
Bloom Filters

How I learned to stop worrying about errors 
and love memory efficient data structures

A presentation by Elliott Karpilovsky
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The Space and Time Impetuses

“Set” data structures are used everywhere
Web caches, spellcheckers, databases, etc.

The naïve implementation isn’t efficient 
enough for systems applications, both space-
wise and time-wise

Using memory efficient data structures, can 
sacrifice a tiny bit of precision for incredible 
memory and run-time savings
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A Quick Review of Sets

Mathworld:
Set: A set is a finite or infinite collection of objects 
in which order has no significance, and multiplicity 
is generally also ignored

Multiset: A set-like object in which order is 
ignored, but multiplicity is explicitly significant. 
Therefore, multisets {1, 2, 3} and {2, 3, 1} are 
equivalent, but {1, 1, 2, 3} and {1, 2, 3} differ 
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A Quick Review of Sets

A “C++” Set:
add<T>(T item)
contains<T>(T item)
remove<T>(T item)

A “C++” Multiset additionally has:
num_occurs<T>(T item)
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A Special Note on “Remove”

Will assume that remove<T> is only 
called on elements that are actually in 
the set 

Assumption is okay, since in many 
applications, all items in the set are 
stored “offline” and it is possible to 
check if an item truly is in the set
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A Naïve Set Implementation

Assume:
Know, a priori, that the set will contain n
elements
Each element consumes m bits of space

n, m may be extremely large

Construct:
Use a balanced binary tree 

total ordering always exists
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A Naïve Set: Time Analysis
add: O(m log(n))

remove:              O(m log(n))

contains: O(m log(n))

num_occurs: O(m log(n))
“Set” can be converted to a “multiset” by 
extending each element with a counter
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A Naïve Set: Space Analysis

O(mn) storage
Stores n elements, each m bits long
Assume counter size is negligible
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Can we do better?

O(mn) storage required
O(m log(n)) time for all operations

Not looking so hot for systems applications!

A better approach: use buckets and hashes
Leads to the hash set data structure 
Commonly used in systems applications
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Hash Set: Implementation

Have a fixed array of size q
Have a hash function that maps 
elements between 0 and q-1
Use linked lists to store elements that 
hash to the same value
See any standard reference (i.e., 
C.L.R.S.) for implementation details
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Hash Set: Time Analysis

Define the load factor α = n/q
For n elements, expected number of 
items in each bucket is α
Takes O(m) time to hash
Takes O(mα) time, on average, to 
search a bucket
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A Hash Set: Time Analysis
add: O(m(1 + α))

remove: O(m(1 + α))

contains: O(m(1 + α))

num_occurs: O(m(1 + α))
“Set” can be converted to a “multiset” by 
extending each element with a counter
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A Hash Set: Space Analysis

O(mn) storage
Stores n elements, each m bits long
Assume counter size is negligible

Additional O(n/α) storage for linked lists
Generally negligible relative to O(mn)
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A Comparison: Hash vs. Naïve

O(m log(n))O(mn)Naïve set

O(m(1 + α))O(mn)Hash set

RuntimeMemory
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Are we stuck with O(mn) Space?

Could it be that there’s no way around 
it?

Indeed, we are stuck…
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Are we stuck with O(mn) Space?

Could it be that there’s no way around 
it?

Indeed, we are stuck… but only if we want 
an error rate of zero
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Are we stuck with O(mn) Space?

Could it be that there’s no way around 
it?

Indeed, we are stuck… but only if we want 
an error rate of zero

What if we’re willing to tolerate a small 
error rate?

In this case, there is a solution!
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Bloom Filters to the Rescue

Unlike hash sets, Bloom Filters:
Have a fixed error rate 
Use memory linear in n
Have runtime linear in m

Very easy to implement

Will never report false-negatives
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The Motley Bloom Filter Crew
Standard Bloom Filter

Supports add<T>, contains<T>

Counting Bloom Filter
Supports remove<T>

Spectral Bloom Filter
Supports num_occurs<T>

Other Variants
Compressible Bloom Filter, External Memory Filters, Bloomier
Filters, etc. 
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Bloom Filter: Implementation 

Start off with a bit array of size q, initializing 
all bits to 0

Create k different hash functions h1, h2, …, hk
Can create using SHA-1 and randomly salt
Hash to values between 0 and q-1
Assume negligible storage requirements for the 
hash functions
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Bloom Filter: Implementation

When we want to add an element, hash 
it k times and set the corresponding 
bits to 1

add<T>(T item) 
{
for(int i = 0; i < k; i++)

array[hi(item)] = 1;
}
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Bloom Filter: Implementation
When we want to check for containment, 
hash k times and see if all k bits are set to 1

contains<T>(T item) 
{
for(int i = 0; i < k; i++)

if(!array[hi(item)]) return false;

return true;
}
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Bloom Filters: Analysis

Memory usage is O(q)
q is any value we pick

Runtime for all operations is O(mk)
k is any value we pick

Error rate is completely determined by 
our choices of q and k
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Bloom Filters: Error Analysis

How should we choose q?

How should we choose k?

What should we do to minimize the 
error?
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Bloom Filters: Error Analysis

The probability of a bit still being 0 after 
all n elements are inserted is:

p = (1 – 1/q)kn ≈ e-kn/q

The probability of a false positive is 
then:

f = (1 – p)k



3/17/2005 COS598E - Bloom Filters 26

Bloom Filters: Error Analysis

Want to minimize: f = e(k ln(1 – p)) 

Assume that q and n are fixed, solve for k

Minimizing k ln(1 – p) also minimizes f

Same as minimizing: -q/n ln(p) ln(1-p)
k = -q/n * ln(e-kn/q) 
p = e-kn/q
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Bloom Filters: Error Analysis

Minimize: -q/n * ln(p) ln(1-p)

By symmetry, has global minimum at 
p = ½

Corresponds to k = ln 2 * (q/n)
k = -q/n ln(p) 
k = ln(1/p) * (q/n)
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Bloom Filters: Error Analysis

When k = ln 2 * (q / n), false positive 
rate becomes:

f = (1/2)k ≈ (0.6185)q/n

By letting q = cn, the rate becomes:
f ≈ (0.6185)c

f ≈ 2.14% for c = 8
f ≈ 0.05% for c = 16
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Bloom Filters: In Practice

Memory usage is O(cn)
Compare to O(mn) for naïve sets, hash sets

Runtime is O(cm), since k = ln(2) * c
Compare to O(m log(n)) for naïve sets
Compare to O(m (1 + α)) for hash sets

Error rate is (.6815)c

Compare to 0 for naïve sets, hash sets
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Can we do better than Bloom?
Is it possible to get better memory savings 
than Bloom Filters? 

Yes and no

For a given error rate, Bloom Filters are 
within a factor of 1.44 of the theoretically 
most optimal data structure

However, Bloom Filter implementations are exactly 
the same for any set of objects
Not known how to implement the theoretically 
most optimal structure
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An Aside: Bloom Filter Regalia

Ever…
Wanted to make small chat by the watercooler?
Needed to entertain a kid’s birthday party?

But couldn’t find an interesting topic?

Amaze and dazzle your friends and colleagues  
with Bloom Filter Tricks!
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Party Tricks: Bloom Union

Want to take the union of two bloom 
filters that have the same hash 
functions?

Just OR all the bits together!
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Party Tricks: Bloom Shrink

Want to cut memory usage in half? 

OR the first half of the array with the 
second half! 
Mask the high order bit on your hash 
functions

Side effect: error rate will increase
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Counting Bloom Filters

Very slight modification of the Bloom 
Filter

Adds support for remove<T>

Instead of using a bit array, use a 
counter array
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Counting Bloom Filters
add<T>(T item) 
{
for(int i = 0; i < k; i++)

array[hi(item)]++;
}
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Counting Bloom Filters
contains<T>(T item) 
{

for(int i = 0; i < k; i++)
if(!array[hi(item)]) 

return false;

return true;
}
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Counting Bloom Filters

remove<T>(T item) 
{
for(int i = 0; i < k; i++)

array[hi(item)]--;
}
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Counting Bloom Filters

Memory usage is now O(qt), where t is 
the size of the counter in bits
How large should we set t ?

Assume that the data is “uniform”
Doing some calculations, the probability 
that any counter will exceed value j is:
Prob(any counter ≥ j) < q (1.885 / j)j
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Counting Bloom Filters

Prob(overflow) < q (1.885 / j)j

t = 2 j = 4, Prob < 0.049 q
If c = 8, then even for two items, bound is bad 
(~.78)

t = 3 j = 8, Prob < 0.0000095 q
If c = 8, then bound becomes bad if we store 
more than a thousand items (~.08)
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Counting Bloom Filters

Prob(overflow) < q (1.885 / j)j

t = 4 j = 16, Prob < 1.38 * 10-15 * q
If c = 8, good bound, even if you expect over a 
billion items (~.000011) 
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Counting Bloom Filters

Prob(overflow) < q (1.885 / j)j

t = 5 j = 32, Prob < 4.4 * 10-40 * q

t = 6 j = 64, Prob < 1.06 * 10-98 * q

t = 7 j = 128, Prob < 3.29 * 10-235 * q
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Counting Bloom Filters

Prob(overflow) < q (1.885 / j)j

t = 8 j = 256, Prob < 9.34 * 10-547 * q

Even if:
c = number of atoms in universe
n = number of atoms in the universe
q = cn = square of number of atoms in the 
universe

Probability of an overflow is about 10-350
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Spectral Bloom Filters

Essentially, exactly the same as a 
Counting Bloom Filter

Adds support for num_occurs<T>
Runs in O(mk) time, like all other 
operations
Error rate is exactly the same as the 
standard Bloom Filter error rate: (1 – p)k
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Spectral Bloom Filters
The minimum selection estimator:

num_occurs<T>(T item)
{
int smallest = overflow_value;
for(int i = 0; i < k; i++)

if(array[hi(item)] < smallest)
smallest = array[hi(item)];

return smallest;
}
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Compressible Bloom Filters
Could imagine:

“Zipping” the bit array when not in use
“Unzipping” the bit array when an operation is 
called
“Re-zipping” it afterward

Would slow down the program, but could 
save even more memory

Is this possible?
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Compressible Bloom Filters

With the standard Bloom Filter, no!
Remember, p = ½ when k = c ln(2) , so 
each bit has a ½ chance of being a 1

Essentially a random stream of 1’s and 0’s
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Compressible Bloom Filters

What if we…
Reduce the number of hash functions (less 
hashing means more zeroes)
Increase the size of the array (to 
compensate for the increased error rate)
Then try compression

Will the new filter be smaller and have 
about the same error rate?
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Compressible Bloom Filters

Surprisingly, yes!
Example taken from Broder’s survey paper
q is size of the array (uncompressed)
z is the size of the array (after compression)
f is the false-positive error rate

0.0002220.000459f
15.82916z/n
311k
4816q/n
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Other Bloom Filter Variants

External Memory Filters
If the filter is too large to fit in memory, 
have a separate hash function decide what 
section of the array to search, and then 
perform the multiple hashing

Very slight increase in error rate
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Other Bloom Filter Variants

Bloomier Filters
Create a lossy map from a domain D to a 
set S

“Near optimal” solution involves using multiple 
Bloom filters to represent each value in S
“Optimal” solution involves one-time 
construction of large lookup tables
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Applications: IP Traceback

Suppose we find a malicious packet in 
our server log, want to find out where it 
came from
Can’t trust the packet’s metadata
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Applications: IP Traceback

Idea: Have every router keep a log of 
every packet it’s ever seen!

Not that great, since routers see so 
many packets, have such limited 
memory, and must operate at 
breakneck speeds, they cannot possibly 
store this information
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Applications: IP Traceback
Better Idea: Have every router keep a Bloom 
Filter of which packets its seen

Query every router that the packet may have 
come from, see which ones saw the packet, 
have them recursively query routers they talk 
to, etc.

Much more feasible, since Bloom Filters are 
fast and memory efficient
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback



3/17/2005 COS598E - Bloom Filters 75

Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: IP Traceback
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Applications: Detecting Loops

Packets sometimes get stuck in loops 
while traversing the interweb
Normally packets are labeled with a 
Time-to-Live field, which is 
decremented at each hop
When Time-To-Live is zero, packet is 
discarded
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Applications: Detecting Loops

Not a problem caused by well 
established protocols like TCP/IP

Likelihood of a loop occurring is small

However, experimental protocols may 
not know if their algorithms are flawed 
and produce a lot of looping
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Applications: Detecting Loops

Whitaker and Wetherall propose that for the 
experimental setting, each packet keep a 
Bloom Filter of where it’s been
As it passes through the router, the router 
can check if it is likely that a loop occurred
Can be made very efficient if each router 
predetermines its hash and just ORs them 
into the packets
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Applications: Web Proxy

A web proxy is a server set up between 
a network and popular websites

The proxy is usually “close” to a large 
user base

The proxy caches the web content from 
popular sites
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Applications: Web Proxy

When you request a web site, the proxy 
intercepts the request and:

1.) Looks in its cache for the item
2.) Possibly asks other proxies if they have 
it
3.) Either serves up a local copy, gets a 
copy from another proxy, or forwards the 
request to the web site
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Applications: Web Proxy

The current protocol for web proxies is 
the Intercache Protocol (ICP):

If a cache miss occurs, spam all other 
proxies to check if they have the missing 
item
Does not scale very well
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Applications: Web Proxy

Augment the proxies to have Bloom 
Filters

The filters record what files they have
Initially, they send each other their filters

When a cache miss occurs, check all the 
filters from each proxy for 'likely' 
candidates

Only spam those candidates
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Applications: Web Proxy

At various intervals, the proxies send updates 
to each other (as their caches change over 
time)
Fan et al showed in a simulated environment 
that Bloom Filter Proxies:

Reduce the number of inter-proxy messages by a 
factor of 25-60
Reduce bandwidth used by proxies by 50%
Eliminate over 30% CPU overhead
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Bloom Filters: A Summary 

Bloom Filters are:
Easy to implement
Fun to use
Space efficient beyond belief
Useful in many systems applications

However, must know when to use them
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Bloom Filters: A Summary

0O(m(1 + α))O(mn)Hash Set

(.6815)cO(cm)O(cn)Bloom 
Filter

Error RateRuntimeMemory
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The End… ?

A parting comment on Bloom Filters by 
Andrei Broder:

Whenever a list or set is used, and space is 
at a premium, consider using a Bloom 
Filter if the effects of false-positives can be 
mitigated
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Bonus Material! 
Turns out there is another kind of hash set, 
also called the hash set

Was commonly used before Bloom Filters 
took over

Takes up slightly more memory, runs slightly 
faster, has slightly better error rates than a 
Bloom Filter

Very useful in specialized applications
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A Hash Set Implementation

Same assumptions: n elements, each m
bits long

Same implementation as the naïve set, 
except instead of storing the element, 
store its hash

Represent the element using c * log2(n) 
bits, where c is a constant we can choose

As will be seen later, c is usually very small
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A Hash Set: Time Analysis
add: O(m + c log2(n))

remove: O(m + c log2(n))

contains: O(m + c log2(n))

num_occurs: O(m + c log2(n))
“Set” can be converted to a “multiset” by 
extending each element with a counter
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A Hash Set: Space Analysis

O(c log(n) n) storage
Stores n elements, each c log(n) bits long
Assume counter size is negligible
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Hash Set: Error Analysis

Great savings all around at no extra penalty, 
right?

Wrong! May result in erroneous behavior

Query operations may not function correctly:
contains<T>(T item) may produce wrong 
answers
num_occurs<T>(T item) may produce wrong 
answers
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Hash Set: Error Analysis
contains<T>(T item) may produce 
wrong answers if a hash collision occurs

Hash collisions never produce false-negatives
E.g., if set is {1, 2, 3, 4, 5}, will never report 5 is 
not in the set

Hash collisions may report false-positives
E.g., if set is {1, 2, 3, 4, 5}, may say that element 
6 is in the set
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Hash Set: Error Analysis
num_occurs<T>(T item) may produce 
wrong answers if a hash collision occurs

Hash collisions may never decrease the 
counter

E.g., if the set is {1, 1, 2, 3}, will never say that 
element 1 occurs once or less

Hash collisions may increase the counter
E.g., if the set is {1, 1, 2, 3}, may say that 
element 1 occurs three times



3/17/2005 COS598E - Bloom Filters 98

Hash Set: Error Analysis

Probability of a hash collision:
A B

Probability of any two bits being 
identical is ½ for different objects

Follows from uniform mapping property of 
hash function
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Hash Set: Error Analysis

Probability of a hash collision:
A B

½
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Hash Set: Error Analysis

Probability of a hash collision:
A B

½ * ½
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Hash Set: Error Analysis

Probability of a hash collision:
A B

½ * ½ * … * ½ = (½)c log2(n)
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Hash Set: Error Analysis

Probability of a hash collision:
A B

½ * ½ * … * ½ = (½)c log2(n)

(½)c log2(n) = 2log2(1/nc)
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Hash Set: Error Analysis

Probability of a hash collision:
A B

½ * ½ * … * ½ = (½)c log2(n)

(½)c log2(n) = 2log2(1/nc)

2log2(1/nc) = 1/nc
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Hash Set: Error Analysis

Since we have n elements, a collision 
can occur with any one of them

Probability of a collision is
at most (by union bound):

n * 1/nc = 1/n(c-1)
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Hash Set: Error Analysis

Probability of contains<T> producing 
a false positive: 1/n(c-1)

Probability of num_occurs<T>
producing an artificially high value for 
an element that is in the set is bounded 
above by 1/n(c-1)

In practice, c is set to 2 or 3
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Hash Sets: A Summary

(.6815)cO(cm)O(cn)Bloom 
Filter

1/nc-1O(m+c’log2n)O(c’ n log n)Hash Set

0O(m(1 + α))O(mn)Original 
Hash Set

Error RateRuntimeMemory


