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Abstract—A large number of clustering approaches have been proposed for the analysis of gene expression data obtained from

microarray experiments. However, the results from the application of standard clustering methods to genes are limited. This limitation is

imposed by the existence of a number of experimental conditions where the activity of genes is uncorrelated. A similar limitation exists

when clustering of conditions is performed. For this reason, a number of algorithms that perform simultaneous clustering on the row and

column dimensions of the data matrix has been proposed. The goal is to find submatrices, that is, subgroups of genes and subgroups of

conditions, where the genes exhibit highly correlated activities for every condition. In this paper, we refer to this class of algorithms as

biclustering. Biclustering is also referred in the literature as coclustering and direct clustering, among others names, and has also been

used in fields such as information retrieval and data mining. In this comprehensive survey, we analyze a large number of existing

approaches to biclustering, and classify them in accordance with the type of biclusters they can find, the patterns of biclusters that are

discovered, the methods used to perform the search, the approaches used to evaluate the solution, and the target applications.

Index Terms—Biclustering, simultaneous clustering, coclustering, subspace clustering, bidimensional clustering, direct clustering,

block clustering, two-way clustering, two-mode clustering, two-sided clustering, microarray data analysis, biological data analysis,

gene expression data.

�

1 INTRODUCTION

DNA chips and other techniques measure the expression
level of a large number of genes, perhaps all genes of

an organism, within a number of different experimental
samples (conditions) [5]. The samples may correspond to
different time points or different environmental conditions.
In other cases, the samples may have come from different
organs, from cancerous or healthy tissues, or even from
different individuals. Simply visualizing this kind of data,
which is widely called gene expression data or, simply,
expression data, is challenging and extracting biologically
relevant knowledge is harder still [34].

Usually, gene expression data is arranged in a data

matrix, where each gene corresponds to one row and each

condition to one column. Each element of this matrix

represents the expression level of a gene under a specific

condition, and is represented by a real number, which is

usually the logarithm of the relative abundance of the

mRNA of the gene under the specific condition. Gene

expression matrices have been extensively analyzed in two

dimensions: the gene dimension and the condition dimen-

sion. These analysis correspond, respectively, to analyze the

expression patterns of genes by comparing the rows in the

matrix, and to analyze the expression patterns of samples

by comparing the columns in the matrix.

Common objectives pursued when analyzing gene
expression data include:

1. Grouping of genes according to their expression
under multiple conditions.

2. Classification of a new gene, given the expression of
other genes, with known classification.

3. Grouping of conditions based on the expression of a
number of genes.

4. Classification of a new sample, given the expression
of the genes under that experimental condition.

Clustering techniques can be used to group either genes
or conditions and, therefore, to pursue directly objectives 1
and 3 above and, indirectly, objectives 2 and 4. However,
applying clustering algorithms to gene expression data runs
into a significant difficulty. Many activation patterns are
common to a group of genes only under specific experi-
mental conditions. In fact, our general understanding of
cellular processes leads us to expect subsets of genes to be
coregulated and coexpressed only under certain experi-
mental conditions, but to behave almost independently
under other conditions. Discovering such local expression
patterns may be the key to uncovering many genetic
pathways that are not apparent otherwise. It is therefore
highly desirable to move beyond the clustering paradigm,
and to develop approaches capable of discovering local
patterns in microarray data [6].

The term biclustering was first used by Cheng and
Church [10] in gene expression data analysis. It refers to a
distinct class of clustering algorithms that perform simulta-
neous row-column clustering. Biclustering algorithms have
also been proposed and used in other application fields.
Names such as coclustering, bidimensional clustering, and
subspace clustering, among others, are often used in the
literature to refer to the same problem formulation. One of
the earliest biclustering formulations is the direct clustering
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University, Rua Alves Redol 9, Apartado 13069, 1000-029 Lisbon,
Portugal. E-mail: aml@inesc-id.pt.

Manuscript received 29 Jan. 2004; revised 19 May 2004; accepted 14 June
2004.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-0009-0104.

1545-5963/04/$20.00 � 2004 IEEE Published by the IEEE CS, NN, and EMB Societies & the ACM



algorithm introduced by Hartigan [24], also known as block
clustering [36].

What is then the difference between clustering and
biclustering? Why and when should we use biclustering
instead of clustering? Clustering can be applied to either the
rows or the columns of the data matrix, separately.
Biclustering, on the other hand, performs clustering in
these two dimensions simultaneously. This means that
clustering derives a global model while biclustering produces
a local model. When clustering algorithms are used, each
gene in a given gene cluster is defined using all the
conditions. Similarly, each condition in a condition cluster
is characterized by the activity of all the genes that belong to
it. However, each gene in a bicluster is selected using only a
subset of the conditions and each condition in a bicluster is
selected using only a subset of the genes. The goal of
biclustering techniques is thus to identify subgroups of
genes and subgroups of conditions, by performing simulta-
neous clustering of both rows and columns of the gene
expression matrix, instead of clustering these two dimen-
sions separately. We can then conclude that, unlike
clustering algorithms, biclustering algorithms identify
groups of genes that show similar activity patterns under
a specific subset of the experimental conditions. Therefore,
biclustering approaches are the key technique to use when
one or more of the following situations applies:

1. Only a small set of the genes participates in a cellular
process of interest.

2. An interesting cellular process is active only in a
subset of the conditions.

3. A single gene may participate in multiple pathways
that may or not be coactive under all conditions.

For these reasons, biclustering should identify groups of
genes and conditions, obeying the following restrictions:

1. A cluster of genes should be defined with respect to
only a subset of the conditions.

2. A cluster of conditions should be defined with
respect to only a subset of the genes.

3. The clusters should not be exclusive and/or ex-
haustive: A gene/condition should be able to belong
to more than one cluster or to no cluster at all and be
grouped using a subset of conditions/genes.

Additionally, robustness in biclustering algorithms is
especially relevant because of two additional characteristics
of the systems under study. The first characteristic is the
sheer complexity of gene regulation processes that require
powerful analysis tools. The second characteristic is the
level of noise in actual gene expression experiments that
makes the use of intelligent statistical tools indispensable.

2 DEFINITIONS AND PROBLEM FORMULATION

We will be working with an n bym data matrix, where each
element aij will be, in general, a given real value. In the case
of gene expression matrices, aij represents the expression
level of gene i under condition j. Table 1 illustrates the
arrangement of a gene expression matrix.

A large fraction of applications of biclustering algorithms
deal with gene expression matrices. However, there are
many other applications for biclustering. For this reason, we
will consider the general case of a data matrix, A, with set of

rows X and set of columns Y , where the element aij
corresponds to a value representing the relation between
row i and column j. Such a matrix A, with n rows and m
columns, is defined by its set of rows, X ¼ fx1; . . . ; xng, and
its set of columns, Y ¼ fy1; . . . ; ymg. We will use ðX;Y Þ to
denote the matrix A. Considering that I � X and J � Y are
subsets of the rows and columns, respectively, AIJ ¼ ðI; JÞ
denotes the submatrix of A that contains only the elements
aij belonging to the submatrix with set of rows I and set of
columns J .

Given the data matrix A, as defined above, we define a
cluster of rows as a subset of rows that exhibit similar
behavior across the set of all columns. This means that a
row cluster AIY ¼ ðI; Y Þ is a subset of rows defined over the
set of all columns Y , where I ¼ fi1; . . . ; ikg is a subset of
rows (I � X and k � n). A cluster of rows ðI; Y Þ can thus be
defined as a k by m submatrix of the matrix A.

Similarly, a cluster of columns is a subset of columns that
exhibit similar behavior across the set of all rows. A column
cluster AXJ ¼ ðX; JÞ is a subset of columns defined over the
set of all rows X, where J ¼ fj1; . . . ; jsg is a subset of
columns (J � Y and s � m). A cluster of columns ðX; JÞ
can then be defined as an n by s submatrix of the matrix A.

A bicluster is a subset of rows that exhibit similar
behavior across a subset of columns, and vice versa. The
bicluster AIJ ¼ ðI; JÞ is thus a subset of rows and a subset
of columns where I ¼ fi1; . . . ; ikg is a subset of rows (I � X
and k � n), and J ¼ fj1; . . . ; jsg is a subset of columns
(J � Y and s � m). A bicluster ðI; JÞ can be defined as a k
by s submatrix of the matrix A.

The specific problem addressed by biclustering algo-
rithms can now be defined. Given a data matrix, A, we want
to identify a set of biclusters Bk ¼ ðIk; JkÞ such that each
bicluster Bk satisfies some specific characteristics of homo-
geneity. The exact characteristics of homogeneity vary from
approach to approach, and will be studied in Section 3.

2.1 Weighted Bipartite Graph and Data Matrices

An interesting connection between data matrices and graph
theory can be established. A data matrix can be viewed as a
weighted bipartite graph. A graph G ¼ ðV ;EÞ, where V is the
set of vertices and E is the set of edges, is said to be bipartite
if its vertices can be partitioned into two sets L and R such
that every edge in E has exactly one end in L and the other
in R: V ¼ L

S
R. The data matrix A ¼ ðX;Y Þ can be viewed

as a weighted bipartite graph where each node ni 2 L
corresponds to a row and each node nj 2 R corresponds to
a column. The edge between node ni and nj has weight aij,
denoting the element of the matrix in the intersection
between row i and column j (and the strength of the
activation level, in the case of gene expression matrices).
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This connection between matrices and graph theory leads to

very interesting approaches to the analysis of expression

data based on graph algorithms.

2.2 Problem Complexity

Although the complexity of the biclustering problem may
depend on the exact problem formulation and, specifically,
on the merit function used to evaluate the quality of a given
bicluster, almost all interesting variants of this problem are
NP-complete. In its simplest form the data matrix A is a
binary matrix, where every element aij is either 0 or 1.
When this is the case, a bicluster corresponds to a biclique
in the corresponding bipartite graph. Finding a maximum
size bicluster is therefore equivalent to finding the
maximum edge biclique in a bipartite graph, a problem
known to be NP-complete [38]. More complex cases, where
the actual numeric values in the matrix A are taken into
account to compute the quality of a bicluster, have a
complexity that is necessarily no lower than this one since,
in general, they could also be used to solve the more
restricted version of the problem, known to be NP-
complete. Given this, the large majority of the algorithms
use heuristic approaches to identify biclusters in many
cases preceded by a normalization step that is applied to the
data matrix in order to make more evident the patterns of
interest. Some of them avoid heuristics but exhibit an
exponential worst case runtime.

2.3 Dimensions of Analysis

Given the already extensive literature on biclustering

algorithms, it is important to structure the analysis to be

presented. To achieve this, we classified the surveyed

biclustering algorithms along four dimensions:

. The type of biclusters they can find. The bicluster
type is determined by the merit functions that define
the type of homogeneity that they seek in each
bicluster. This analysis is presented in Section 3.

. The way multiple biclusters are treated and the
bicluster structure produced. Some algorithms find
only one bicluster, others find nonoverlapping
biclusters, others, more general, extract multiple,
overlapping biclusters. This dimension is studied in
Section 4.

. The specific algorithm used to identify each biclus-
ter. Section 5 shows that some proposals use greedy
methods, while others use more expensive global
approaches or even exhaustive enumeration.

. The domain of application of each algorithm.
Biclustering applications range from a number of
microarray data analysis tasks to more exotic
applications like recommendation systems, direct
marketing and elections analysis. Applications of
biclustering with special emphasis on biological data
analysis are addressed in Section 7.

3 BICLUSTER TYPE

An interesting criterion to evaluate a biclustering algorithm
concerns the identification of the type of biclusters the
algorithm is able to find. We identified four major classes:

1. Biclusters with constant values.
2. Biclusters with constant values on rows or columns.
3. Biclusters with coherent values.
4. Biclusters with coherent evolutions.

The first three classes analyze directly the numeric
values in the data matrix and try to find subsets of rows
and subsets of columns with similar behaviors. These
behaviors can be observed on the rows, on the columns, or
in both dimensions of the data matrix, as in Figs. 1a, 1b, 1c,
1d, and 1e. The fourth class aims to find coherent behaviors
regardless of the exact numeric values in the data matrix.
As such, biclusters with coherent evolutions view the
elements in the data matrix as symbols. These symbols
can be purely nominal, as in Figs. 1f, 1g, and 1h; may
correspond to a given order, as in Fig. 1i; or represent
coherent positive and negative changes relatively to a
normal value, as in Fig. 1j.

In the case of gene expression data, constant biclusters
reveal subsets of genes with similar expression values
within a subset of conditions. A bicluster with constant
values in the rows identifies a subset of genes with similar
expression values across a subset of conditions, allowing
the expression levels to differ from gene to gene. Similarly,
a bicluster with constant columns identifies a subset of
conditions within which a subset of genes present similar
expression values assuming that the expression values may
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Fig. 1. Examples of different types of biclusters. (a) Constant bicluster, (b) constant rows, (c) constant columns, (d) coherent values (addictive
model), (e) coherent values (multiplicative model), (f) overall coherent evolution, (g) coherent evolution on the rows, (h) coherent evolution on the
columns, (i) coherent evolution on the columns, and (j) coherent sign changes on rows and columns.



differ from condition to condition. However, one can be
interested in identifying more complex relations between
the genes and the conditions by looking directly at the
numeric values or regardless of them. As such, a bicluster
with coherent values identifies a subset of genes and a
subset of conditions with coherent values on both rows and
columns. On the other hand, identifying a bicluster with
coherent evolutions may be helpful if one is interested in
finding a subset of genes that are upregulated or down-
regulated across a subset of conditions without taking into
account their actual expression values; or if one is interested
in identifying a subset of conditions that have always the
same or opposite effects on a subset of genes.

The simplest biclustering algorithms identify subsets of
rows and subsets of columns with constant values. An
example of a constant bicluster is presented in Fig. 1a. These
algorithms are studied in Section 3.2.

Other biclustering approaches look for subsets of rows
and subsets of columns with constant values on the rows or
on the columns of the data matrix. The bicluster presented
in Fig. 1b is an example of a bicluster with constant rows,
while the bicluster depicted in Fig. 1c is an example of a
bicluster with constant columns. Note that in the case of a
bicluster with constant rows, every row in the bicluster can
be obtained by adding a constant value to each of the other
rows, or by multiplying them by a constant value. Similarly,
each of the columns in a bicluster with constant columns
can be obtained by adding a constant to each of the other
columns, or by multiplying them by a constant value.
Section 3.3 studies algorithms that discover biclusters with
constant values on rows or columns.

More sophisticated biclustering approaches look for
biclusters with coherent values on both rows and columns.
The biclusters in Figs. 1d and 1e are examples of this type of
bicluster. In both examples, each row can be obtained by
adding a constant to each of the rows or by multiplying
each of the rows by a constant value. Moreover, each
column can also be obtained similarly by adding a constant
to each of the columns or by multiplying each of the
columns by a constant value. These algorithms are studied
in Section 3.4.

The last type of biclustering approaches we analyzed
addresses the problem of finding biclusters with coherent
evolutions. The coevolution property can be observed on
the entire bicluster, that is, on both rows and columns of the
submatrix, as in Figs. 1f and 1j; on the rows of the bicluster,
as in Fig. 1g; or on the columns of the bicluster, as in Figs. 1h
and 1i. These approaches are addressed in Section 3.5.

According to the specific properties of each problem, one
or more of these different types of biclusters is generally
considered interesting. Moreover, a different type of merit
function should be used to evaluate the quality of the
biclusters identified. The choice of the merit function is
strongly related with the characteristics of the biclusters
each algorithm aims to find. The great majority of the
algorithms we surveyed perform simultaneous clustering
on both dimensions of the data matrix in order to find
biclusters of the previous four classes. However, we also
analyzed two-way clustering approaches that use one-way
clustering to produce clusters on each of the two dimen-
sions of the data matrix separately. These one-dimension
results are then combined to produce subgroups of rows
and columns whose properties allow us to consider the final
result as biclustering. The type of biclusters produced by

these algorithms depends, then, on the distance or
similarity measure used by the one-way clustering algo-
rithms. These algorithms will be considered in Sections 3.2,
3.3, 3.4, and 3.5, depending on the type of bicluster
produced.

3.1 Notation

Wewill now introduce some notation used in the remaining
of the section. Given the matrix A ¼ ðX;Y Þ, with set of rows
X and set of columns Y , a bicluster is a submatrix ðI; JÞ,
where I is a subset of the rows X, J is a subset of the
columns Y and aij is the value in the matrix A correspond-
ing to row the relation between i and column j. We denote
by aiJ the mean of the ith row in the bicluster, aIj the mean
of the jth column in the bicluster and aIJ the mean of all
elements in the bicluster:

aiJ ¼ 1

jJj
X
j2J

aij; ð1Þ

aIj ¼
1

jIj
X
i2I

aij; ð2Þ

aIJ ¼ 1

jIjjJ j
X

i2I;j2J
aij; ð3Þ

aIJ ¼ 1

jIj
X
i2I

aiJ ¼ 1

jJ j
X
j2J

aIj: ð4Þ

3.2 Biclusters with Constant Values

When the goal of a biclustering algorithm is to find a
constant bicluster or several constant biclusters, it is natural
to consider ways of reordering the rows and columns of the
matrix in order to group together similar rows and similar
columns, and discover biclusters with similar values. Since
this approach only produces good results when it is
performed on nonnoisy data, which does not correspond
to the great majority of available data, more sophisticated
approaches can be used to pursue the goal of finding
constant biclusters. The bicluster in Fig. 1a is an example of
this type of bicluster.

A perfect constant bicluster is a submatrix ðI; JÞ, where all
values are equal, for all i 2 I and j 2 J :

aij ¼ �: ð5Þ

Although these “ideal” biclusters can be found in some
data matrices, in real data, constant biclusters are usually
masked by noise. This means that the values aij found in
what can be considered a constant bicluster are generally
presented as �ij þ �, where �ij is the noise associated with
the real value � of aij. The merit function used to compute
and evaluate constant biclusters is, in general, the variance.

Hartigan [24] introduced a partition-based algorithm
called direct clustering that became known as Block
Clustering. This algorithm splits the original data matrix
into a set of submatrices (biclusters) and uses the variance to
evaluate the quality of each bicluster ðI; JÞ:

V ARðI; JÞ ¼
X

i2I;j2J
ðaij � aIJÞ2: ð6Þ

According to this criterion, a perfect bicluster is a
submatrix with variance equal to zero. Hence, every
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single-row, single-column matrix ðI; JÞ in the data matrix,
which corresponds to each element aij, is an ideal bicluster.
As such, and in order to avoid the partitioning of the data
matrix into biclusters with only one row and one column,
Hartigan assumes that there are K biclusters within the
data matrix: ðI; JÞk for k 2 1; . . . ; K. The algorithm stops
when the data matrix is partitioned into K biclusters and
the quality of the resulting biclustering is computed using
the overall variance of the K biclusters:

VARðI; JÞK ¼
XK
k¼1

X
i2I;j2J

ðaij � aIJÞ2: ð7Þ

Tibshirani et al. [46] added a backward pruning method
to the block splitting algorithm introduced by Hartigan [24]
and designed a permutation-based method to induce the
optimal number of biclusters, K. The merit function used is
also the variance and, consequently, they still find constant
biclusters.

Cho et al. [11] also used the variance to find constant
biclusters together with an alternative measure to enable the
discovery of more complex biclusters (see Section 3.4).

3.3 Biclusters with Constant Values on Rows or
Columns

There exists great practical interest in discovering biclusters
that exhibit coherent variations on the rowsor on the columns
of thedatamatrix.As such,manybiclustering algorithms aim
at finding biclusters with constant rows or columns. The
biclusters in Figs. 1b and 1c are examples of perfect biclusters
with constant rows and columns, respectively.

A perfect bicluster with constant rows is a submatrix
ðI; JÞ, where all the values within the bicluster can be
obtained using one of the following expressions:

aij ¼ �þ �i; ð8Þ
aij ¼ �� �i; ð9Þ

where � is the typical value within the bicluster and �i is
the adjustment for row i 2 I. This adjustment can be
obtained either in an additive (8) or multiplicative way (9).

Similarly, a perfect bicluster with constant columns is a
submatrix ðI; JÞ, where all the values within the bicluster
can be obtained using one of the following expressions:

aij ¼ �þ �j; ð10Þ
aij ¼ �� �j; ð11Þ

where � is the typical value within the bicluster and �j is the
adjustment for column j 2 J .

This class of biclusters cannot be found simply by
computing the variance of the values within the bicluster, as
we have seen in Section 3.2, or by computing similarities
between the rows and columns of the data matrix. The
straightforward approach to identify nonconstant biclusters
is to normalize the rows or the columns of the data matrix
using the row mean and the column mean, respectively. By
doing this, the biclusters in Figs. 1b and 1c would both be
transformed into the constant bicluster presented in Fig. 1a.
This means that the row and column normalizations allow
the identification of biclusters with constant values on the
rows or on the columns of the data matrix, respectively, by

transforming these biclusters into constant biclusters before
the biclustering algorithm is applied.

A variant of this simple normalization approach was
used by Getz et al. [21], who perform a relatively complex
normalization step before their algorithm is applied. By
doing this, Getz et al. not only manage to find biclusters
with constant rows or constant columns defined, respec-
tively, by (9) and (11), but also more complex biclusters
with coherent values (see Section 3.4).

However, other biclustering algorithms that also aim at
finding biclusters with constant rows or constant columns
have different approaches that do not rely on a normal-
ization step. Moreover, since perfect biclusters with con-
stant rows or columns are hard to find in real data due to
noise, the approaches described in the next paragraphs
consider the possible existence of multiplicative noise, or
that the values in the rows/columns belong to a certain
interval, in order to allow the discovery of nonperfect
biclusters.

Califano et al. [9] aim at finding �-valid ks-patterns. They
define a �-valid ks-pattern as a subset of rows, I, with size k,
and a subset of columns, J , with size s, such that the
maximum and minimum value of each row in the chosen
columnsdiffer less than �. Thismeans that, for each row i 2 I:

max ðaijÞ �min ðaijÞ < �; 8j 2 J: ð12Þ

The number of columns, s, is called the support of the
ks-pattern. A �-valid ks-pattern is defined as maximal if it
cannot be extended into a �-valid k0s-pattern, with k0 > k, by
adding rows to its row set, and, similarly, it cannot be
extended to a �-valid ks0-pattern, s0 > s, by adding columns
to its column set. The goal is to discover maximal �-valid
gene expression patterns that are, in fact, biclusters with
constant values on rows, by identifying sets of genes with
coherent expression values across a subset of conditions. A
statistically significance test is used to evaluate the quality
of the patterns discovered.

Sheng et al. [42] tackled the biclustering problem in the
Bayesian framework, by presenting a strategy based on a
frequency model for the pattern of a bicluster and on Gibbs
sampling for parameter estimation. Their approach not only
unveils sets of rows and columns, but also represents the
pattern of a bicluster as a probabilistic model described by
the posterior frequency of every discretized value discov-
ered under each column of the bicluster. They use multi-
nomial distributions to model the data under every column
in a bicluster, and assume that the multinomial distribu-
tions for different columns in a bicluster are mutually
independent. Sheng et al. assumed a row-column orienta-
tion of the data matrix and ask that the values within the
bicluster are consistent across the rows of the bicluster for
each of the selected columns, although these values may
differ for each column. By doing this, they manage to
identify biclusters with constant values on the columns.
However, the same approach can be followed using the
column-row orientation of the data matrix leading to the
identification of biclusters with constant rows.

Segal et al. [41] introduced a probabilistic model, which
is based on the probabilistic relational models (PRMs).
These models extend Bayesian networks to a relational
setting with multiple independent objects such as genes and
conditions. By using this approach, Segal et al. also manage
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to discover a set of biclusters with constant values on their
columns. However, their approach is more general in the
sense that it may also model a dependency of the expression
levels on specific properties of genes and/or conditions. By
inferring the appropriate dependencies between expression
levels and gene (or condition) attributes, their approach is
able to model biclusters that optimize an expression that is
effectively more general than (11), or even than (13), in the
next section. Moreover, Segal et al. considered the task of
selecting among the many possible PRMs, where each of the
possible models specified the set of parents for each
attribute and the structure of the CPD-tree (Condition
Probability Distribution-tree) [17]. In order to do that, they
considered a scoring function, used to evaluate the quality of
different candidate structures relatively to the data. The
higher the scoring value the better the model.

3.4 Biclusters with Coherent Values

An overall improvement over the methods considered in
the previous section, which presented biclusters with
constant values either on rows or columns, is to consider
biclusters with coherent values on both rows and columns.
The biclusters in Figs. 1d and 1e are examples of this type of
biclusters.

This class of biclusters cannot be found simply by
considering that the values within the bicluster are given by
additive or multiplicative models that consider an adjust-
ment for either the rows or the columns, as it was described
in (8), (9), (10), and (11). More sophisticated approaches
perform an analysis of variance between groups and use a
particular form of covariance between both rows and
columns in the bicluster to evaluate the quality of the
resulting bicluster or set of biclusters.

Following the same reasoning of Section 3.3, the
biclustering algorithms that look for biclusters with
coherent values can be viewed as based on an additive
model. When an additive model is used within the
biclustering framework, a perfect bicluster with coherent
values, ðI; JÞ, is defined as a subset of rows and a subset of
columns, whose values aij can be predicted using the
following expression:

aij ¼ �þ �i þ �j; ð13Þ

where � is the typical value within the bicluster, �i is the
adjustment for row i 2 I, and �j is the adjustment for
column j 2 J . The bicluster in Fig. 1d is an example of a
bicluster with coherent values on both rows and columns,
whose values can be described using an additive model.
The biclusters in Figs. 1b and 1c can be considered special
cases of this general additive model where the coherence of
values can be observed on the rows and columns of the
bicluster, respectively. This means that (8) and (10) are
special cases of (13) when �i ¼ 0 and �j ¼ 0, respectively.

Other biclustering approaches assume that biclusters
with coherent values can be modeled using a multiplicative
model to predict the values aij within the bicluster:

aij ¼ �0 � �0
i � �0

j: ð14Þ

These approaches are effectively equivalent to the
additive model in (13), when � ¼ logð�0Þ, �i ¼ logð�0

iÞ, and
�j ¼ logð�0

jÞ. In this model, each element aij is seen as the
product between the typical value within the bicluster, �0,
the adjustment for row i, �0

i, and the adjustment for column

j, �0
j. The bicluster in Fig. 1e is an example of a bicluster

with coherent values on both rows and columns, whose
values can be described using a multiplicative model.

Furthermore, the biclusters in Figs. 1b and 1c can also be

considered special cases of this multiplicative model since

(9) and (11) are special cases of (14) when �0
i ¼ 0 and �0

j ¼ 0,

respectively.
Several biclustering algorithms assume either additive or

multiplicative models.
Cheng and Church [10] defined a bicluster as a subset of

rowsanda subset of columnswith ahigh similarity score. The

similarity score introduced andcalledmean squared residue,H,
was used as a measure of the coherence of the rows and

columns in the bicluster. Given the data matrixA ¼ ðX;Y Þ, a
bicluster was defined as a uniform submatrix ðI; JÞ having a

low mean squared residue score. A submatrix ðI; JÞ is

considered a �-bicluster if HðI; JÞ < � for some � � 0. In

particular, they aim at finding large and maximal biclusters

with scores below a certain threshold �. In a perfect �-bicluster
each row/column or both rows and columns exhibits an

absolutely consistent bias (� ¼ 0). The biclusters in Figs. 1b,

1c, and 1d are examples of this kind of perfect biclusters. This

means that the values in each rowor column canbe generated

by shifting the values of other rows or columns by a common

offset.When this is the case, � ¼ 0 and each element aij can be

uniquely defined by its row mean, aiJ , its column mean, aIj,
and the bicluster mean, aIJ . The difference aIj � aIJ is the

relative bias held by the column j with respect to the other

columns in the �-bicluster. The same reasoning applied to the

rows leads to the definition that, in a perfect �-bicluster, the

value of an element, aij, is given by a row-constant plus a

column-constant plus a constant value:

aij ¼ aiJ þ aIj � aIJ : ð15Þ

Note that this corresponds to consider � ¼ aIJ , �i ¼
aiJ � aIJ , and �j ¼ aIj � aIJ in (13).

Unfortunately, due to noise in data, �-biclusters may not

always be perfect. The concept of residue was thus

introduced to quantify the difference between the actual

value of an element aij and its expected value predicted

from the corresponding row mean, column mean, and

bicluster mean. The residue of an element aij in the bicluster
ðI; JÞ, rðaijÞ, and the value of aij in a nonperfect bicluster,

are given by:

rðaijÞ ¼ aij � aiJ � aIj þ aIJ ; ð16Þ
aij ¼ rðaijÞ þ aiJ þ aIj � aIJ : ð17Þ

In order to assess the overall quality of a �-bicluster,

Cheng and Church defined the mean squared residue, H, of a

bicluster ðI; JÞ as the sum of the squared residues:

HðI; JÞ ¼ 1

jIjjJ j
X

i2I;j2J
rðaijÞ2: ð18Þ

Cho et al. [11] also used the mean squared residue score
as the merit function to be minimized in their biclustering
algorithm. In order to evaluate the homogeneity of a
bicluster, they used two different measures of residue.
The first was the variance used by Hartigan [24]:
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rðaijÞ ¼ aij � aIJ : ð19Þ

This measure is specially useful to identify biclusters
with constant values as we saw in Section (3.2). For this
reason, Cheng and Church [10] and Yang et al. [51] had also
used it as residue score to discard constant biclusters, which
they considered trivial. However, to enable a more efficient
discovery of biclusters with coherent values defined by the
additive model in (13), Cho et al. [11] used the residue
defined in (18) as a second measure. Since they compute all
the biclusters simultaneously, the merit function minimized
is the total squared residue, which is the sum of the squared
residues of each bicluster ðI; JÞ:

X
I;J

HðI; JÞ: ð20Þ

Note that using expression (19) for the residue makes (6)
and (7) equivalent to (18) and (20).

The mean squared residue score defined by Cheng and
Church assumes there are no missing values in the data
matrix. To guarantee this precondition, they replace the
missing values by random numbers, during a preprocessing
phase. Yang et al. [50], [51] generalized the definition of a
�-bicluster to cope with missing values and avoid the
interference caused by the random fillings used by Cheng
and Church. They defined a �-bicluster as a subset of rows
and a subset of columns exhibiting coherent values on the
specified (nonmissing) values of the rows and columns
considered.

The FLOC (FLexible Overlapped biClustering) algorithm

[50], [51] introduced an occupancy threshold, #, and defined a

�-bicluster of # occupancy as a submatrix ðI; JÞ, where for

each row i 2 I,
jJ 0

i j
jJ j > #, and for each j 2 J ,

jI 0jj
jIj > #. jJ 0

i j and jI 0jj
are the number of specified elements on row i and column j,

respectively. The volume of the �-bicluster, �IJ , was defined as

the number of specified values of aij. Note that the definition

of Cheng and Church is a special case of this definition when

# ¼ 1. The term basewas used to represent the bias of a rowor

columnwithin a �-bicluster ðI; JÞ. The base of a row i, the base

of a column j, and thebaseof the �-bicluster ðI; JÞare themean

of all specified values in row i, in column j and in the bicluster

ðI; JÞ, respectively. This allows us to redefine aiJ , aIj, aIJ ,

rðaijÞ, andHðI; JÞ, in (1), (2), (3), and (16), respectively, so that

their calculations do not take into account missing values:

aiJ ¼ 1

jJ 0
i j
X
j2J 0

i

aij; ð21Þ

aIj ¼
1

jI 0jj
X
i2I 0j

aij; ð22Þ

aIJ ¼ 1

�IJ

X
i2I 0i ;j2J 0

j

aij; ð23Þ

rðaijÞ ¼
aij � aiJ � aIj þ aIJ ; if aij is specified

0; otherwise:

�
ð24Þ

Yang et al. also considered that the coherence of a
bicluster can be computed using the mean residue of all
(specified) values. Moreover, they considered that this
mean can be either arithmetic, geometric, or the mean of
squares. The arithmetic mean, defined in (25), was used in

[50]. The mean of squares, defined in (26), was used in [51]
and redefines Cheng and Church’s score in (18).

HðI; JÞ ¼ 1

�IJ

X
i2I 0j;j2J 0

i

jrðaijÞj; ð25Þ

HðI; JÞ ¼ 1

�IJ

X
i2I 0j;j2J 0

i

rðaijÞ2: ð26Þ

To access the quality of a biclustering with K biclusters,
Yang et al. used the average residue:

1

K

XK
k¼1

HðI; JÞk: ð27Þ

Wang et al. [48] also assume the additive model in (13)
and seek to discover �-pClusters. Given a submatrix ðI; JÞ of
A, they consider each 2� 2 submatrix M ¼ ðIi1i2 ; Jj1j2Þ
defined by each pair of rows i1; i2 2 I and each pair of
columns j1; j2 2 J . The pscore(M) is computed as follows:

pscoreðMÞ ¼ jðai1j1 � ai1j2Þ � ðai2j1 � ai2j2Þj: ð28Þ

They consider that the submatrix ðI; JÞ is a �-pCluster if
for any 2� 2 submatrix M � ðI; JÞ, pscoreðMÞ < �. They
aim at finding �-pClusters (pattern clusters), which are in
fact biclusters with coherent values. An example of a perfect
�-pCluster modeled using an additive model is the one
presented in Fig. 1d. However, if the values aij in the data
matrix are transformed using aij ¼ logðaijÞ this approach
can also identify biclusters defined by the multiplicative
model in (14). An example of a perfect �-pCluster modeled
using a multiplicative model is the one presented in Fig. 1e.

Kluger et al. [32] also addressed the problem of
identifying biclusters with coherent values and looked for
checkerboard structures in the data matrix by integrating
biclustering of rows and columns with normalization of the
data matrix. They assumed that after a particular normal-
ization, which was designed to accentuate biclusters if they
exist, the contribution of a bicluster is given by a multi-
plicative model as defined in (14). Moreover, they use gene
expression data and see each value aij in the data matrix as
the product of the background expression level of gene i,
the tendency of gene i to be expressed in all conditions and
the tendency of all genes to be expressed in condition j. In
order to access the quality of a biclustering, Kluger et al.
tested the results against a null hypothesis of no structure in
the data matrix.

Tang et al. [45] introduced the Interrelated Two-Way
Clustering (ITWC) algorithm that combines the results of
one-way clustering on both dimensions of the data matrix
in order to produce biclusters. After normalizing the rows
of the data matrix, they compute the vector-angle cosine
value between each row and a predefined stable pattern to
test whether the row values vary much among the columns
and remove the ones with little variation. After that, they
use a correlation coefficient as similarity measure to
measure the strength of the linear relationship between
two rows or two columns, to perform two-way clustering.
As this similarity measure depends only on the pattern and
not on the absolute magnitude of the spatial vector, ITWC
also identifies biclusters with coherent values defined by
the multiplicative model in (14).
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Another approach that aims at finding biclusters with
coherent values defined using the multiplicative model in
(14) is the Double Conjugated Clustering (DCC) introduced
by Busygin et al. [8]. DCC is a two-way clustering approach
to biclustering that enables the use of any clustering
algorithm. Busygin et al. use self-organizing maps (SOMs)
and the angle metric (dot product) to compute the similarity
between the rows and columns when performing one-way
clustering.

Getz et al. [21] introduced the Coupled Two-Way
Clustering (CTWC) algorithm. When CTWC is applied to
gene expression data, it aims at finding subsets of genes and
subsets of conditions, such that a single cellular process is
the main contributor to the expression of the gene subset
over the condition subset. This two-way clustering algo-
rithm repeatedly performs one-way clustering on the rows
and columns of the data matrix using stable clusters of rows
as attributes for column clustering and vice versa. Any
reasonable choice of clustering method and definition of
stable cluster can be used within the framework of CTWC.
Getz et al. used a hierarchical clustering algorithm, whose
input is a similarity matrix between the rows computed
according to the column set, and vice versa. The Euclidean
distance is used as similarity measure after a preprocessing
step where each column of the data matrix is divided by its
mean and each row is normalized such that its mean
vanishes and its norm is one. Due to the normalization step,
CTWC also identifies biclusters with coherent values
defined using the multiplicative model in (14).

The previous biclustering approaches are based either on
additive or multiplicative models, which evaluate sepa-
rately the contribution of each bicluster without taking into
consideration the interactions between biclusters. In parti-
cular, they do not explicitly take into account that the value
of a given element, aij, in the data matrix can be seen as a
sum of the contributions of the different biclusters to whom
the row i and the column j belong.

Lazzeroni and Owen [34] addressed this limitation by
introducing the plaid model where the value of an element
in the data matrix is viewed as a sum of terms called layers.
In the plaid model the data matrix is described as a linear
function of variables (layers) corresponding to its biclusters.
The plaid model is defined as follows:

aij ¼
XK
k¼0

�ijk�ik	jk; ð29Þ

where K is the number of layers (biclusters) and the value
of �ijk specifies the contribution of each bicluster k specified

by �ik and 	jk. The terms �ik and 	jk are binary values that

represent, respectively, the membership of row i and
column j in bicluster k.

The plaid model described in (29) can be seen as a
generalization of the additive model in (13). We will call this
model the general additive model. For every element aij, it
represents a sum of additive models representing the
contribution of each bicluster ðI; JÞk to the value of aij in
case i 2 I and j 2 J .

Lazzeroni and Owen [34] want to obtain a plaid model,
which describes the interactions between the several
biclusters on the data matrix and minimizes the following
merit function:

1

2

Xn
i¼1

Xm
j¼1

ðaij � �ij0 �
XK
k¼1

�ijk�ik	jkÞ2; ð30Þ

where the term �ij0 considers the possible existence of a
single bicluster that covers the whole matrix and that
explains away some variability that is not particular to any
specific bicluster.

The notation �ijk makes this model powerful enough to
identify different types of biclusters by using �ijk to represent
either �k, �k þ �ik, �k þ �jk, or �k þ �ik þ �jk. In its simplest
form, that is when �ijk ¼ �k, the plaidmodel identifies a set of
K constant biclusters (see (5) in Section 3.2). When
�ijk ¼ �k þ �ik, the plaid model identifies a set of biclusters
with constant rows (see (8) in Section 3.3). Similarly, when
�ijk ¼ �k þ �jk, biclusters with constant columns are found
(see (10) inSection3.3). Finally,when�ijk ¼ �k þ �ik þ �jk, the
plaid model identifies biclusters with coherent values by
assuming the additive model in (13) for every bicluster k to
whomrow iandcolumn jbelong. Figs. 2a, 2b, 2c, and2dshow
examples of different types of overlapping biclusters de-
scribed by a general additive model where the values in the
matrix are seen as a sum of the contributions of the different
biclusters they belong to.

Segal et al. [40] also assumed the additive model in (13),
the existence of a set of biclusters in the data matrix, and
that the value of an element in the data matrix is a sum of
terms called processes (see (29)). However, they assumed
that the row contribution is the same for each bicluster and
considered that each column belongs to every bicluster.
This means that �ik ¼ 0, for every row i in (13), �ijk ¼
�k þ �jk and 	jk ¼ 1, for all columns j and all biclusters k in
(29). Furthermore, they introduced an extra degree of
freedom by considering that each value in the data matrix
is generated by a Gaussian distribution with a variance 
2

k
that depends (only) on the bicluster index, k. As such, they
want to minimize (31), where aijk is the sum of the
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predicted value for the element aij in each bicluster k, which
is computed using (29) with the above restrictions. This
change allows one to consider as less important variations
in the biclusters that are known to exhibit a higher degree of
variability.

XK
k¼1

ðaijk � �ijk�ikÞ2

2
2
k

; ð31Þ

aij ¼
XK
k¼1

aijk: ð32Þ

Following this reasoning, an obvious extension to (30)
that has not been, to our knowledge, used by any published
approach, is to assume that rows and columns, which
represent, respectively, genes and conditions, in the case of
gene expression data, can also exhibit different degrees of
variability, that should be considered as having different
weights. The expression to be minimized is therefore:

Xn
i¼1

Xm
j¼1

ðaij � �ij0 �
PK

k¼1 �ijk�ik	jkÞ2

2ð
2
iJ þ 
2

Ij þ 
2
IJÞ

; ð33Þ

where 
2
iJ , 


2
Ij, and 
2

IJ are the row variance, the column
variance, and the bicluster variance, respectively. This
allows one to consider as less important variations in the
rows, the columns and also the biclusters, that are know to
exhibit a higher degree of variability.

Another possibility that has not been, to our knowledge,
used by any published approach, is to consider that the
value of a given element, aij, in the matrix is given by the
product of the contributions of the different biclusters to
which row i and column j belong, instead of a sum of
contributions as considered by the plaid model. In this
approach, which we will call the general multiplicative model,
the value of each element aij in the matrix is given by the
following expression:

aij ¼
YK
k¼0

�ijk�ik	jk: ð34Þ

Similar to the plaid model that sees a bicluster as a sum
of layers (biclusters), (34) describes the value aij in the data
matrix as a product of layers. The notation �ijk is now used
to represent either �k, �k � �ik, �k � �jk, or �k � �ik � �jk.
Hence, in its general case, �ijk is now given by the
multiplicative model in (14) instead of being defined by
the additive model in (13). Figs. 3a, 3b, 3c, and 3d show
examples of different types of overlapping biclusters
described by a general multiplicative model where the

values in the data matrix are seen as a product of the
contributions of the different biclusters they belong to.

Conceptually, it is also possible to combine the general
multiplicative model in (34) with �ijk given by the additive
model in (13). Such a combination would consider an
additive model for each bicluster, but a multiplicative
model for the combination of the contributions given by the
several biclusters. Similarly, it is also possible to combine
the general additive model in (13) with �ijk given by the
multiplicative model in (29). This means that each bicluster
is generated using a multiplicative model, but the combina-
tion of biclusters is performed using an additive model.
These combinations, however, are less likely to be useful
than the general additive model ((13) and (29)) and the
general multiplicative model ((14) and (34)).

3.5 Biclusters with Coherent Evolutions

In the previous section, we revised several biclustering
algorithms that aimed at discovering biclusters with
coherent values. Other biclustering algorithms address the
problem of finding coherent evolutions across the rows
and/or columns of the data matrix regardless of their exact
values. The biclusters presented in Figs. 1h, 1i, and 1j are
examples of biclusters with coherent evolutions.

Ben-Dor et al. [6]definedabicluster as anorder-preserving
submatrix (OPSM). According to their definition, a bicluster
is a group of rowswhose values induce a linear order across a
subset of the columns. Their work focuses on the relative
order of the columns in the bicluster rather than on the
uniformity of the actual values in the datamatrix as the plaid
model [34]. More specifically, they want to identify large
OPSMs. A submatrix is order-preserving if there is a
permutation of its columns under which the sequence of
values in every row is strictly increasing. The bicluster
presented in Fig. 1i is an example of an OPSM, where
ai4 � ai2 � ai3 � ai1, and represents a bicluster with coherent
evolutions on its columns. Furthermore, Ben-Dor et al.
defined a complete model as the pair ðJ; �Þ, where J is a set
of s columns and � ¼ ðj1; j2; . . . ; jsÞ is a linear ordering of the
columns in J . They say that a row supports ðJ; �Þ if the s
corresponding values, ordered according to the permutation
� are monotonically increasing.

Although the straightforward approach to the OPSM
problem would be to find a maximum support complete
model, that is, a set of columns with a linear order
supported by a maximum number of rows, Ben-Dor et al.
aimed at finding a complete model with highest statistically
significant support. In the case of expression data, such a
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submatrix is determined by a subset of genes and a subset
of conditions, such that, within the set of conditions, the
expression levels of all genes have the same linear ordering.
As such, Ben-Dor et al. addressed the identification and
statistical assessment of coexpressed patterns for large sets
of genes, and considered that, in many cases, data contains
more than one such pattern.

Following the same idea, Liu and Wang [35] defined a
bicluster as an OP-Cluster (Order Preserving Cluster). Their
goal is also to discover biclusters with coherent evolutions
on the columns. Hence, the bicluster presented in Fig. 1i is
an example of an OPSM and also of an OP-Cluster.

Murali and Kasif [37] aimed at finding conserved gene
expression motifs (xMOTIFs). They defined an xMOTIF as a
subset of genes (rows) that is simultaneously conserved
across a subset of the conditions (columns). The expression
level of a gene is conserved across a subset of conditions if
the gene is in the same state in each of the conditions in this
subset. They consider that a gene state is a range of
expression values and assume that there are a fixed given
number of states. These states can simply be upregulation
and downregulation, when only two states are considered.
An example of a perfect bicluster in this approach is the one
presented in Fig. 1g, where Si is the symbol representing
the preserved state of the row (gene) i.

Murali and Kasif assumed that the data may contain
several xMOTIFs (biclusters) and aimed at finding the
largest xMOTIF: the bicluster that contains the maximum
number of conserved rows. The merit function used to
evaluated the quality of a given bicluster is thus the size of
the subset of rows that belong to it (subset of rows that
satisfy the conservation property in the subset of condi-
tions). Together with the conservation property, an xMOTIF
must also satisfy size and maximality properties: The
number of columns must be in at least an �-fraction of all
the columns in the data matrix, and for every row not
belonging to the xMOTIF, the row must be conserved only
in a �-fraction of the columns in it. As such, an xMOTIF is
discarded if the size and maximality conditions are not
satisfied.

Tanay et al. [44] defined a bicluster as a subset of genes
(rows) that jointly respond across a subset of conditions
(columns). A gene is considered to respond to a certain
condition if its expression level changes significantly at that
condition with respect to its normal level. Before SAMBA
(Statistical-Algorithmic Method for Bicluster Analysis) is
applied, the expression data matrix is modeled as a bipartite
graph whose two parts correspond to conditions (columns)
and genes (rows), respectively, with one edge for each
significant expression change. Tanay et al. present two
statistical models for the resulting graph. In the simpler
model, they are looking for biclusters that manifest changes
relatively to their normal level, without considering if the
change was an increase or a decrease in the expression
level. In the refined model, they look for consistent
biclusters, in which every two conditions must always
have the same effect or always have the opposite effect on
each of the genes.

In the simpler model, it is assumed that all the genes in a
given bicluster are regulated (up or down). This means that

their values changed relatively to its normal level, in the
subset of conditions that form the bicluster. The goal is then
to find the largest biclusters with the regulation property. In
order to do that, SAMBA does not try to find any kind of
coherence on the values aij. It assumes that regardless of its
true values, aij can be represented by two symbols: S0 or
S1, where S1 means change and S0 means no-change. As
such, the model graph has an edge between a gene and a
column when there is a change in the expression level of
that gene in that specific condition. No edge means no
change. A large bicluster is, in this case, one with a
maximum number of genes (rows) whose symbol standing
for aij is expected to be S1. The bicluster presented in Fig. 1f
is an example of the type of bicluster SAMBA produces, if
we say that S1 is the symbol that represents a coherent
change relative to normal expression.

In the refined model, the sign of the change is taken into
account. This is achieved by assigning a signal cij 2 f�1; 1g
to each edge of the graph, and then looking for a bicluster
ðI; JÞ and an assignment � : I [ J ! f�1; 1g such that
cij ¼ �ðiÞ�ðjÞ. This is equivalent to the selection of a set of
columns (conditions) that have always the same or opposite
effects on the set of rows. As such, the model in Fig. 1j
represents the type of biclusters that SAMBA can now find.

However, the approach of Tanay et al. is not purely
symbolic since the merit function used to evaluate the
quality of a computed bicluster using SAMBA is the weight
of the subgraph that models it. Its statistical significance is
evaluated by computing the probability of finding at
random a bicluster with at least its weight. Given that the
weight of a subgraph is defined as the sum of the weights of
gene-condition (row-column) pairs in it including edges
and nonedges, weights are assigned to the edges of the
bipartite subgraph so that heavy subgraphs correspond to
statistical significant biclusters.

4 BICLUSTER STRUCTURE

Biclustering algorithms assume one of the following
situations: Either there is only one bicluster in the matrix as
in Fig. 4a, or the matrix contains K biclusters, where K is the
number of biclusters we expect to identify and is usually
defined apriori.

While most algorithms assume the existence of several
biclusters [24], [10], [21], [9], [34], [41], [45], [50], [8], [44],
[51], [32], [42], [40], [35], [11], others only aim at finding one
bicluster. In fact, even though these algorithms can possibly
find more than one bicluster, the target bicluster is usually
the best according to some criterion [6], [37].

When the biclustering algorithm assumes the existence
of several biclusters in the data matrix, the following
bicluster structures can be obtained (see Figs. 4b, 4c, 4d, 4e,
4f, 4g, 4h, and 4i):

1. Exclusive row and column biclusters (rectangular
diagonal blocks after row and column reorder).

2. Nonoverlapping biclusters with checkerboard
structure.

3. Exclusive-rows biclusters.
4. Exclusive-columns biclusters.
5. Nonoverlapping biclusters with tree structure.

MADEIRA AND OLIVEIRA: BICLUSTERING ALGORITHMS FOR BIOLOGICAL DATA ANALYSIS: A SURVEY 33



6. Nonoverlapping nonexclusive biclusters.
7. Overlapping biclusters with hierarchical structure.
8. Arbitrarily positioned overlapping biclusters.

A natural starting point to achieve the goal of identifying
several biclusters in a data matrix A is to form a color image
of it with each element colored according to the value of aij.
It is natural then to consider ways of reordering the rows
and columns in order to group together similar rows and
similar columns, thus forming an image with blocks of
similar colors. These blocks are subsets of rows and subsets
of columns with similar expression values, hence, biclus-
ters. An ideal reordering of the matrix would produce an
image with some number K of rectangular blocks on the
diagonal (see Fig. 4b). Each block would be nearly
uniformly colored, and the part of the image outside of
these diagonal blocks would be of a neutral background
color. This ideal corresponds to the existence of K mutually
exclusive and exhaustive clusters of rows, and a corre-
sponding K-way partitioning of the columns, that is, K
exclusive row and column biclusters. In this structure,
every row in the row-block k is expressed within, and only
within, those columns in condition-block k. That is, every
row and every column in the matrix belongs exclusively to
one of the K biclusters (see Fig. 4b).

Although this can be the first approach to extract relevant
knowledge from gene expression data, it has long been
recognized that such an ideal reordering will seldom exist in
real data [34]. Facing this fact, the next natural step is to
consider that rows and columnsmaybelong tomore than one
bicluster, and assume a checkerboard structure in the data
matrix (see Fig. 4c). By doing this, we allow the existence of
K nonoverlapping and nonexclusive biclusters where each
row in the data matrix belongs to exactly K biclusters. The
same applies to columns. Kluger et al. [32] and Cho et al. [11]
assumed this structure. The Double Conjugated Clustering
(DCC) approach introduced by Busygin et al. [8] can also
identify this biclustering structure. However, DCC tends to
produce the structure in Fig. 4b.

Other approaches assume that rows can only belong to
one bicluster, while columns, which correspond to condi-
tions in the case of gene expression data, can belong to

several biclusters. This structure, which is presented in
Fig. 4d, assumes exclusive-rows biclusters and was used by
Sheng et al. [42] and Tang et al. [45]. However, these
approaches can also produce exclusive-columns biclusters
when the algorithm uses the opposite orientation of the data
matrix. When this is the case, the columns can only belong
to one bicluster while the rows can belong to one or more
biclusters (see Fig. 4e).

The structures presented in Figs. 4b, 4c, 4d, and 4e assume
that the biclusters are exhaustive, that is, that every row and
every column belongs to at least one bicluster. However, we
canconsidernonexhaustivevariationsof these structures that
make it possible that some rows andcolumnsdonot belong to
any bicluster. A nonexhaustive version of the structure in
Fig. 4b was assumed by Segal et al. [41]. Other exhaustive
bicluster structures include the tree structure considered by
Hartigan [24] and Tibshirani et al. [46] that is depicted in
Fig. 4f, and the structure in Fig. 4g.Anonexhaustive variation
of the structure in Fig. 4g was assumed by Wang et al. [48].
None of these structures allow overlapping, that is, none of
them makes it possible that a particular pair (row, column)
belongs to more than one bicluster.

The previous bicluster structures are restrictive in many
ways. On one hand, some of them assume that, for
visualization purposes, all the identified biclusters should
be observed directly on the data matrix and displayed as a
contiguous representation after performing a common
reordering of their rows and columns. On the other hand,
others assume that the biclusters are exhaustive, that is, that
every row and every column in the data matrix belongs to
at least one bicluster.

However, it is more likely that, in real data, some rows or
columns do not belong to any bicluster at all and that the
biclusters overlap in some places. It is, however, possible to
enable these twopropertieswithout relaxing thevisualization
property if the hierarchical structure proposed by Hartigan
[24] is assumed. This structure, depicted in Fig. 4h, requires
that either the biclusters are disjoint or that one includes the
other. Two specializations of this structure are the tree
structure presented in Fig. 4f, where the biclusters form a
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Fig. 4. Bicluster structure. (a) Single bicluster, (b) exclusive row and column biclusters, (c) checkerboard structure, (d) exclusive rows biclusters,
(e) exclusive columns biclusters, (f) nonoverlapping biclusters with tree structure, (g) nonoverlapping nonexclusive biclusters, (h) overlapping
biclusters with hierarchical structure, and (i) arbitrarily positioned overlapping biclusters.



tree, and thecheckerboardstructuredepicted inFig.4c,where
the biclusters and the row and column clusters are all trees.

A more general bicluster structure allows the existence of
K possibly overlapping biclusters without taking into
account their direct observation on the data matrix with a
common reordering of its rows and columns. Furthermore,
these nonexclusive biclusters can also be nonexhaustive,
which means that some rows or columns may not belong to
any bicluster. Several biclustering algorithms [10], [34], [21],
[9], [45], [44], [6], [37], [40], [35] allow this more general
structure, which is presented in Fig. 4i.

5 ALGORITHMS

Biclustering algorithms may have two different objectives:
to identify one or to identify a given number of biclusters.
Some approaches attempt to identify one bicluster at a time.
Cheng and Church [10] and Sheng et al. [42] identify a
bicluster, mask it with random numbers, and repeat the
procedure in order to eventually find other biclusters.
Lazzeroni and Owen [34] attempt to discover one bicluster
at a time in an iterative process where a plaid model is
obtained. Ben-Dor et al. [6] also follow this strategy.

Other biclustering approaches discover one set of biclus-
ters at a time. Hartigan [24] identifies two biclusters at the
time by splicing each existing bicluster into two pieces at
each iteration. CTWC [21] performs two-way clustering on
the row and column dimensions of the data matrix
separately. It uses a hierarchical clustering algorithm that
generates stable clusters of rows and columns, at each
iteration and, consequently, discovers a set of biclusters at a
time. A similar procedure is followed by ITWC [45].

We also analyzed algorithms that perform simultaneous
bicluster identification, which means that the biclusters are
discovered all at the same time. FLOC [50], [51] follows this
approach. It first generates a set of initial biclusters by
adding each row/column to each one of them with
independent probability and then iteratively improves the
quality of the biclusters. Murali and Kasif [37] also identify
several xMOTIFs (biclusters) simultaneously, although they
only report the one that is considered the best according to
the size and maximality criteria used. Tanay et al. [44], Liu
and Yand [35], and Yang et al. [48] used exhaustive bicluster
enumeration to perform simultaneous biclustering identifi-
cation. Busygin et al. [8], Kluger et al. [32], Califano et al. [9],
and Cho et al. [11] also discover all the biclusters at the
same time.

Given the complexity of the problem, a number of
different heuristic approaches has been used to address this
problem. They can be divided into five classes:

1. Iterative row and column clustering combination.
2. Divide and conquer.
3. Greedy iterative search.
4. Exhaustive bicluster enumeration.
5. Distribution parameter identification.

The straightforward way to identify biclusters is to apply
clustering algorithms to the rows and columns of the data
matrix, separately, and then to combine the results using
some sort of iterative procedure to combine the two cluster
arrangements. Several algorithms use this iterative row and
column clustering combination idea, and are described in
Section 5.1. Other approaches, described in Section 5.2, use
a divide-and-conquer approach: They break the problem into

several subproblems that are similar to the original problem
but smaller in size, solve the problems recursively, and then
combine the solutions to create a solution to the original
problem [13]. A large number of methods, studied in
Section 5.3, perform some form of greedy iterative search.
They always make a locally optimal choice in the hope that
this choice will lead to a globally good solution [13]. Some
authors proposed methods that perform exhaustive bicluster
enumeration. A number of methods have been used to speed
up exhaustive search, in some cases by assuming restric-
tions on the size of the biclusters that should be listed. These
algorithms are revised in Section 5.4. The last type of
approaches perform distribution parameter identification and
are described in Section 5.5. They assume that the biclusters
are generated using a given statistical model and try to
identify the distribution parameters that fit, in the best way,
the available data, by minimizing a certain criterion through
an iterative approach.

5.1 Iterative Row and Column Clustering
Combination

The conceptually simpler way to perform biclustering using
existing techniques is to apply standard clustering methods
on the column and row dimensions of the data matrix, and
then combine the results to obtain biclusters. A number of
authors have proposed methods based on this idea.

The Coupled Two-Way Clustering (CTWC) [21] seeks to
identify couples of relatively small subsets of features (Fi)
and objects (Oj), where both Fi and Oj can be either rows or
columns, such that when only the features in Fi are used to
cluster the corresponding objects Oj, stable and significant
partitions emerge. It uses a heuristic to avoid brute-force
enumeration of all possible combinations: Only subsets of
rows or columns that are identified as stable clusters in
previous clustering iterations are candidates for the next
iteration. CTWC begins with only one pair of rows and
columns, where each pair is the set containing all rows and
the set that contains all columns, respectively. A hierarch-
ical clustering algorithm is applied on each set generating
stable clusters of rows and columns, and consequently a set
of biclusters at a time. A tunable parameter T controls the
resolution of the performed clustering. The clustering starts
at T ¼ 0 with a single cluster that contains all the rows and
columns. As T increases, phase transitions take place, and
this cluster breaks into several subclusters. Clusters keep
breaking up as T is further increased, until at high enough
values of T each row and column forms its own cluster. The
control parameter T is used to provide a measure for the
stability of any particular cluster by the range of values �T
at which the cluster remains unchanged. A stable cluster is
expected to survive throughout a large �T , one which
constitutes a significant fraction of the range it takes the
data to break into single point clusters. During its execution,
CTWC dynamically maintains two lists of stable clusters
(one for row clusters and one for column clusters) and a list
of pairs of row and column subsets. At each iteration, one
row subset and one column subset are coupled and
clustered mutually as objects and features. Newly gener-
ated stable clusters are added to the row and column lists
and a pointer that identifies the parent pair is recorded to
indicate where this cluster came from. The iteration
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continues until no new clusters that satisfy some criteria
such as stability and critical size are found.

The Interrelated Two-Way Clustering (ITWC) [45] is an
iterative algorithm based on a combination of the results
obtained by clustering performed on each of the two
dimensions of the data matrix separately. Within each
iteration of ITWC there are five main steps. In the first step,
clustering is performed in the row dimension of the matrix.
The goal is to cluster n1 rows into K groups, denoted as
Ii; i ¼ 1; . . . ; K, each of which is an exclusive subset of the
set of all rows X. The clustering technique can be any
method that receives the number of clusters as input. Tang
et al. used K-means. In the second step, clustering is
performed in the column dimension of the data matrix.
Based on each group Ii; i ¼ 1; . . . ; k, the columns are
independently clustered into two clusters, represented by
Ji;a and Ji;b. Assume, for simplicity, that the rows have been
clustered into two groups, I1 and I2. The third step
combines the clustering results from the previous steps by
dividing the columns into four groups, Ci, i ¼ 1; . . . ; 4, that
correspond to the possible combinations of the column
clusters J1;x and J2;x, x ¼ fa; bg. The fourth step of ITWC
aims at finding heterogeneous pairs ðCs; CtÞ, s; t ¼ 1; . . . ; 4.
Heterogeneous pairs are groups of columns that do not
share row attributes used for clustering. The result of this
step is a set of highly disjoint biclusters, defined by the set
of columns in Cs and Ct and the rows used to define the
corresponding clusters. Finally, ITWC sorts the rows in
descending order of the cosine distance between each row
and a row representative of each bicluster (obtained by
considering the value 1 in each entry for columns in Cs and
Ct, respectively). The first one third of rows is kept. By
doing this, they obtain a reduced row set I 0 for each
heterogeneous group. In order to select the row set I 0 that
should be chosen for the next iteration they use cross-
validation. After this final step, the number of rows is
reduced from n1 to n2 and the above steps can be repeated
using the n2 selected rows until the termination conditions
are satisfied.

The Double Conjugated Clustering (DCC) [8] performs
clustering in the rows and columns dimensions/spaces of
the data matrix using self-organizing maps (SOM) and the
angle-metric as similarity measure. The algorithm starts by
assigning every node in one space (either a row or a
column) to a particular node of the second space, which is
called conjugated node. The clustering is then performed in
two spaces. The first one is called the feature space, having
n dimensions representing the rows of the data matrix. In
the second space, called the sample space, the roles of the
features and samples have been exchanged. This space has
m dimensions, corresponding to the columns of the data
matrix, and is used to perform clustering on the n features
which are now the rows of the data matrix.

To convert a node of one space to the other space, DCC
makes use of the angle between the node and each of the
patterns. More precisely, the ith conjugate entry is the dot
product between the node vector and the ith pattern vector
of the projected space when both the vectors are normalized
to unit length. Formally, they introduce the matrices X1 and
X2, which corresponds to the original data matrixX after its
columns and rows have been normalized to unit length. The
synchronization between feature and sample spaces is

forced by alternating clustering in both spaces. The
projected clustering results of one space are used to correct
the positions of the corresponding nodes of the other space.
If the node update steps are small enough, both processes
will converge to a state defined by a compromise between
the two clusterings. Since the feature and sample spaces
maximize sample and feature similarity, respectively, such
a solution is desirable. DCC works iteratively by perform-
ing a clustering cycle, and then transforming each node to
the conjugate space where the next training cycle takes
place. This process is repeated until the number of moved
samples/features falls below a certain threshold in both
spaces. DCC returns two results: one in feature space and
one in sample space, each being the conjugate of the other.
Since every sample cluster in the feature space corresponds
to a feature in the sample space, DCC derives a group of
rows for every group of columns, hence, a set of biclusters.

5.2 Divide-and-Conquer

Divide-and-conquer algorithms have the significant advan-
tage of being potentially very fast. However, these
approaches have the very significant drawback of being
likely to miss good biclusters that may be split before they
can be identified.

Block clustering was the first divide-and-conquer ap-
proachtoperformbiclustering.Blockclustering isa topdown,
row and column clustering of the data matrix. The basic
algorithmfor forwardblock splittingwasdue toHartigan [24]
who called it direct clustering (see Section 3.2). The block
clustering algorithm begins with the entire data in one block
(bicluster). At each iteration, it finds the row or column that
produces the largest reduction in the total “within block”
variance by splitting a given block into two pieces. In order to
find thebest split into twogroups the rowsandcolumnsof the
datamatrix are sortedby rowandcolumnmean, respectively.
The splitting continues until a given number K of blocks is
obtained or the overall variance within the blocks reaches a
certain threshold.

Since the estimation of the optimal number of splicings is
difficult, Duffy and Quiroz [16] suggested the use of
permutation tests to determine when a given block split is
not significant. Following this direction, Tibshirani et al.
[46] added a backward pruning method to the block
splitting algorithm introduced by Hartigan [24] and de-
signed a permutation-based method to induce the optimal
number of biclusters, K, called Gap Statistics. In their
approach, the splitting continues until a large number of
blocks are obtained. Some blocks are then recombined until
the optimal number of blocks is reached. This approach is
similar to the one followed in decision tree algorithms,
where the tree is grown until a given depth and is then
pruned.

5.3 Greedy Iterative Search

Greedy iterative search methods are based on the idea of
creating biclusters by adding or removing rows/columns
from them, using a criterion that maximizes the local gain.
As such, and although these approaches may make wrong
decisions and loose good biclusters, they have the potential
to be very fast.

Cheng and Church [10] were the first to apply bicluster-
ing to gene expression data. Given a data matrix A and a
maximum acceptable mean squared residue score (see (18)),
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� > 0, the goal is to find �-biclusters, that is, subsets of rows
and subsets of columns, ðI; JÞ, with a score no larger than �
(see Section 3.4). In order to achieve this goal, Cheng and
Church proposed several greedy row/column removal/
addition algorithms that are then combined in an overall
approach that makes it possible to find a given numberK of
�-biclusters.

The single node deletion method iteratively removes the
row or column that gives the maximum decrease of H. The
multiple node deletion method follows the same idea.
However, in each iteration, it deletes all rows and columns
with row/column residue superior to a given threshold.
Finally, the node addition method adds rows and columns
thatdonot increase theactual scoreof thebicluster. Inorder to
find a given number,K, of biclusters, greedy node deletion is
performed first and is then followedbygreedynodeaddition.
The algorithmdiscovers one bicluster at a time.At each of the
K iterations, the algorithms start with an initial bicluster that
contains all rows and columns. Thismeans that the algorithm
starts with the entire matrix A and stops when no action
decreasesH or whenH < �. The discovered bicluster is then
reported, and masked with random numbers, so that no
recognizable structures remain. The process is repeated until
K biclusters are found.

Although masking previously generated biclusters might
suggest that it is not possible to find overlapping biclusters,
this is in fact possible since the node addition step is
performed using the original values in the data matrix and
not the random ones introduced during the masking
process. However, the discovery of highly overlapping
biclusters is not likely, since elements of already identified
biclusters have been masked by random noise.

The FLOC (FLexible Overlapped biClustering) algorithm
[50], [51] addresses this limitation (see Section 3.4). It is based
on the bicluster definition used by Cheng and Church, but
performs simultaneous bicluster identification. It is also
robust agains missing values, which are handled by taking
into account the bicluster volume (number of nonmissing
elements) when computing the score (see (26)). FLOC avoids
the introduction of random interference and discovers K
possibly overlapping biclusters simultaneously.

The algorithm has two phases. In the first phase,K initial
biclusters are generated by adding each row/column to
each one of them with independent probability p. The
second phase is an iterative process that improves the
quality of these biclusters. During each iteration, each row
and each column is examined to determine the best action
that can be taken toward reducing the average score residue
(see (27)). An action is uniquely defined at any stage with
respect to a row/column and a bicluster. It represents the
change of membership of a row/column with respect to a
specific bicluster: A row/column can be added to the
bicluster if it is not yet included in it, or it can be removed if
it already belongs to it. Since there are K biclusters, there
are K potential actions for each row/column. Among these
K actions, the one that has the maximum gain is identified
and executed. The gain of an action is defined as a function
of the relative reduction of the bicluster residue and the
relative enlargement of the bicluster volume. At each
iteration, the set of selected actions is performed according

to a random weighted order that assigns higher probabil-
ities of execution to the actions with higher gains. The
optimization process stops when the potential actions do
not improve the overall quality of the biclustering.

Cho et al. [11] introduced two k-means like biclustering
algorithms that discover k row clusters and l column
clusters simultaneously while monotonically decreasing the
respective squared residues defined by Cheng and Church
[10] (see (18)). They use the partitioning model proposed by
Hartigan [24], but optimize global merit functions instead of
local ones. They also find k� l biclusters simultaneously, as
opposed to finding a single bicluster at a time.

The authors partition the matrix A, n�m, into k row
clusters and l column clusters defined, respectively, by the
functions � : f1; . . . ; ng ! f1; . . . ; kg and  : f1; . . . ;mg !
f1; . . . ; lg, where �ðiÞ ¼ r implies that row i is in the row
cluster randðjÞ ¼ c implies column c is in the columncluster
c. It is also assumed that row cluster r, 1 � r � k, has nr rows,
so that n1 þ . . .þ nr ¼ n. Similarly, cluster c, 1 � c � l hasml

columns, so that m1 þ . . .þml ¼ m. This means that every
row/column belongs to exactly one row/column cluster.
Then, they define a row cluster indicatormatrixR, n� k, and
acolumncluster indicatormatrixC,m� l. Eachcolumn rofR
has nr nonzeros, each of which equals n�1=2

r . The nonzeros of
C are defined similarly. As every nonzero value in R means
that row i belongs to a particular row cluster, the first column
inR has n1 nonzeros, representing the rows that belong to the
first row cluster, and so on. Matrix C has a similar structure.
WhenR andC are constrained tobe cluster indicatormatrices
the problem of obtaining a global minimum for (18) is NP-
hard. Given this, Cho et al. resort to two iterative algorithms
that monotonically decrease (18) and converge to a local
minimum.

The first algorithm is a batch iterative algorithm since, at
each iteration, the column clustering C is updated only after
determining the nearest column cluster for every column of
A (likewise for rows). They defined AC ¼ RRTAC and
AR ¼ RTACCT , where the columns and rows of the
matrices AC and AR play the roles of column cluster
prototypes and row cluster prototypes, respectively. The
algorithm begins with an initialization step. Each iteration
involves finding the closest column (row) prototype, given
by a column (row) of AC (AR), for each column (row) of A
and setting its column (row) cluster accordingly. The
algorithm iterates until the decrease in the merit function
(18) is smaller than a tolerance � .

The second algorithm is an incremental algorithm, whose
idea is similar to the definition of action in FLOC [50], [51].
Cho et al. formulated incremental schemes for moving
columns (rows) between column (row) clusters if such a
move leads to a decrease in themerit function. Each call of the
incremental procedures tries to perform such amove for each
row and column of the data matrix. Since moving a row or
column from its current cluster to an empty cluster would
always lead to a decrease in themerit function (assuming no-
degeneracy), such a move is always made guaranteeing that
no cluster is empty. Although onemove ismade at a time, the
authors suggestmaking a chain ofmoves for obtaining better
local minima. Variants of the algorithm perform any move
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that leads to a decrease in the merit function instead of
insisting on the best possible move.

Since the difficulty in minimizing (18) is introduced by
the strong structural constraints on R and C, Cho et al.
suggest relaxing those constraints to just seek column
orthogonal matrices R and C in order to ease minimization.
They then use a spectral approximation for initialization.
When this relaxed solution is obtained, it is then necessary
to obtain a biclustering. The authors suggest using k-means,
among other techniques, to cluster the rows of R and C and
obtain row/column clusters from the clustered R and C.

Ben-Dor et al. [6] addressed the identification of large
order-preserving submatrices (OPSMs) with maximum
statistical significance (see Section 3.5). In order to do that,
they assume a probabilistic model of the data matrix where
there is a bicluster ðI; JÞ determined by a set of rows I, a set
of columns J and a linear ordering of the columns in J .
Within each row of ðI; JÞ the order of the elements is
consistent with the linear ordering of J . They define a
complete model as the pair ðJ; �Þ where J is a set of s
columns and � ¼ ðj1; j2; . . . ; jsÞ is a linear ordering of the
columns in J . A row supports ðJ; �Þ if the s corresponding
values, ordered according to the permutation �, are
monotonically increasing.

Since an exhaustive algorithm that tries all possible
complete models is not feasible, the idea is to grow partial
models iteratively until they become complete models. A
partial model of order ða; bÞ specifies, in order, the indices of
the a “smallest” elements < j1; . . . ; ja > and the indices of
the b “largest” elements < js�ðb�1Þ; . . . ; js > of a complete
model ðJ; �Þ and its size s. The OPSM algorithm focus on
the columns at the extremes of the ordering when defining
partial models, assuming that these columns are more
useful in identifying the target rows, that is, the rows that
support the assumed linear order. The algorithm starts by
evaluating all ð1; 1Þ partial models and keeping the best l of
them. It then expands them to ð2; 1Þ models and keeps the
best l of them. After that, it expands them to ð2; 2Þ models,
ð3; 2Þ models, and so on, until it gets l ð½s=2�; ½s=2�Þ models,
which are complete models. It then outputs the best one.

Murali and Kasif [37] introduced an algorithm that aims
at finding xMOTIFs. An xMOTIF is a bicluster with
coherent evolutions on its rows (see Section 3.5). The data
is first discretized into a set of symbols by using a list of
statistically significant intervals, for each row. To determine
an xMOTIF, it is necessary to compute the set of conserved
rows, I, the states that these rows are in, and the set of
columns, J , that match the xMOTIF. Given the set of
conserved rows, I, the states of the conserved rows, and one
column c that matches a given motif, it is easy to compute
the remaining conditions in J simply by checking, for each
column c0, if the rows in I are in the same state in c and c0.
Column c is called a “seed” from which the entire motif can
be computed. The motifs are computed starting with a set of
randomly chosen columns that act as seeds. For each
column, an additional randomly chosen set D of columns is
selected, called a discriminating set. The selected bicluster
contains all the rows that have states equal in the seed
column and in the columns contained in the discriminating
set D. The motif is discarded if less than an �-fraction of the

columns match it. After all the seeds have been used to
produce xMOTIFs, the largest xMOTIF (one with the largest
number of rows) is returned.

Califano et al. [9] introduced an algorithm that addresses
the problem of finding �-valid ks-patterns (see Section 3.4).
Their goal is to find groups of rows that exhibit coherent
values in a subset of the columns, but do not have any
coherence of values in any of the remaining columns. After
preprocessing the data, they use a pattern discovery
algorithm to discover sets of rows and columns candidates
to be statistically significant biclusters (the other candidates
are discarded). Finally, an optimal set of patterns is chosen
among the statistically significant ones using a greedy set
covering algorithm that adds rows and columns to the
existing patterns so that they become maximal patterns (see
Section 3.4).

The pattern discovery algorithm used considers that each
column of the data matrix is a string and discovers patterns
in these strings by allowing all possible string alignments. A
density constraint is used to limit the impact of random
matches occurring over large distances on the strings and
the strings are prealigned before the algorithm is used. The
algorithm starts with a single pattern with no rows, all the
columns, and an offset of zero for each column. The values
in each column are then sorted and all subsets of
continuous values that are �-valid (see Section 3.4) are
selected. Nonmaximal subsets that are completely con-
tained within another subset are removed. Each subset is
considered a potential super-pattern of a maximal pattern.
All possible maximal combinations of these super-patterns
are then created iteratively. As a result, all patterns that
exists in the data matrix are generated hierarchically by
pattern combination.

5.4 Exhaustive Bicluster Enumeration

Exhaustive bicluster enumeration methods are based on the
idea that the best biclusters can only be identified using an
exhaustive enumeration of all possible biclusters existent in
the matrix. These algorithms certainly find the best
biclusters, if they exist, but have a very serious drawback.
Due to their high complexity, they can only be executed by
assuming restrictions on the size of the biclusters. As such,
these methods perform exhaustive enumeration assuming
some restrictions on the input instances and using efficient
algorithmic techniques designed to make the enumeration
feasible.

Tanay et al. [44] introduced SAMBA (Statistical-Algo-
rithmic Method for Bicluster Analysis), a biclustering
algorithm that performs simultaneous bicluster identifica-
tion by using exhaustive enumeration. SAMBA avoids an
exponential runtime by restricting the number of rows the
biclusters may exhibit. They use the graph formalism
described in Section 2.1, and define as their objective the
identification of a maximum weight subgraph, assuming
that the weight of a subgraph will correspond to its
statistical significance. Discovering the most significant
biclusters under this weighting schemes is equivalent to
the selection of the heaviest subgraphs in the model
bipartite graph. SAMBA assumes that row vertices have
d-bounded degree. This corresponds to a restriction on the
size of the discovered biclusters since the number of rows
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cannot exceed this value. In the case of gene expression data
this restriction is justified by the fact that genes that very
frequently exhibit high expression levels are generally not
interesting.

SAMBA can be executed using two statistical models of
the resulting bipartite graph. When the simpler model is
used, Tanay et al. show how to compute an upper-bound on
the probability of an observed bicluster. When a refined
model that takes into account the rows and columns
variability by including the direction of the expression
change (up or down regulation) is used, they show how to
assign weights to the vertex pairs so that a maximum
weight bicluster corresponds to a maximum likelihood
bicluster. In a first phase, SAMBA normalizes the data,
defining a gene as up-regulated or down-regulated if its
standardized expression level (with mean 0 and variance 1),
is, respectively, above 1 or below -1. In the second phase, it
finds the K heaviest bicliques in the graph. This is done by
looking at a precomputed table with the weights of the
bicliques intersecting every given column (condition) or
row (gene) and choosing the K best bicliques. In order to
improve the performance, rows (genes) with degree
exceeding d are ignored and the hashing for each row
(gene) is performed only on subsets of its neighbors whose
size is in a given range. In a postprocessing phase, SAMBA
performs greedy addition or removal of vertices to perform
a local improvement on the biclusters and filter the similar
ones. Two biclusters are considered similar if their vertex
sets (subset of rows and subset of columns) differ only
slightly. The intersection between two biclusters is defined
as the number of shared columns times the number of
shared rows.

Wang et al. [48] also proposed an algorithm that
performs exhaustive bicluster enumeration, subject to a
restriction that they should possess a minimum number of
rows and a minimum number of columns. To speed up the
process and avoid the repetition of computations, they use a
suffix tree to efficiently enumerate the possible combina-
tions of row and column sets that represent valid biclusters.

The algorithm starts by deriving a set of candidate
Maximum Dimension Sets (MDS) for each pair of rows and
for each pair of columns. An ðx; yÞ row-pair MDS is a set of
columns that defines a maximum width bicluster that
includes rows x and y. A similar definition holds for a
column-pair MDS. The set of candidate MDSs is computed
using an efficient method that generates all possible MDS
for each row pair and for each column pair. This is done in
linear time by ordering the columns in increasing order of
the differences between row elements (in the case of the
row-pair MDS), and performing a left to right scanning of
these ordered array of columns. The set of candidate MDSs
is then pruned using properties that relate row-pair MDSs
with column-pair MDSs. The suffix tree [23] is built by
assuming a given, arbitrary, lexicographic order on the
columns. A node in the tree is associated with a set of
columns, T , given by the path from the root, and a set of
rows, O. A postorder traversal of this tree generates all
possible biclusters using the following method: For each
node, containing set of rows O and set of columns T , add
the objects in O to nodes in the tree whose column set T 0 2
T and jT 0j ¼ jT j � 1. Since the nodes that correspond to T 0

are necessarily higher in the suffix tree, the postorder
traversal of this tree will generate all the existing biclusters
in the matrix. However, the number of biclusters and,

therefore, the execution time, can be exponential on the
number of columns in the matrix.

Liu and Wang [35] also proposed an exhaustive bicluster
enumeration algorithm. Since they are looking for order-
preserving biclusters with a minimum number of rows and
a minimum number of columns, the input data to their
algorithm is a set of rows with symbols that represent the
ordering of the values between these rows. A given row
may then be represented by adbc and another one by abdc.
Their goal of finding all the biclusters that, after column
reordering, represent coherent evolutions of the symbols in
the matrix is achieved by using a pattern discovery
algorithm heavily inspired in sequential pattern mining
algorithms [26].

The structure used to perform efficient enumeration of
all common patterns in the rows uses an OPC-tree, which is
a modified prefix tree, where a path from the root
represents a sequence of symbols. In the starting tree,
constructed using all symbol sequences present in the rows,
leaves are labeled with the rows that correspond to the
sequence of tree nodes that leads to that leaf. This tree is
then iteratively modified by applying the following
procedure to each node n of the tree, starting at the root:
For each child nc of node n, insert suffixes of subtrees of nc

in the child of n that has a label that matches the symbol
that is in the root of the subtree. This procedure,
complemented by appropriate pruning operations per-
formed when there is not enough quorum to reach the
target minimum bicluster dimension, generates all possible
OP-clusters.

5.5 Distribution Parameter Identification

Distribution parameter identification approaches assume a
given statistical model and try to identify the distribution
parameters used to generate the data by iteratively
minimizing a certain criterion.

Lazzeroni and Owen [34] want to obtain a plaid model
that minimizes (30). Assuming that K � 1 layers (biclusters)
have already been identified, they select the Kth bicluster
that minimizes the sum of squared errors, Q. The residual
from the first K � 1 biclusters, Zij, and Q are computed as
follows:

Q ¼ 1

2

Xn
i¼1

Xm
j¼1

ðZij � �ijK�iK	jKÞ2; ð35Þ

Zij ¼ aij � �ij0 �
XK�1

k¼1

�ijk�ik	jk: ð36Þ

Q is minimized through an iterative approach where the
�ijK values, the �iK values, and the 	jK values are updated
in turn. By doing this, one bicluster is discovered at a time.
The iteration process is similar to the Expectation-Max-
imization (EM) algorithm. Lagrange Multipliers are used to
estimate the parameters and improve the merit function
along one direction at a time until a (possibly local)
minimum is reached.

Let �ðsÞ, �ðsÞ, and 	ðsÞ denote all the �ijK , the �iK , and the
	jK values at iteration s. The algorithm to find one layer
works as follows: After selecting initial parameters �ð0Þ and
	ð0Þ, S full update iterations are performed. At each of the
s ¼ 1; . . . ; S iterations, the bicluster parameters �ðsÞ are
determined using �ðs�1Þ and 	ðs�1Þ; the row membership
�ðsÞ are determined using �ðsÞ and 	ðs�1Þ; and the column
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membership 	ðsÞ are determined using �ðsÞ and �ðs�1Þ. At
intermediate stages, the values of �ijK describe a “fuzzy”
membership function in which �iK and 	jK are not
necessarily 0 or 1. To update the �ijK values given �iK and
	jK , the expression in (35) is minimized subject to the
restrictions that every row and column has zero mean. The
same reasoning is applied to estimate the remaining
parameters. Given a set of K layers, the �ijk values can
then be reestimated by cycling through k ¼ 1; . . . ; K in turn.

Segal et al. [41] use PRMs (see Section 3.3) to model the
joint distribution of the values of the gene and array
membership functions (�þ �i þ �j). The estimation of the
parameters of the PRMs has two main components:
learning the structure of the dependencies and estimation
of the parameters of the distribution. Learning the structure
of the dependencies between variables is equivalent to
learning the structure of a Bayes network. To further restrict
the different possible structures and the number of
parameters, the authors assume that dependencies between
variables can be represented by a CPD-tree [17]. The
selection of the most likely structures is performed using
Bayesian model selection techniques. The search is per-
formed using an almost-greedy search method, where local
minima are avoided by using a variant of simulated
annealing. The search takes place by applying local
transformations to the CPD-trees.

Once the structure is learned, parameter estimation is
performedbyobtaining themaximumlikelihoodestimator of
each parameter, assuming multinomial distributions for the
discrete parameters and Gaussian distributions for the
continuous parameters. Since some variables are not ob-
servable (namely, the bicluster membership variables), the
expectation-maximizationmethod is applied. In this case,EM
is applied by alternating the two following steps: 1) filling in
thevaluesobtained for eachhiddenvariable given the current
parameters of the distribution and 2) reestimating the
parameters by assuming these guesses are correct using the
standard maximum likelihood estimating procedure.

A more general model proposed by Segal et al. [40]
allows overlapping biclusters and uses a similar approach
to estimate the parameters of the distributions. However, in
this case, the structure of the dependencies is fixed, since
activity levels are assumed to depend on a specific and
fixed way on the bicluster assignment variables. As such,
the structure estimation phases are not required, and EM is
used to estimate the parameters of the distribution. Unlike
the plaid model [34], all the bicluster membership functions
are reestimated at each step of the iteration, leading to a
better fit of the experimental data.

Sheng et al. [42] introduced a biclustering approach
based on Gibbs sampling. The row-column (gene-condition)
orientation of the matrix is assumed. The algorithm could
also be applied on the column-row (condition-gene)
orientation. They use multinomial distributions to model
the data for every column in a bicluster, and assume that
the multinomial distributions for different columns in a
bicluster are mutually independent. Gibbs sampling is used
to estimate the parameters of the multinomial distributions
used to model the data.

The algorithm to find one bicluster in the row-column
orientation of the data matrix works as follows: The
initialization step randomly assigns row labels and condition
labels the value 1 or 0, where 1 means that the row/column
belongs to the bicluster and 0means it does not belong. In the
second step of the algorithm, the goal is to fix the labels of the

columns. In order to do that, for every row i, i ¼ 1; . . . ; n, the
labels for all the other rows are fixed while the Bernoulli
distribution for the given row i is computed. A label is then
assigned to row i from the computed distribution. Similarly,
step three sets the labels of the columns. The parameters for
both rowand columndistributions are estimatedusingGibbs
sampling. These steps are iterated for a predefinednumber of
iterations. In order to detect multiple biclusters, Sheng et al.
mask the rows that belong to the previously found bicluster
by setting the row labels of the foundbiclusterpermanently to
zero. Their approach discovers one bicluster at a time and it
works by not considering as candidate rows for any future
bicluster rows that have already been considered. This choice
allows theunmaskeddimensionof the bicluster to be selected
multiple times. The algorithm is iterateduntil no bicluster can
be found for the unmasked part of the data matrix.

Kluger et al. [32] used a spectral approach to biclustering
by assuming that, after normalization, the matrix contains a
checkerboard structure. Supposing there are ways to
normalize the original matrix A and the resulting matrix
is A0, the idea is to solve the eigenvalue problem A0TA0x ¼
�2x and examine the eigenvectors x. If the constants in an
eigenvector can be sorted to produce a step-like structure,
the column clusters can be identified accordingly. The row
clusters are found similarly from y satisfying A0A0T y ¼ �2y.
More precisely, Kluger et al. show that the checkerboard
pattern in a matrix A is reflected in the constant structures
of the pair of eigenvectors x and y that solved the coupled
eigenvalue problem A0TA0x ¼ �2x and A0TA0y ¼ �2y, where
x and y have a common eigenvalue. The algorithm depends
critically on the normalization procedure used to transform
the matrix.

Kluger et al. proposed three normalization methods. The
first normalization method (independent rescaling of rows
and columns) assumes the nonnormalizedmatrix is obtained
bymultiplyingeach row ibya scalar ri andeach column jbya
scalar cj, then ri1=ri2 ¼ mean of row i1/mean of row i2 ¼
ai1J=ai2J (see (14)). Assuming thatR is a diagonalmatrixwith
entries ri at the diagonal and C is a diagonal matrix defined
similarly, then the eigen problem can be formulated by
rescaling the data matrix: ÂA � R�1=2AC�1=2. The second
method (bistochastization) works by repeating the indepen-
dent scaling of rows and columns until stability is reached.
The finalmatrixhasall rowssumtoaconstantandall columns
sum to a different constant. The third method (log-interac-
tions) assumes that if the original rows/columns differ by
multiplicative constants, then after taking their logarithm,
theydifferbyadditive constants (see (13) and (14)).Moreover,
each row and column is expected to have zeromean. This can
be achieved by transforming each entry as follows: a0ij ¼
aij � aIj � aiJ þ aIJ . Note that a0ij is the residue of the each
element aij of the data matrixA as it was defined in (16).

6 OVERALL COMPARISON OF THE BICLUSTERING

ALGORITHMS

Table 2 presents a summary of the different algorithms in
accordance with the different dimensions of analysis
considered. The second column presents the type of
biclusters (see Section 3). Column three lists the bicluster
structure they can produce. The notation used is the one in
Fig. 4 in Section 4. The last two columns summarize
Section 5 and classify the different algorithms according to
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the way they discover the biclusters and the approach used.
The notation used is the following: iterative row and
column clustering combination (Clust-Comb), divide-and-
conquer (Div-Conq), greedy iterative search (Greedy),
exhaustive bicluster enumeration (Exh-Enum), and distri-
bution parameter identification (Dist-Based).

An objective evaluation of the quality and efficiency of
the different approaches is outside the scope of this survey
since it requires extensive evaluations under controlled
conditions. We plan, however, to conduct such evaluations
in the future. Objective evaluations, in terms of the quality
of the biclusters, are presented in the original references.
This quality is assessed using one of the three following
methods:

1. Value of the merit function. Authors that have used
this approach evaluate the quality of the solution by
analyzing the value of the merit function directly.
This is a good indicator of the coherence observed in
the resulting biclusters [24], [46], [10], [34], [50], [48],
[51], [11]. In the cases where there is an explicit
statistical model underlying the merit function, this
approach can also be viewed directly as a statistical
assessment of the quality of the solution [41], [40],
[42], [37]. Two-way clustering approaches [21], [45],
[8] do not evaluate the quality of the resulting
biclustering directly. Instead, they evaluate the
quality of the clustering performed on each of the
two dimensions separately.

2. Statistical significance of the solution, measured
against the null hypothesis. Authors that have used
this approach assess the quality of the solutions by
applying statistical significance tests. These tests
derive the statistical significance of the solutions
selected by the algorithms by computing the prob-
ability of random appearance of these biclusters in
uncorrelated data, generated in accordance with a
specific distribution [9], [44], [6], [32].

3. Comparison against known solutions. When tested
in synthetic data, it is possible to compare the
biclusters obtained with the biclusters that have been
planted in the synthetic data. Several authors have
used this approach. In real-world data, it is also
sometimes possible (although considerably harder)
to identify biclusters that correspond to known
processes and to score the solutions by how
effectively they approximate the known solutions.
When the solutions are used to perform classifica-
tion (gene or sample classification), this classification
can also be compared with known results [46], [41],
[9], [10], [21], [34], [45], [44], [8], [6], [50], [48], [40],
[42], [32], [37], [51], [11].

An evaluation of the computational complexity and
efficiency of the methods is very difficult to perform
without resorting to extensive benchmarking. In fact, since
the problem is NP-hard, all the methods resort to heuristics
that are not easily amenable to direct complexity analysis.
Iterative methods, used in the large majority of the
approaches, are heavily dependent not only on the
computational complexity per iteration that can be com-
puted in a relatively straightforward way, but also on the
number of iterations necessary to reach a solution. The
number of iterations cannot, in general, be defined a priori,
and represents the major factor constraining the efficiency
of these methods.

Another important issue regards the adequacy of the
models to real data. In this aspect, there is a clear move
toward the use of more flexible merit functions and
structures, reflecting the need to take into account the
complex interactions between the processes that define the
values in the matrix. In particular, general additive/multi-
plicative models and/or general probabilistic models that
can model overlapping biclusters are required to model
more precisely the data that is obtained from gene
expression analysis. This move toward more complex
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models also has an impact on the complexity of the
algorithms required to find optimal solutions.

7 BICLUSTERING APPLICATIONS

Biclustering can be applied whenever the data to analyze
has the form of a real-valued matrix A, where the set of
values aij represent the relation between its rows i and its
columns j, and the goal is to identify subsets of rows with
certain coherence properties in a subsets of the columns.

Most biological applications of biclustering are performed
using gene expression data obtained using microarray
technologies that allow the measurement of the expression
level of thousands of genes in target experimental conditions.
Since this technology provides a snapshot of all the genes
expressed in a cell at a given time, and gene expression is the
fundamental link between genotype and phenotype, the
analysis of gene expression data is bound to play amajor role
in our understanding of biological processes and systems
including gene regulation, development, evolution, and
disease mechanisms [5]. In this application domain, we can
use biclusters to associate genes with specific clinical classes
or for classifying genes and samples, among other potentially
interesting applications.

The applications of biclustering to biological data
analysis, including several examples using gene expression
data and some examples using other biological data, are
discussed in Section 7.1. Section 7.2 presents several
nonbiological applications of biclustering. In fact, although
the majority of the recent applications of biclustering are in
biological data analysis, there are several interesting
application of biclustering in other domains.

7.1 Biological Applications

Reported results of biclustering applied to gene expression
data have used the data sets in Table 3. All these data sets
contain expression data collected from either yeast or

human cells using microarray technologies, which repre-
sents the expression level of a set of genes under specific
conditions.

Several authors [10], [34], [41], [44], [50], [48], [51], [35],
[40] used biclustering to analyze one or several of six
expression matrices collected from yeast [43], [12], [19], [28],
[18], [29] (see Table 3 for details). Other authors [46], [10],
[21], [9], [45], [44], [6], [8], [37], [32], [42], [11] analyzed one
or more of eleven different expression matrices with
Human gene expression levels [49], [22], [3], [30], [2], [25],
[31], [33], [52], [4], [39] (see Table 3 for details). Interestingly,
almost all these data sets contain expression data related to
the study of cancer. Some contain data from cancerous
tissues at different stages of the disease; others analyze data
from different individuals suffering from different types of
cancer; and the remaining data sets contain data collected
from several individuals with a particular cancer or healthy
people.

These data sets have been used to test the applicability of
biclustering approaches in three major tasks:

1. Identification of coregulated genes.
2. Gene functional annotation.
3. Sample classification.

Table 3 summarizes the biclustering applications to gene

expression data analysis and relates the different tasks with
the different datasets used.

A number of authors [10], [34], [21], [41], [44], [6], [50],
[48], [40], [51], [35], [11] have studied the application of
biclustering techniques to the problem of identification of
coregulated genes. More specifically, the objective was to
identify sets of genes that, under specific conditions,
exhibited coherent activations that indicate coregulation.
The results of this may be used to simply identify sets of
coregulated genes or, more ambitiously, to identify specific
regulation processes.

42 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 1, NO. 1, JANUARY-MARCH 2004

TABLE 3
Gene Expresion Data Sets Analyzed Using Biclustering Techniques and Its Applications



A less obvious application is to use the biclustering
results directly to perform automatic gene functional
annotation, as proposed by other authors [41], [44], [40].
The idea underlying this approach is to use biclusters where
a large majority of genes belong to a specific class in the
gene ontology to guess the class of nonannotated genes.

Another significant area of application is related with
sample and/or tissue classification [46], [9], [21], [45], [44],
[8], [32], [37], [42]. In leukemia diagnosis [21], [37], [42], for
instance, the goal was to identify different responses to
treatment, and the group of genes to be used as the most
effective probe.

All the previous applications of biclustering analyzeddata
from gene expressionmatrices. However, biclustering can be
interesting in the analysis of other biological data. Liu and
Wang [35] applied biclustering to a drug activity data set.
They wanted to find groups of chemical compounds with
similar behaviors when subsets of compound descriptors
were taken into account. Lazzeroni et al. [34] analyzed
nutritional data to identify subsets of foods with similar
properties on a subset of food attributes.

7.2 Other Applications

Apart from interesting biological applications, biclustering
can also have successfully applications in relevant areas
such as: information retrieval and text mining, collaborative
filtering, recommendation systems, target marketing and
market research, database research, and data mining.

Biclustering can be useful in collaborative filtering to
identify subgroups of customers with similar preferences or
behaviors toward a subset of products. The goal is to
perform target marketing or use the information provided
by the biclusters in recommendation systems. Recommen-
dation systems and target marketing are important applica-
tions in the E-commerce area. Many authors applied
biclustering to collaborative filtering using data where the
rows represented customers and the columns movies [50],
[51], [48], [47], [27]. The values aij in the data matrix show
whether customer i watched movie j (binary values), or
represent the rate customer i assigned to movie j (discrete
values). Both Hoffman and Puzicha [27] and Ungar and
Foster [47] used approaches similar to the one of Sheng et al.
[42]. While Ungar and Foster used the Expectation-Max-
imization (EM) algorithm, Hoffman and Puzicha used
Gibbs sampling.

Gaul and Schader [20] showed the relevance of bicluster-
ing in the market research and marketing by using data
matrices containing data collected during marketing cam-
paigns.

In information retrieval and text mining, biclustering can
be used successfully to identify subgroups of documents
with similar properties relatively to subgroups of attributes,
such as words or images. This information can be very
important in query and indexing in the domain of search
engines. Several authors used data matrices where the rows
represented words and the columns documents [14], [7],
[15]. In the simpler problem formulations, the values aij
show whether word i is present in document j (binary
values). In more complex data, a nonzero element aij
indicates the presence of word i in document j using a real
value that represents its relevance relatively to that
document and taking into account its presence in the
collection of documents. In this application domain, this
type of data is called incidence matrix and the term
coclustering is generally used instead of biclustering. The

approaches are similar to the ones analyzed in the previous
sections. Dhillon [14], for instance, modeled the data matrix
as a bipartite graph as Tanay et al. [44] and used a spectral
approach similar to the one used by Kluger et al. [32].

Biclustering can also be used to perform dimensionality
reduction in databases with tables with thousands of
records (rows) with hundreds of fields (columns). This
application of biclustering is what the database community
calls automatic subspace clustering of high dimensional
data, which is extremely relevant in data mining applica-
tions. This problem was addressed by Agrawal et al. [1].

More exotic applications of biclustering involved the
analysis of data matrices with electoral data [24] and foreign
exchange data [34]. Hartigan [24] used electoral data with
the goal of identifying subgroups of rows (countries) with
the same political ideas and electoral behaviors among a
subset of the columns (issues). Lazzeroni et al. [34] analyzed
foreign exchange data to identify subsets of currencies with
similar behaviors in subsets of months.

8 CONCLUSIONS

We have presented a comprehensive survey of the models,
methods, and applications developed in the field of
biclustering algorithms. The list of applications presented
is by no means exhaustive, and an all-inclusive list of
potential applications would be prohibitively long. From
the list of models and approaches analyzed in Sections 3, 4,
5, and 6, it is our opinion that the scientific community has
already available a large plethora of models and algorithms
to choose from. In particular, the general additive and
multiplicative frameworks are rich enough to appropriately
model very complex interactive processes.

The list of available algorithms is also very extense, and
many combinations of ideas can be adapted to obtain new
algorithms potentially more effective in particular applica-
tions. We believe that the systematic organization presented
in this work can be used by the interested researcher as a
good starting point to learn and apply some of the many
techniques proposed in the last few years, and some of the
older ones. The list of applications presented, long as it is
already, represents, in our view, only a small fraction of the
potential applications of this type of techniques. Many other
applications in biological data analysis, gene network
identification, data mining, and collaborative filtering
remain to be explored.

Many interesting directions for future research have
been uncovered by this review work. The tuning and
validation of biclustering methods by comparison with
known biological data is certainly one of the most important
open issues. Another interesting area is the application of
robust biclustering techniques to new and existing applica-
tion domains. Many issues in biclustering algorithm design
also remain open and should be addressed by the scientific
community. From these open issues, we select the analysis
of the statistical significance of biclusters as one of the most
important ones, since the extraction of a large number of
biclusters in real data may lead to results that are difficult to
interpret.
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