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Lots and lots of data

AT&T
Information about who calls whom
What information can be got from this  data ?

Network router
Sees high speed stream of packets
Detect DOS attacks ? 
fair resource allocation ?
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Lots and lots of data

Google search engine
About 3 billion web pages
Many many queries every day
How to efficiently process data ?

Eliminate near duplicate web pages
Query log analysis 
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Sketching Paradigm

Construct compact representation (sketch) of 
data such that

Interesting functions of data can be computed 
from compact representation estimated
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Why care about compact 
representations ?

Practical motivations
Algorithmic techniques for massive data sets
Compact representations lead to reduced space, 
time requirements
Make impractical tasks feasible

Theoretical Motivations
Interesting mathematical problems
Connections to many areas of research
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Questions
What is the data ?
What functions do we want to compute on the 
data ?
How do we estimate functions on the 
sketches ?

Different considerations arise from different 
combinations of answers

Compact representation schemes are 
functions of the requirements
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What is the data ?

Sets, vectors, points in Euclidean space, 
points in a metric space, vertices of a graph.

Mathematical representation of objects 
(e.g. documents, images, customer profiles, 
queries).
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What functions do we want to 
compute on the data ?

Local functions : pairs of objects
e.g. distance between objects 
Sketch of each object, such that function can 
be estimated from pairs of sketches

Global functions : entire data set
e.g. statistical properties of data 
Sketch of entire data set, ability to update, 
combine sketches
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Local functions: distance/similarity

Distance is a general metric, i.e satisfies 
triangle inequality

Normed space
x = (x1, x2, …, xd)     y = (y1, y2, …, yd)

Other special metrics 
(e.g. Earth Mover Distance)

( )
  ,  ,  ∞

∑
1/pd p

i ii=1

p 1 2

d(x, y) = | x - y |  

 L norm      L L L
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Estimating distance from sketches
Arbitrary function of sketches

Information theory, communication complexity 
question.

Sketches are points in normed space
Embedding original distance function in normed
space. [Bourgain ’85]  [Linial,London,Rabinovich ’94]

Original metric is (same) normed space
Original data points are high dimensional
Sketches are points low dimensions
Dimension reduction in normed spaces
[Johnson Lindenstrauss ’84]
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Global functions
Statistical properties of entire data set
Frequency moments 
Sortedness of data
Set membership
Size of join of relations
Histogram representation
Most frequent items in data set
Clustering of data
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Streaming algorithms
Perform computation in one (or constant) pass(es) 
over data using a small amount of storage space

Availability of sketch function facilitates streaming 
algorithm
Additional requirements -
sketch should allow:

Update to incorporate new data items
Combination of sketches for different data sets

input

storage
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Goals

Glimpse of compact representation 
techniques in the sketching and streaming 
domains.

Basic ideas, no messy details
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Talk Outline

Classical techniques: spectral methods

Dimension reduction

Similarity preserving hash functions
sketching vector norms
sketching Earth Mover Distance (EMD)
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Spectral methods: approximating matrices

SVD: Singular Value Decomposition
LSI: Latent Semantic Indexing

Related to
PCA: Principal Component Analysis
MDS: MultiDimensional Scaling
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SVD Matrix Factorization

X        =      U      x      Σ x         VT

nn r

= x x

rmm
Singular
Values

RepresentationBasis

Restrictions on representation: U, V orthonormal; Σ diagonal
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Matrix approximation

X = ∑i ui si vi
T

X(k) = ∑i
k
=1 ui si vi

T

X(k) is best rank k approximation to X
minimizes ∑ij |xij – x(k)

ij|2
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Dimension Reduction
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The columns of Xr represent the docs, but in r << m dimensions 
Best rank r approximation according to 2-norm
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Closely related notions

Singular Value Decomposition
Karhunen-Loeve (KL) Transform
Principal Component Analysis (PCA)
Latent Semantic Indexing (LSI)

Information retrieval
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SVD complexity

O(min(nm2,mn2))
Less work

if we want just eigenvalues
if we want first k eignevectors
if matrix is sparse

Implemented in any linear algebra package
(LINPACK, matlab, Splus, mathematica,…)
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Applications

Image processing and compression
low rank approximation leads to compressed 
representation, noise reduction

Molecular dynamics
characterizing protein molecular dynamics
higher prinicipal components correspond to large 
scale motions
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Applications

Information retrieval
LSI: Latent semantic indexing 
SVD applied to term document matrix
compute best rank k approximation
eigenvectors correspond to linguistic concepts

Gene expression data analysis
SVD useful preprocessing step
grouping genes by transcriptional response, 
grouping assays by expression profile
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Microarray gene expression data
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SVD applied to gene expression data
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Information retrieval
X is term document matrix

m terms, n documents 
entry (t,d) for term t and document d is function of 
how many times t occurs d

SVD of X gives low dimensional 
representation Xr

Latent Semantic Indexing
Xr

T Xr is matrix of document similarities
Columns of Xr represent the documents, 
but in r << m dimensions
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Semi-precise intuition

We accomplish more than dimension 
reduction here:

Docs with lots of overlapping terms stay together
Terms from these docs also get pulled together.

Thus car and automobile get pulled together 
because both co-occur in docs with tires, 
radiator, cylinder, etc. 
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Query processing

View a query as a (short) doc:
call it column 0 of Xr.

Now the entries in column 0 of Xr
TXr give the 

similarities of the query with each doc.
Entry (j,0) is the score of doc j on the query. 
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Talk Outline

Dimension reduction

Similarity preserving hash functions
sketching vector norms
sketching Earth Mover Distance (EMD)
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Low Distortion Embeddings
Given metric spaces (X1,d1) & (X2,d2),
embedding f: X1 → X2 has distortion D if  
ratio of distances changes by at most D

“Dimension Reduction” –
Original space high dimensional
Make target space be of “low” dimension, 
while maintaining small distortion

ff

http://humanities.ucsd.edu/courses/kuchtahum4/pix/earth.jpghttp://humanities.ucsd.edu/courses/kuchtahum4/pix/earth.jpghttp://www.physast.uga.edu/~jss/1010/ch10/earth.jpghttp://www.physast.uga.edu/~jss/1010/ch10/earth.jpg
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Dimension Reduction in L2
n points in Euclidean space (L2 norm) can be 
mapped down to O((log n)/ε2) dimensions 
with distortion at most 1+ε.
[Johnson Lindenstrauss ‘84]

Two interesting properties:
Linear mapping
Oblivious – choice of linear mapping does 
not depend on point set
Quite simple [JL84, FM88, IM98, DG99, Ach01]:
Even a random +1/-1 matrix works…

Many applications…
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Dimension reduction for L1

[C,Sahai ‘02]
Linear embeddings are not good for 
dimension reduction in L1

There exist O(n) points in L1 in n dimensions, 
such that any linear mapping with distortion δ
needs n/δ2 dimensions
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Dimension reduction for L1

[C, Brinkman ‘03]
Strong lower bounds for dimension reduction 
in L1

There exist n points in L1 , such that any
embedding with constant distortion δ needs 
n1/δ2 dimensions

Simpler proof by [Lee,Naor ’04]

Does not rule out other sketching techniques
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Talk Outline

Dimension reduction

Similarity preserving hash functions
sketching vector norms
sketching Earth Mover Distance (EMD)
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Similarity Preserving Hash Functions

Similarity function sim(x,y), distance d(x,y)
Family of hash functions F with probability 
distribution such that

Pr [ ( ) ( )] ( , )h F h x h y sim x y∈ = =
Pr [ ( ) ( )] ( , )h F h x h y d x y∈ ≠ =
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Applications

Compact representation scheme for 
estimating similarity

Approximate nearest neighbor search 
[Indyk,Motwani ’98] 
[Kushilevitz,Ostrovsky,Rabani ‘98]
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Relaxations of SPH
Estimate distance measure, not similarity 
measure in [0,1].

Measure E[f(h(x),h(y))].

Estimator will approximate distance function.

Pr [ ( ) ( )] ( , )h F h x h y d x y∈ ≠ =

E[ ( ( ), ( ))] ( , )f h x h y d x y=
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Sketching Set Similarity:
Minwise Independent Permutations
[Broder,Manasse,Glassman,Zweig ‘97]
[Broder,C,Frieze,Mitzenmacher ‘98]        
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Other similarity functions ?Other similarity functions ?

Necessary conditions for existence of Necessary conditions for existence of 
similarity preserving hash functions.similarity preserving hash functions.

SPH does not exist for SPH does not exist for Dice coefficientDice coefficient
and and Overlap coefficientOverlap coefficient..

SPH schemes from rounding algorithmsSPH schemes from rounding algorithms
Hash function for vectors based on Hash function for vectors based on random random 
hyperplanehyperplane roundingrounding..

[C[C’’02]02]
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Existence of SPH schemesExistence of SPH schemes

sim(x,ysim(x,y)) admits an SPH scheme ifadmits an SPH scheme if
∃∃ family of hash functions family of hash functions FF such thatsuch that

Pr [ ( ) ( )] ( , )h F h x h y sim x y∈ = =
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TheoremTheorem: If : If sim(x,ysim(x,y)) admits an SPH admits an SPH 
scheme then scheme then 11--sim(x,y)sim(x,y) satisfies satisfies 
triangle inequality.triangle inequality.

ProofProof::

indicator variable for
1 ( , ) Pr ( ( ) ( ))

( , ) :   ( ) ( )
( , ) ( , ) ( , )

1 ( , ) E [ ( , )]

h F

h

h h h

h F h

sim x y h x h y
x y h x h y
x y y z x z

sim x y x y

∈

∈

− = ≠
∆ ≠
∆ +∆ ≥∆
− = ∆
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NonNon--existence of SPHexistence of SPH

1
2

:  Dice's coefficient 

:  Overlap coefficient 

Triangle inequality violated fo
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(| | | |)
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Stronger ConditionStronger Condition

TheoremTheorem: If : If sim(x,ysim(x,y)) admits an SPH admits an SPH 
scheme then scheme then (1+sim(x,y) )/2  (1+sim(x,y) )/2  has an SPH has an SPH 
scheme with hash functions mapping scheme with hash functions mapping 
objects to objects to {0,1}{0,1}..

TheoremTheorem: If : If sim(x,ysim(x,y)) admits an SPH admits an SPH 
scheme then scheme then 11--sim(x,y)sim(x,y) is is isometricallyisometrically
embeddable in the Hamming cube.embeddable in the Hamming cube.
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Random Random HyperplaneHyperplane Rounding Rounding 
based SPHbased SPH

Collection of vectorsCollection of vectors

Pick random Pick random hyperplanehyperplane
through origin (normal    )through origin (normal    )

[[Goemans,WilliamsonGoemans,Williamson]]

( , )( , ) 1 u vsim u v
π

= −
G G(G G

rG

1      0
( )

0   
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r u
h u

r u
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For For nn vectors, random vectors, random hyperplanehyperplane can be can be 
chosen using chosen using O(logO(log22 n)n) random bits.random bits.
[[IndykIndyk], [], [Engebretson,Indyk,OEngebretson,Indyk,O’’DonnellDonnell]]

Alternate similarity measure for setsAlternate similarity measure for sets

1

( , ) 1

| |cos
| |

sim A B

A B
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∩=
∪
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Sketching L1

Design sketch for vectors to estimate L1 norm

Hash function to distinguish between small 
and large distances [KOR ’98]

Map L1 to Hamming space
Bit vectors a=(a1,a2,…,an) and b=(b1,b2,…,bn)
Distinguish between distances 
≤ (1-ε)n/k versus  ≥ (1+ε)n/k
XOR random set of k bits
Pr[h(a)=h(b)] differs by constant in two cases
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Sketching L1 via stable distributions 
a=(a1,a2,…,an) and b=(b1,b2,…,bn)
Sketching L2

f(a) = Σi ai Xi     f(b) = Σi bi Xi
Xi independent Gaussian
f(a)-f(b) has Gaussian distribution scaled by |a-b|2
Form many coordinates, estimate |a-b|2 by taking L2 norm

Sketching L1

f(a) = Σi ai Xi     f(b) = Σi bi Xi
Xi independent Cauchy distributed
f(a)-f(b) has Cauchy distribution scaled by |a-b|1
Form many coordinates, estimate |a-b|1 by taking median
[Indyk ’00]    -- streaming applications
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Earth Mover Distance (EMD)

PP QQ

EMD(P,Q)EMD(P,Q)
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Bipartite/Bichromatic matching
Minimum cost matching between two sets of points.
Point weights ≡ multiple copies of points
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Goal: Sketch point set to enable estimation of min cost matching

Fast estimation of bipartite matching  [Agarwal,Varadarajan ’04]
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Approximating metrics by trees

d(u,v) ≤ E[dT(u,v)] ≤ O(log n) d(u,v)

Single tree may have high distortion

Use probability distribution over trees

[Bartal ’96,’98, FRT ’03]
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EMD on trees: embedding into L1

|wT(P)-wT(Q)|
[suggested by

Piotr Indyk]ℓT

T

EMD(P,Q) = ΣTℓT|wT(P)-wT(Q)|

v(P) = {ℓTwT(P)}T v(Q) = {ℓTwT(Q)}T

EMD(P,Q) =|v(P)-v(Q)|1
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EMD on general metrics

Approximate metric by probability distribution 
on trees
Sample tree from distribution and compute L1
representation
EMD(P,Q) ≤ E[d(v(P),v(Q))] ≤ O(log n) EMD(P,Q)
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Tree approximations for Euclidean points

distortion O(d log ∆)    [Bartal ’96, CCGGP ’98]

proposed by [Indyk,Thaper ’03] for estimating EMD
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Conclusions
Compact representations at the heart of several 
algorithmic techniques for large data sets

Compact representations tailored to applications

Effective for region based image retrieval
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ISOMAP and LLE

Nonlinear dimension reduction methods
“Learn” hidden structure in data

See slides of Chan-Su Lee and Rong Xu
from Michael Littman’s course at Rutgers
http://www.cs.rutgers.edu/~mlittman/courses/l
ightai03/chansu.ppt
http://www.cs.rutgers.edu/~mlittman/courses/l
ightai03/rongxu.ppt

http://www.cs.rutgers.edu/~mlittman/courses/lightai03/chansu.ppt
http://www.cs.rutgers.edu/~mlittman/courses/lightai03/chansu.ppt
http://www.cs.rutgers.edu/~mlittman/courses/lightai03/rongxu.ppt
http://www.cs.rutgers.edu/~mlittman/courses/lightai03/rongxu.ppt
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