
Bloom Filters

How I learned to stop worrying about errors
and love memory efficient data structures

A presentation by Elliott Karpilovsky

3/17/2005 COS598E - Bloom Filters 2

The Space and Time Impetuses

“Set” data structures are used everywhere
Web caches, spellcheckers, databases, etc.

The naïve implementation isn’t efficient
enough for systems applications, both space-
wise and time-wise

Using memory efficient data structures, can
sacrifice a tiny bit of precision for incredible
memory and run-time savings

3/17/2005 COS598E - Bloom Filters 3

A Quick Review of Sets

Mathworld:
Set: A set is a finite or infinite collection of objects
in which order has no significance, and multiplicity
is generally also ignored

Multiset: A set-like object in which order is
ignored, but multiplicity is explicitly significant.
Therefore, multisets {1, 2, 3} and {2, 3, 1} are
equivalent, but {1, 1, 2, 3} and {1, 2, 3} differ

3/17/2005 COS598E - Bloom Filters 4

A Quick Review of Sets

A “C++” Set:
add<T>(T item)
contains<T>(T item)
remove<T>(T item)

A “C++” Multiset additionally has:
num_occurs<T>(T item)

3/17/2005 COS598E - Bloom Filters 5

A Special Note on “Remove”

Will assume that remove<T> is only
called on elements that are actually in
the set

Assumption is okay, since in many
applications, all items in the set are
stored “offline” and it is possible to
check if an item truly is in the set

3/17/2005 COS598E - Bloom Filters 6

A Naïve Set Implementation

Assume:
Know, a priori, that the set will contain n
elements
Each element consumes m bits of space

n, m may be extremely large

Construct:
Use a balanced binary tree

total ordering always exists

3/17/2005 COS598E - Bloom Filters 7

A Naïve Set: Time Analysis
add: O(m log(n))

remove: O(m log(n))

contains: O(m log(n))

num_occurs: O(m log(n))
“Set” can be converted to a “multiset” by
extending each element with a counter

3/17/2005 COS598E - Bloom Filters 8

A Naïve Set: Space Analysis

O(mn) storage
Stores n elements, each m bits long
Assume counter size is negligible

3/17/2005 COS598E - Bloom Filters 9

Can we do better?

O(mn) storage required
O(m log(n)) time for all operations

Not looking so hot for systems applications!

A better approach: use buckets and hashes
Leads to the hash set data structure
Commonly used in systems applications

3/17/2005 COS598E - Bloom Filters 10

Hash Set: Implementation

Have a fixed array of size q
Have a hash function that maps
elements between 0 and q-1
Use linked lists to store elements that
hash to the same value
See any standard reference (i.e.,
C.L.R.S.) for implementation details

3/17/2005 COS598E - Bloom Filters 11

Hash Set: Time Analysis

Define the load factor α = n/q
For n elements, expected number of
items in each bucket is α
Takes O(m) time to hash
Takes O(mα) time, on average, to
search a bucket

3/17/2005 COS598E - Bloom Filters 12

A Hash Set: Time Analysis
add: O(m(1 + α))

remove: O(m(1 + α))

contains: O(m(1 + α))

num_occurs: O(m(1 + α))
“Set” can be converted to a “multiset” by
extending each element with a counter

3/17/2005 COS598E - Bloom Filters 13

A Hash Set: Space Analysis

O(mn) storage
Stores n elements, each m bits long
Assume counter size is negligible

Additional O(n/α) storage for linked lists
Generally negligible relative to O(mn)

3/17/2005 COS598E - Bloom Filters 14

A Comparison: Hash vs. Naïve

O(m log(n))O(mn)Naïve set

O(m(1 + α))O(mn)Hash set

RuntimeMemory

3/17/2005 COS598E - Bloom Filters 15

Are we stuck with O(mn) Space?

Could it be that there’s no way around
it?

Indeed, we are stuck…

3/17/2005 COS598E - Bloom Filters 16

Are we stuck with O(mn) Space?

Could it be that there’s no way around
it?

Indeed, we are stuck… but only if we want
an error rate of zero

3/17/2005 COS598E - Bloom Filters 17

Are we stuck with O(mn) Space?

Could it be that there’s no way around
it?

Indeed, we are stuck… but only if we want
an error rate of zero

What if we’re willing to tolerate a small
error rate?

In this case, there is a solution!

3/17/2005 COS598E - Bloom Filters 18

Bloom Filters to the Rescue

Unlike hash sets, Bloom Filters:
Have a fixed error rate
Use memory linear in n
Have runtime linear in m

Very easy to implement

Will never report false-negatives

3/17/2005 COS598E - Bloom Filters 19

The Motley Bloom Filter Crew
Standard Bloom Filter

Supports add<T>, contains<T>

Counting Bloom Filter
Supports remove<T>

Spectral Bloom Filter
Supports num_occurs<T>

Other Variants
Compressible Bloom Filter, External Memory Filters, Bloomier
Filters, etc.

3/17/2005 COS598E - Bloom Filters 20

Bloom Filter: Implementation

Start off with a bit array of size q, initializing
all bits to 0

Create k different hash functions h1, h2, …, hk
Can create using SHA-1 and randomly salt
Hash to values between 0 and q-1
Assume negligible storage requirements for the
hash functions

3/17/2005 COS598E - Bloom Filters 21

Bloom Filter: Implementation

When we want to add an element, hash
it k times and set the corresponding
bits to 1

add<T>(T item)
{
for(int i = 0; i < k; i++)

array[hi(item)] = 1;
}

3/17/2005 COS598E - Bloom Filters 22

Bloom Filter: Implementation
When we want to check for containment,
hash k times and see if all k bits are set to 1

contains<T>(T item)
{
for(int i = 0; i < k; i++)

if(!array[hi(item)]) return false;

return true;
}

3/17/2005 COS598E - Bloom Filters 23

Bloom Filters: Analysis

Memory usage is O(q)
q is any value we pick

Runtime for all operations is O(mk)
k is any value we pick

Error rate is completely determined by
our choices of q and k

3/17/2005 COS598E - Bloom Filters 24

Bloom Filters: Error Analysis

How should we choose q?

How should we choose k?

What should we do to minimize the
error?

3/17/2005 COS598E - Bloom Filters 25

Bloom Filters: Error Analysis

The probability of a bit still being 0 after
all n elements are inserted is:

p = (1 – 1/q)kn ≈ e-kn/q

The probability of a false positive is
then:

f = (1 – p)k

3/17/2005 COS598E - Bloom Filters 26

Bloom Filters: Error Analysis

Want to minimize: f = e(k ln(1 – p))

Assume that q and n are fixed, solve for k

Minimizing k ln(1 – p) also minimizes f

Same as minimizing: -q/n ln(p) ln(1-p)
k = -q/n * ln(e-kn/q)
p = e-kn/q

3/17/2005 COS598E - Bloom Filters 27

Bloom Filters: Error Analysis

Minimize: -q/n * ln(p) ln(1-p)

By symmetry, has global minimum at
p = ½

Corresponds to k = ln 2 * (q/n)
k = -q/n ln(p)
k = ln(1/p) * (q/n)

3/17/2005 COS598E - Bloom Filters 28

Bloom Filters: Error Analysis

When k = ln 2 * (q / n), false positive
rate becomes:

f = (1/2)k ≈ (0.6185)q/n

By letting q = cn, the rate becomes:
f ≈ (0.6185)c

f ≈ 2.14% for c = 8
f ≈ 0.05% for c = 16

3/17/2005 COS598E - Bloom Filters 29

Bloom Filters: In Practice

Memory usage is O(cn)
Compare to O(mn) for naïve sets, hash sets

Runtime is O(cm), since k = ln(2) * c
Compare to O(m log(n)) for naïve sets
Compare to O(m (1 + α)) for hash sets

Error rate is (.6815)c

Compare to 0 for naïve sets, hash sets

3/17/2005 COS598E - Bloom Filters 30

Can we do better than Bloom?
Is it possible to get better memory savings
than Bloom Filters?

Yes and no

For a given error rate, Bloom Filters are
within a factor of 1.44 of the theoretically
most optimal data structure

However, Bloom Filter implementations are exactly
the same for any set of objects
Not known how to implement the theoretically
most optimal structure

3/17/2005 COS598E - Bloom Filters 31

An Aside: Bloom Filter Regalia

Ever…
Wanted to make small chat by the watercooler?
Needed to entertain a kid’s birthday party?

But couldn’t find an interesting topic?

Amaze and dazzle your friends and colleagues
with Bloom Filter Tricks!

3/17/2005 COS598E - Bloom Filters 32

Party Tricks: Bloom Union

Want to take the union of two bloom
filters that have the same hash
functions?

Just OR all the bits together!

3/17/2005 COS598E - Bloom Filters 33

Party Tricks: Bloom Shrink

Want to cut memory usage in half?

OR the first half of the array with the
second half!
Mask the high order bit on your hash
functions

Side effect: error rate will increase

3/17/2005 COS598E - Bloom Filters 34

Counting Bloom Filters

Very slight modification of the Bloom
Filter

Adds support for remove<T>

Instead of using a bit array, use a
counter array

3/17/2005 COS598E - Bloom Filters 35

Counting Bloom Filters
add<T>(T item)
{
for(int i = 0; i < k; i++)

array[hi(item)]++;
}

3/17/2005 COS598E - Bloom Filters 36

Counting Bloom Filters
contains<T>(T item)
{

for(int i = 0; i < k; i++)
if(!array[hi(item)])

return false;

return true;
}

3/17/2005 COS598E - Bloom Filters 37

Counting Bloom Filters

remove<T>(T item)
{
for(int i = 0; i < k; i++)

array[hi(item)]--;
}

3/17/2005 COS598E - Bloom Filters 38

Counting Bloom Filters

Memory usage is now O(qt), where t is
the size of the counter in bits
How large should we set t ?

Assume that the data is “uniform”
Doing some calculations, the probability
that any counter will exceed value j is:
Prob(any counter ≥ j) < q (1.885 / j)j

3/17/2005 COS598E - Bloom Filters 39

Counting Bloom Filters

Prob(overflow) < q (1.885 / j)j

t = 2 j = 4, Prob < 0.049 q
If c = 8, then even for two items, bound is bad
(~.78)

t = 3 j = 8, Prob < 0.0000095 q
If c = 8, then bound becomes bad if we store
more than a thousand items (~.08)

3/17/2005 COS598E - Bloom Filters 40

Counting Bloom Filters

Prob(overflow) < q (1.885 / j)j

t = 4 j = 16, Prob < 1.38 * 10-15 * q
If c = 8, good bound, even if you expect over a
billion items (~.000011)

3/17/2005 COS598E - Bloom Filters 41

Counting Bloom Filters

Prob(overflow) < q (1.885 / j)j

t = 5 j = 32, Prob < 4.4 * 10-40 * q

t = 6 j = 64, Prob < 1.06 * 10-98 * q

t = 7 j = 128, Prob < 3.29 * 10-235 * q

3/17/2005 COS598E - Bloom Filters 42

Counting Bloom Filters

Prob(overflow) < q (1.885 / j)j

t = 8 j = 256, Prob < 9.34 * 10-547 * q

Even if:
c = number of atoms in universe
n = number of atoms in the universe
q = cn = square of number of atoms in the
universe

Probability of an overflow is about 10-350

3/17/2005 COS598E - Bloom Filters 43

Spectral Bloom Filters

Essentially, exactly the same as a
Counting Bloom Filter

Adds support for num_occurs<T>
Runs in O(mk) time, like all other
operations
Error rate is exactly the same as the
standard Bloom Filter error rate: (1 – p)k

3/17/2005 COS598E - Bloom Filters 44

Spectral Bloom Filters
The minimum selection estimator:

num_occurs<T>(T item)
{
int smallest = overflow_value;
for(int i = 0; i < k; i++)

if(array[hi(item)] < smallest)
smallest = array[hi(item)];

return smallest;
}

3/17/2005 COS598E - Bloom Filters 45

Compressible Bloom Filters
Could imagine:

“Zipping” the bit array when not in use
“Unzipping” the bit array when an operation is
called
“Re-zipping” it afterward

Would slow down the program, but could
save even more memory

Is this possible?

3/17/2005 COS598E - Bloom Filters 46

Compressible Bloom Filters

With the standard Bloom Filter, no!
Remember, p = ½ when k = c ln(2) , so
each bit has a ½ chance of being a 1

Essentially a random stream of 1’s and 0’s

3/17/2005 COS598E - Bloom Filters 47

Compressible Bloom Filters

What if we…
Reduce the number of hash functions (less
hashing means more zeroes)
Increase the size of the array (to
compensate for the increased error rate)
Then try compression

Will the new filter be smaller and have
about the same error rate?

3/17/2005 COS598E - Bloom Filters 48

Compressible Bloom Filters

Surprisingly, yes!
Example taken from Broder’s survey paper
q is size of the array (uncompressed)
z is the size of the array (after compression)
f is the false-positive error rate

0.0002220.000459f
15.82916z/n
311k
4816q/n

3/17/2005 COS598E - Bloom Filters 49

Other Bloom Filter Variants

External Memory Filters
If the filter is too large to fit in memory,
have a separate hash function decide what
section of the array to search, and then
perform the multiple hashing

Very slight increase in error rate

3/17/2005 COS598E - Bloom Filters 50

Other Bloom Filter Variants

Bloomier Filters
Create a lossy map from a domain D to a
set S

“Near optimal” solution involves using multiple
Bloom filters to represent each value in S
“Optimal” solution involves one-time
construction of large lookup tables

3/17/2005 COS598E - Bloom Filters 51

Applications: IP Traceback

Suppose we find a malicious packet in
our server log, want to find out where it
came from
Can’t trust the packet’s metadata

3/17/2005 COS598E - Bloom Filters 52

Applications: IP Traceback

Idea: Have every router keep a log of
every packet it’s ever seen!

Not that great, since routers see so
many packets, have such limited
memory, and must operate at
breakneck speeds, they cannot possibly
store this information

3/17/2005 COS598E - Bloom Filters 53

Applications: IP Traceback
Better Idea: Have every router keep a Bloom
Filter of which packets its seen

Query every router that the packet may have
come from, see which ones saw the packet,
have them recursively query routers they talk
to, etc.

Much more feasible, since Bloom Filters are
fast and memory efficient

3/17/2005 COS598E - Bloom Filters 54

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 55

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 56

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 57

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 58

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 59

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 60

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 61

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 62

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 63

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 64

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 65

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 66

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 67

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 68

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 69

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 70

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 71

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 72

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 73

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 74

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 75

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 76

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 77

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 78

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 79

Applications: IP Traceback

3/17/2005 COS598E - Bloom Filters 80

Applications: Detecting Loops

Packets sometimes get stuck in loops
while traversing the interweb
Normally packets are labeled with a
Time-to-Live field, which is
decremented at each hop
When Time-To-Live is zero, packet is
discarded

3/17/2005 COS598E - Bloom Filters 81

Applications: Detecting Loops

Not a problem caused by well
established protocols like TCP/IP

Likelihood of a loop occurring is small

However, experimental protocols may
not know if their algorithms are flawed
and produce a lot of looping

3/17/2005 COS598E - Bloom Filters 82

Applications: Detecting Loops

Whitaker and Wetherall propose that for the
experimental setting, each packet keep a
Bloom Filter of where it’s been
As it passes through the router, the router
can check if it is likely that a loop occurred
Can be made very efficient if each router
predetermines its hash and just ORs them
into the packets

3/17/2005 COS598E - Bloom Filters 83

Applications: Web Proxy

A web proxy is a server set up between
a network and popular websites

The proxy is usually “close” to a large
user base

The proxy caches the web content from
popular sites

3/17/2005 COS598E - Bloom Filters 84

Applications: Web Proxy

When you request a web site, the proxy
intercepts the request and:

1.) Looks in its cache for the item
2.) Possibly asks other proxies if they have
it
3.) Either serves up a local copy, gets a
copy from another proxy, or forwards the
request to the web site

3/17/2005 COS598E - Bloom Filters 85

Applications: Web Proxy

The current protocol for web proxies is
the Intercache Protocol (ICP):

If a cache miss occurs, spam all other
proxies to check if they have the missing
item
Does not scale very well

3/17/2005 COS598E - Bloom Filters 86

Applications: Web Proxy

Augment the proxies to have Bloom
Filters

The filters record what files they have
Initially, they send each other their filters

When a cache miss occurs, check all the
filters from each proxy for 'likely'
candidates

Only spam those candidates

3/17/2005 COS598E - Bloom Filters 87

Applications: Web Proxy

At various intervals, the proxies send updates
to each other (as their caches change over
time)
Fan et al showed in a simulated environment
that Bloom Filter Proxies:

Reduce the number of inter-proxy messages by a
factor of 25-60
Reduce bandwidth used by proxies by 50%
Eliminate over 30% CPU overhead

3/17/2005 COS598E - Bloom Filters 88

Bloom Filters: A Summary

Bloom Filters are:
Easy to implement
Fun to use
Space efficient beyond belief
Useful in many systems applications

However, must know when to use them

3/17/2005 COS598E - Bloom Filters 89

Bloom Filters: A Summary

0O(m(1 + α))O(mn)Hash Set

(.6815)cO(cm)O(cn)Bloom
Filter

Error RateRuntimeMemory

3/17/2005 COS598E - Bloom Filters 90

The End… ?

A parting comment on Bloom Filters by
Andrei Broder:

Whenever a list or set is used, and space is
at a premium, consider using a Bloom
Filter if the effects of false-positives can be
mitigated

3/17/2005 COS598E - Bloom Filters 91

Bonus Material!
Turns out there is another kind of hash set,
also called the hash set

Was commonly used before Bloom Filters
took over

Takes up slightly more memory, runs slightly
faster, has slightly better error rates than a
Bloom Filter

Very useful in specialized applications

3/17/2005 COS598E - Bloom Filters 92

A Hash Set Implementation

Same assumptions: n elements, each m
bits long

Same implementation as the naïve set,
except instead of storing the element,
store its hash

Represent the element using c * log2(n)
bits, where c is a constant we can choose

As will be seen later, c is usually very small

3/17/2005 COS598E - Bloom Filters 93

A Hash Set: Time Analysis
add: O(m + c log2(n))

remove: O(m + c log2(n))

contains: O(m + c log2(n))

num_occurs: O(m + c log2(n))
“Set” can be converted to a “multiset” by
extending each element with a counter

3/17/2005 COS598E - Bloom Filters 94

A Hash Set: Space Analysis

O(c log(n) n) storage
Stores n elements, each c log(n) bits long
Assume counter size is negligible

3/17/2005 COS598E - Bloom Filters 95

Hash Set: Error Analysis

Great savings all around at no extra penalty,
right?

Wrong! May result in erroneous behavior

Query operations may not function correctly:
contains<T>(T item) may produce wrong
answers
num_occurs<T>(T item) may produce wrong
answers

3/17/2005 COS598E - Bloom Filters 96

Hash Set: Error Analysis
contains<T>(T item) may produce
wrong answers if a hash collision occurs

Hash collisions never produce false-negatives
E.g., if set is {1, 2, 3, 4, 5}, will never report 5 is
not in the set

Hash collisions may report false-positives
E.g., if set is {1, 2, 3, 4, 5}, may say that element
6 is in the set

3/17/2005 COS598E - Bloom Filters 97

Hash Set: Error Analysis
num_occurs<T>(T item) may produce
wrong answers if a hash collision occurs

Hash collisions may never decrease the
counter

E.g., if the set is {1, 1, 2, 3}, will never say that
element 1 occurs once or less

Hash collisions may increase the counter
E.g., if the set is {1, 1, 2, 3}, may say that
element 1 occurs three times

3/17/2005 COS598E - Bloom Filters 98

Hash Set: Error Analysis

Probability of a hash collision:
A B

Probability of any two bits being
identical is ½ for different objects

Follows from uniform mapping property of
hash function

3/17/2005 COS598E - Bloom Filters 99

Hash Set: Error Analysis

Probability of a hash collision:
A B

½

3/17/2005 COS598E - Bloom Filters 100

Hash Set: Error Analysis

Probability of a hash collision:
A B

½ * ½

3/17/2005 COS598E - Bloom Filters 101

Hash Set: Error Analysis

Probability of a hash collision:
A B

½ * ½ * … * ½ = (½)c log2(n)

3/17/2005 COS598E - Bloom Filters 102

Hash Set: Error Analysis

Probability of a hash collision:
A B

½ * ½ * … * ½ = (½)c log2(n)

(½)c log2(n) = 2log2(1/nc)

3/17/2005 COS598E - Bloom Filters 103

Hash Set: Error Analysis

Probability of a hash collision:
A B

½ * ½ * … * ½ = (½)c log2(n)

(½)c log2(n) = 2log2(1/nc)

2log2(1/nc) = 1/nc

3/17/2005 COS598E - Bloom Filters 104

Hash Set: Error Analysis

Since we have n elements, a collision
can occur with any one of them

Probability of a collision is
at most (by union bound):

n * 1/nc = 1/n(c-1)

3/17/2005 COS598E - Bloom Filters 105

Hash Set: Error Analysis

Probability of contains<T> producing
a false positive: 1/n(c-1)

Probability of num_occurs<T>
producing an artificially high value for
an element that is in the set is bounded
above by 1/n(c-1)

In practice, c is set to 2 or 3

3/17/2005 COS598E - Bloom Filters 106

Hash Sets: A Summary

(.6815)cO(cm)O(cn)Bloom
Filter

1/nc-1O(m+c’log2n)O(c’ n log n)Hash Set

0O(m(1 + α))O(mn)Original
Hash Set

Error RateRuntimeMemory

