!'_ Bloom Filters

How I learned to stop worrying about errors
and love memory efficient data structures

A presentation by Elliott Karpilovsky



i The Space and Time Impetuses

= "Set” data structures are used everywhere
= Web caches, spellcheckers, databases, efc.

= The naive implementation isn't efficient

enough for systems applications, both space-
wise and time-wise

= Using memory efficient data structures, can
sacrifice a tiny bit of precision for incredible
memory and run-time savings
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i A Quick Review of Sets

= Mathworld:

= Set: A set is a finite or infinite collection of objects
in which order has no significance, and multiplicity
is generally also ignored

= Multiset: A set-like object in which order is
ignored, but multiplicity is explicitly significant.
Therefore, multisets {1, 2, 3} and {2, 3, 1} are
equivalent, but {1, 1, 2, 3} and {1, 2, 3} differ
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i A Quick Review of Sets

s AVC++" Set:
» add<T>(T 1tem)
= contains<T>(T 1tem)
= remove<T>(T 1tem)

= A "C++" Multiset additionally has:
= Num_occurs<T>(T 1tem)
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i A Special Note on “Remove”

= Will assume that remove<T> is only

called on elements that are actually in
the set

= Assumption is okay, since in many
applications, all items in the set are
stored “offline” and it is possible to
check if an item truly is in the set
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i A Naive Set Implementation

s Assume:

=« Know, a priori, that the set will contain n
elements

« Each element consumes m bits of space
= N, M may be extremely large

s Construct:

=« Use a balanced binary tree
= total ordering always exists
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i A Naive Set: Time Analysis

. add: O(m log(n))
- remove: O(m log(n))
. contains: O(m log(n))
. num_occurs:  O(m log(n))

« 'Set” can be converted to a "multiset” by
extending each element with a counter
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i A Naive Set: Space Analysis

= O(mn) storage
= Stores n elements, each m bits long
= Assume counter size is negligible
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i Can we do better?

= O(mn) storage required

= O(m log(n)) time for all operations
= Not looking so hot for systems applications!

= A better approach: use buckets and hashes
= Leads to the hash set data structure
= Commonly used in systems applications
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i Hash Set: Implementation

= Have a fixed array of size g

= Have a hash function that maps
elements between 0 and g-1

s Use linked lists to store elements that
hash to the same value

= See any standard reference (/.e.,
C.L.R.S.) for implementation details
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i Hash Set: Time Analysis

= Define the load factor a. = n/q

= For n elements, expected number of
items in each bucket is o

= Takes O(m) time to hash

= Takes O(ma) time, on average, to
search a bucket
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i A Hash Set: Time Analysis

= add: O(m(1 + o))
= Femove: O(m(1 + o))
= contains: O(m(1 + o))
= NUM_OCCUrS: O(m(1 + o))
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i A Hash Set: Space Analysis

= O(mn) storage
= Stores n elements, each m bits long
= Assume counter size is negligible

= Additional O(n/a) storage for linked lists
= Generally negligible relative to O(mn)
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A Comparison: Hash vs. Naive

Memory Runtime
Hash set O(mn) Oo(m(1 + o))
Naive set O(mn) O(m log(n))
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i Are we stuck with O(mn) Space?

= Could it be that there’s no way around
it?
= Indeed, we are stuck...
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i Are we stuck with O(mn) Space?

= Could it be that there’s no way around
it?

= Indeed, we are stuck... but only if we want
an error rate of zero
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i Are we stuck with O(mn) Space?

= Could it be that there’s no way around
it?

= Indeed, we are stuck... but only if we want
an error rate of zero

= What if we're willing to tolerate a small
error rate?

= In this case, there is a solution!
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i Bloom Filters to the Rescue

= Unlike hash sets, Bloom Filters:

m U

ave a fixed error rate
se memory linear in n

Have runtime linear in m

= Very easy to implement

= Will never report false-negatives
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The Motley Bloom Filter Crew

= Standard Bloom Filter
= Supports add<T>, contains<T>

= Counting Bloom Filter
= Supports remove<T>

= Spectral Bloom Filter
= Supports num_occurs<T>

= Other Variants

= Compressible Bloom Filter, External Memory Filters, Bloomier
Filters, etc.
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i Bloom Filter: Implementation

= Start off with a bit array of size q, initializing
all bitsto 0

= Create k different hash functions hy, h,, ..., h
= Can create using SHA-1 and randomly salt
= Hash to values between O and g-1

= Assume negligible storage requirements for the
hash functions
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i Bloom Filter: Implementation

= When we want to add an element, hash
it k times and set the corresponding
bits to 1

add<T>(T 1tem)
{
for(aint 1 = 0; 1 < k; 1++)
array[h;(item)] = 1;
}

3/17/2005 COS598E - Bloom Filters 21



i Bloom Filter: Implementation

= When we want to check for containment,
hash k times and see if all k bits are set to 1

contains<T>(T 1tem)

{
for(int i = 0; i < k; i++)
iT(larray[h;(1tem)]) return false;

return true;

}
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i Bloom Filters: Analysis

= Memory usage is O(q)
= @is any value we pick

= Runtime for all operations is O(mk)
= kis any value we pick

= Error rate is completely determined by
our choices of gand &
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i Bloom Filters: Error Analysis

= How should we choose g?
= How should we choose k?

= What should we do to minimize the
error?
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i Bloom Filters: Error Analysis

= The probability of a bit still being 0 after
all n elements are inserted is:

« p=(1-1/q)n =~ ekn/d

= The probability of a false positive is
then:

lf=(1_p)k
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i Bloom Filters: Error Analysis

= Want to minimize: f = elkIn(1 -p))
= Assume that g and n are fixed, solve for k

= Minimizing k In(1 — p) also minimizes f

= Same as minimizing: -g/n In(p) In(1-p)
. k = _q/n % |n(e-kn/q)
s P = e-kn/q
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i Bloom Filters: Error Analysis

= Minimize: -g/n * In(p) In(1-p)

= By symmetry, has global minimum at
D=1

= Corresponds to k =1In 2 * (g/n)
= k =-g/n In(p)
= k= 1In(1/p) * (q/n)
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i Bloom Filters: Error Analysis

= When £k =/n2 * (g / n) false positive
rate becomes:

« f= (1/2)k~ (0.6185)a/n

= By letting g = ¢n, the rate becomes:
« f = (0.6185)¢
s f=214% forc =8
« f = 0.05% for c = 16
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i Bloom Filters: In Practice

= Memory usage is O(cn)
=« Compare to O(mn) for naive sets, hash sets

= Runtime is O(cm), since k = In(2) * C
= Compare to O(m log(n)) for naive sets
= Compare to O(m (1 + «)) for hash sets

= Error rate is (.6815)¢
= Compare to 0 for naive sets, hash sets

3/17/2005 COS598E - Bloom Filters

29



i Can we do better than Bloom?

= Is it possible to get better memory savings
than Bloom Filters?

= Yes and no

= For a given error rate, Bloom Filters are
within a factor of 1.44 of the theoretically
most optimal data structure

=« However, Bloom Filter implementations are exactly
the same for any set of objects

=« Not known how to implement the theoretically
most optimal structure
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i An Aside: Bloom Filter Regalia

= Ever...
= Wanted to make small chat by the watercooler?
= Needed to entertain a kid’s birthday party?

= But couldn’t find an interesting topic?

= Amaze and dazzle your friends and colleagues
with Bloom Filter Tricks!

3/17/2005 COS598E - Bloom Filters 31



i Party Tricks: Bloom Union

= Want to take the union of two bloom
filters that have the same hash
functions?

= Just OR all the bits together!
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i Party Tricks: Bloom Shrink

= Want to cut memory usage in half?

= OR the first half of the array with the
second half!

= Mask the high order bit on your hash
functions

= Side effect: error rate will increase
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i Counting Bloom Filters

= Very slight modification of the Bloom
Filter

= Adds support for remove<T>

= Instead of using a bit array, use a
counter array
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i Counting Bloom Filters

add<T>(T 1tem)

1
for(int 1 = 0; 1 < k; 1++)
array[h;(item) ]++;
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i Counting Bloom Filters

contains<T>(T 1tem)

1
for(int 1 = 0; 1 < K;
iIT(tarray[h;(1tem)])
return false;

return true;

L
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i Counting Bloom Filters

remove<T>(T item)

{
for(int i = 0; 1 < k;
array[h.(item)]--;
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i Counting Bloom Filters

= Memory usage is now O(qt), where tis
the size of the counter in bits

= How large should we set ¢?

= Assume that the data is “uniform”

= Doing some calculations, the probability
that any counter will exceed value jis:
Prob(any counter = j) < g (1.885 / j)
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i Counting Bloom Filters

= Prob(overflow) < q (1.885 / j)

» [=2->j)=4,Prob < 0.049 g

= If ¢ = 8, then even for two items, bound is bad
(~.78)

« £=3 j=8, Prob < 0.0000095 g

« If ¢ = 8, then bound becomes bad if we store
more than a thousand items (~.08)
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i Counting Bloom Filters

= Prob(overflow) < q (1.885 / j)
= t=4->j=16, Prob < 1.38 * 1015 * g

« If ¢ = 8, good bound, even if you expect over a
billion items (~.000011)
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i Counting Bloom Filters

= Prob(overflow) < q (1.885 / j)
« t=5- =32, Prob < 4.4 * 104 * g

« =6 j =64, Prob < 1.06 * 10°% * g

« =7 > j =128, Prob < 3.29 * 10235 * q
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i Counting Bloom Filters

= Prob(overflow) < q (1.885 / j)
» £=8 > ) =256, Prob < 9.34 * 10~% * g

= Even if:
=« C = number of atoms in universe
=« N = number of atoms in the universe

= = cn = square of number of atoms in the
universe

= Probability of an overflow is about 10-3>0
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i Spectral Bloom Filters

= Essentially, exactly the same as a
Counting Bloom Filter
= Adds support for num_occurs<T>

= Runs in O(mk) time, like all other
operations

= Error rate is exactly the same as the
standard Bloom Filter error rate: (1 — p)k
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i Spectral Bloom Filters

The minimum selection estimator:

num_occurs<T>(T 1tem)

1

int smallest = overflow value;

for(int 1 = 0; i < k; i++)
iIf(array[h;(1tem)] < smallest)
smallest = array[h;(item)];

return smallest;

}
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i Compressible Bloom Filters

= Could imagine:
= Zipping” the bit array when not in use

o “UITZi ping” the bit array when an operation is
calle

= "Re-zipping” it afterward

= Would slow down the program, but could
save even more memory

= Is this possible?
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i Compressible Bloom Filters
= With the standard Bloom Filter, no!
= Remember, p = 2 when &k =c/n(2), so

each bit has a 2 chance of being a 1

= Essentially a random stream of 1's and 0’s
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i Compressible Bloom Filters

= What if we...

= Reduce the number of hash functions (less
hashing means more zeroes)

= Increase the size of the array (to
compensate for the increased error rate)

= Then try compression

= Will the new filter be smaller and have
about the same error rate?

3/17/2005 COS598E - Bloom Filters 47



i Compressible Bloom Filters

= Surprisingly, yes!
= Example taken from Broder’s survey paper
= q is size of the array (uncompressed)
= Z is the size of the array (after compression)
» fis the false-positive error rate

g/n 16 48

K 11 3

z/n 16 15.829

f 0.000459 0.000222
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i Other Bloom Filter Variants

= External Memory Filters

=« If the filter is too large to fit in memory,
have a separate hash function decide what
section of the array to search, and then
perform the multiple hashing

= Very slight increase in error rate

3/17/2005 COS598E - Bloom Filters 49



i Other Bloom Filter Variants

= Bloomier Filters

= Create a lossy map from a domain D to a
set S

= 'Near optimal” solution involves using multiple
Bloom filters to represent each value in S

= 'Optimal” solution involves one-time
construction of large lookup tables
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i Applications: IP Traceback

= Suppose we find a malicious packet in
our server log, want to find out where it
came from

= Can't trust the packet’'s metadata
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i Applications: IP Traceback

= Idea: Have every router keep a log of
every packet it's ever seen!

= Not that great, since routers see so
many packets, have such limited
memory, and must operate at
breakneck speeds, they cannot possibly
store this information
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i Applications: IP Traceback

= Better Idea: Have every router keep a Bloom
Filter of which packets its seen

= Query every router that the packet may have
come from, see which ones saw the packet,
have them recursively query routers they talk
to, elc.

= Much more feasible, since Bloom Filters are
fast and memory efficient
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i Applications: IP Traceback
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i Applications: IP Traceback
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‘L Applications: IP Traceback
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i Applications: IP Traceback
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i Applications: IP Traceback
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‘L Applications: IP Traceback
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‘L Applications: IP Traceback
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‘L Applications: IP Traceback
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‘L Applications: IP Traceback
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‘L Applications: IP Traceback
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i Applications: Detecting Loops

= Packets sometimes get stuck in loops
while traversing the interweb

= Normally packets are labeled with a
Time-to-Live field, which is
decremented at each hop

= When Time-To-Live is zero, packet is
discarded
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i Applications: Detecting Loops

= Not a problem caused by well
established protocols like TCP/IP

=« Likelihood of a loop occurring is small
= However, experimental protocols may

not know if their algorithms are flawed
and produce a lot of looping
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i Applications: Detecting Loops

= Whitaker and Wetherall propose that for the
experimental setting, each packet keep a
Bloom Filter of where it's been

= As it passes through the router, the router
can check if it is likely that a loop occurred

= Can be made very efficient if each router
predetermines its hash and just ORs them
into the packets
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i Applications: Web Proxy

= A web proxy is a server set up between
a network and popular websites

= The proxy is usually “close” to a large
user base

= The proxy caches the web content from
popular sites
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i Applications: Web Proxy

= When you request a web site, the proxy
intercepts the request and:
= 1.) Looks in its cache for the item
= 2.) Possibly asks other proxies if they have
it
= 3.) Either serves up a local copy, gets a

copy from another proxy, or forwards the
request to the web site
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i Applications: Web Proxy

= The current protocol for web proxies is
the Intercache Protocol (ICP):

» If @ cache miss occurs, spam all other
proxies to check if they have the missing
item

= Does not scale very well
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i Applications: Web Proxy

= Augment the proxies to have Bloom
Filters

= The filters record what files they have
= Initially, they send each other their filters

= When a cache miss occurs, check all the
filters from each proxy for 'likely’
candidates

= Only spam those candidates
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i Applications: Web Proxy

= At various intervals, the proxies send updates
to each other (as their caches change over
time)

= Fan et al showed in a simulated environment
that Bloom Filter Proxies:

= Reduce the number of inter-proxy messages by a
factor of 25-60

=« Reduce bandwidth used by proxies by 50%
= Eliminate over 30% CPU overhead
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i Bloom Filters: A Summary

= Bloom Filters are:
= Easy to implement
=« Fun to use
= Space efficient beyond belief
= Useful in many systems applications

= However, must know when to use them
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i Bloom Filters: A Summary

Memory Runtime Error Rate
Bloom O(cn) O(cm) (.6815)c
Filter
Hash Set O(mn) o(m(1 + o)) 0
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i The End... ?

= A parting comment on Bloom Filters by

Andrei Broder:
= Whenever a list or set is used, and space is
at a premium, consider using a Bloom

Filter if the effects of false-positives can be
mitigated
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i Bonus Material!

= Turns out there is another kind of hash set,
also called the hash set

= Was commonly used before Bloom Filters
took over

= Takes up slightly more memory, runs slightly
faster, has slightly better error rates than a
Bloom Filter

= Very useful in specialized applications
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i A Hash Set Implementation

= Same assumptions: n elements, each m
bits long

= Same implementation as the naive set,
except instead of storing the element,
store its hash

= Represent the element using ¢ * log,(n)
bits, where cis a constant we can choose

= As will be seen later, cis usually very small
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i A Hash Set: Time Analysis

= add: O(m + clog?(n))
= Femove: O(m + clog?(n))
= contains: O(m + clog?(n))
= NUM_OCCUrS: O(m + clog?(n))

« 'Set” can be converted to a "multiset” by
extending each element with a counter
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i A Hash Set: Space Analysis

= O(c log(n) n) storage
= Stores n elements, each ¢ log(n) bits long
= Assume counter size is negligible
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i Hash Set: Error Analysis

= Great savings all around at no extra penalty,
right?

= Wrong! May result in erroneous behavior

= Query operations may not function correctly:
= contains<T>(T 1tem) may produce wrong
dNSWeErs
= hum_occurs<T>(T item) may produce wrong
dNSWeErs
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i Hash Set: Error Analysis

= contains<T>(T item) may produce
wrong answers if a hash collision occurs

= Hash collisions never produce false-negatives

« £.g.,ifsetis{1, 2, 3, 4, 5}, will never report 5 is
not in the set

= Hash collisions may report false-positives

« £.g.,ifsetis{1, 2, 3,4, 5}, may say that element
6 is in the set
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i Hash Set: Error Analysis

= num_occurs<T>(T item) may produce
wrong answers if a hash collision occurs

= Hash collisions may never decrease the
counter

« £.g,ifthesetis {1, 1, 2, 3}, will never say that
element 1 occurs once or less

s Has

N collisions may increase the counter

« £.g.,ifthesetis {1, 1, 2, 3}, may say that

S
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i Hash Set: Error Analysis

= Probability of a hash collision:
A B

1{0j0]1j0f{1]{1f1]0 1{0j0]1j0f{1]{1f1]0

= Probability of any two bits being
identical is V2 for different objects

= Follows from uniform mapping property of
hash function
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i Hash Set: Error Analysis

= Probability of a hash collision:

A

1

0

3/17/2005

B

0

COS598E - Bloom Filters

99



i Hash Set: Error Analysis

= Probability of a hash collision:

A B
1{0|0(1]O0|1|1|1(0O 1{0|0(1]O0|1|1|1(0O
l1/2*1/2
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i Hash Set: Error Analysis

= Probability of a hash collision:
A B

1{0j0]1j0f{1]{1f1]0 1{0j0]1j0f{1]{1f1]0

V2 X1 X K VH = (14)cl0g(n)
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i Hash Set: Error Analysis

= Probability of a hash collision:

A

1

0

B

0

V2 X1 X K VH = (14)cl0g(n)
O (1/2)C log,(n) = 2'092(1/nc)
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i Hash Set: Error Analysis

= Probability of a hash collision:

A

1

0

B

0

V2 X1 X K VH = (14)cl0g(n)
O (1/2)C log,(n) = 2'092(1/nc)

a 21092(1/n%) = 1/nc¢

3/17/2005

COS598E - Bloom Filters

103



i Hash Set: Error Analysis

= Since we have n elements, a collision
can occur with any one of them

= Probability of a collision is
at most (by union bound):

n* 1/n¢ = 1/ncb
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i Hash Set: Error Analysis

= Probability of contains<T> producing
a false positive: 1/n(c1)

= Probability of num_occurs<T>

producing an artificially high value for
an element that is in the set is bounded
above by 1/n(1)

= In practice, cis setto 2 or 3
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i Hash Sets: A Summary

Memory Runtime | Error Rate

Bloom O(cn) O(cm) (.6815)c
Filter

Hash Set | O(c’nlog n) | O(m+c'log?n) 1/nct

Original O(mn) O(m(1 + a)) 0
Hash Set
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