MI method improves dramatically when k increases, while
the RM method needs k of at least 3 to become effective,
with major improvement when k increases to 4 and more.
These experiments show clearly the incredible precision and
stability of the Minimal Increase method, and also the sub-
stantial improvement that the Recurring Minimum method
shows over the Minimum Selection.

Deletions and sliding window.Next, we tested the SBFs
when faced with deletions. The setup consisted of a series
of insertions, followed by a series of deletions and so on. In
every deletion phase, 5% of the items were randomly cho-
sen and were entirely deleted from the SBF. The results,
shown in Figure 3, compare the error ratio and the addi-
tive error of the SBFs when subject to deletions to their
performance without deletions. It is evident that the MI
algorithm deteriorates dramatically when deletions are per-
formed. The third graph shows the main reason for that -
false-negative errors. Note that almost all of the errors of
the MI algorithm are false negatives (MS and RM have no
false-negatives). This makes it a poor choice when deletions
are considered, since the one-sided nature of the errors is no
longer valid.

The second test shown in Figure 4, used a sliding win-
dow scenario. In this experiment, a total of M items were
inserted, but the SBFs only kept track of the M/5 most
recent items as items were inserted, with data leaving the
window explicitly deleted. The MS and the RM algorithm
are much better that the MI algorithm for this scenario,
with advantage to the RM.

Encoding methods.We tested the storage needed by the
encoding methods described in Section 4.3, comparing the
Elias method, and several configurations of “steps” for data
with varying average frequency of items. The results, shown
at Figure 5, were compared to the “Log Counters”, which
is simply

Pm
i=1 log Ci. For data sets with average frequency

close to 1 (“almost set”) the steps methods are more eco-
nomical, due to their low overhead. However, the Elias
encoding improves as the average frequency increases, and
beats the performance of the steps methods.

7. CONCLUSIONS
This paper presented Spectral Bloom Filters, extending

Bloom Filters by storing counters instead of bit flags. The
structure supports updates and deletions, while preserving
storage size of N + o(N) + O(m) bits. We presented several
heuristics for insertions and lookups in a SBF. Minimum
Selection uses the same logic as the original Bloom Filter.
Minimal Increase is a simple yet powerful heuristic with very
low error rates, but no support for updates and deletions.
Recurring Minimum uses a secondary storage to take care
of “problematic” cases, and it supports deletions and up-
dates with no accuracy loss. We also present the string-
array index, a data structure which provide fast access to
variable-length encoded data while being compact enough
to be used in the Spectral Bloom Filter. We show its struc-
ture and maintenance for static data and during dynamic
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Figure 2: Accuracy of MS, MI and RM algorithms for various values of γ, with k = 5, with additive error
(a), and log of error ratio (b), dotted line represent optimal γ. Additive errors in the three algorithms for
various k values, with γ = 0.7 (c). In all experiments, MI and RM are better than MS, with some advantage
to MI.
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Figure 3: Performance of MS, RM and MI algorithms for Zipfian distribution with varying skew (θ), with
deletions (dotted lines) and without deletions (full lines). Both additive error (left) and log of error ratio
(center) are shown; in all experiments γ = 0.7, k = 5. The third graph shows the ratio of False Negative errors
in the MI algorithm out of the total errors (there are no false negatives in MS and RM).
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Figure 4: Accuracy of MS, RM and MI algorithms for Zipfian distribution of varying skew (θ), in a sliding
window scenario. Both log of additive error and log of error ratio are shown, in all experiments γ = 0.7, k = 5.
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Figure 5: Comparison of various encoding meth-
ods. Several “steps” configurations were tested
along with Elias encoding. The results are compared
to the optimal Log of the counters.

changes in the data-set.
There are several extensions to the basic functionality of

the SBF. One property is the ability to union sets effectively,
provided that the same parameters are used (hash functions
and array size). For such Bloom Filters, a union of two
data sets only requires an addition of the counter vectors
representing them. The SBF can support both streaming
data and sliding window data sets [6], given that old data is
available for deletion.

The SBF enables new applications, and enables more ef-
fective execution of existing applications. SBFs can be used
for maintaining demographics of a multiset or set, and allow
data profiling and filtering using an arbitrary threshold. It
can be used for ad-hoc iceberg-queries, where the thresh-
old defining the query is not known in construction time, or
changes as the data is queried. Bifocal Sampling [12] can use
SBF as an index data structure in the sparse-any procedure
(in fact, SBF can be used in any join of type t-index ). The
SBF can also be plugged into many applications currently
using Bloom Filters. For example, Bloomjoins [17] can be
extended using SBF, with better efficiency for many types
of queries.
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