
Hashing And Fingerprinting

11 February 2005

William Josephson
wkj@cs.princeton.edu

1

Motivation: Technology Trends

• Magnetic Disks (from last time):

– Exponential increase in disk capacity

– By comparison, small increases in angluar velocity (∼4x since 1980)

– Modest improvements in ballistic seek and settle times

• Wide-Area Networks:

– Last five years have seen demise of the analog modem

– Backbone bandwidth has increased rapidly

– Prospect for comparable increase in bit rate over last mile slimmer

– Latency on ISDN/DSL/SONET unlikely to improve much

– Long latency and high drop rates common on the WAN
∗ It is often faster to get to New York via Boston on Internet2
∗ 1000ms RTTs are common between Princeton and the Internet

2

Motivation: Applications

• Bandwidth Reduction (LBFS)

– How can I use my data over a long, thin pipe?

• Duplicate Elimination (Venti)

– What happens if I save every version of every document?

• Naming in Distributed Systems (Chord)

– What can I do to avoid the scourage of centralized name services?

• Similarity Search (Udi Manber)

– Yikes! My disk is too big: how can I find anything?

• Naming of Automatically Generated Structured Data (Andrei Broder)

– How can I collect statistics, type-check modules efficiently, & so on...

3

Hashing in Theory

• Generally we use a hash function to map a large space to a small one

– Cannot hope to have a perfect hash function

– Instead we settle for something that “looks random”

• The property that a hash function “looks random” can be formalized:

– Random functions U → [
2k

]
(but: too many bits)

– Universal hash functions:

∀x1, x2 ∈ U , Pr [h(x1) = h(x2)] ≤ 2−k

– Also strongly universal hash functions

– Minwise independent permutations (cf. next week)

– Cryptographic hash functions

• Rich theory: see Motwani’s book or Michael Mitzemancher’s web page

4

Hashing In Systems

• Most common use is for hash tables such as compiler symbol table or a
hash access method in a database

– Usually worried about behavior in expectation

– Even here, surprising theoretical results can be a big win
∗ A good example is the “power of two choices” (Mitzenmacher)

• In an adversarial setting, cryptographic guarantees (read: assumptions)
may be desireable or necessary

– Digital signatures, tamper detection, capabilities, and so on

• We will look at applications from roughly the last ten years

– Cryptographic hashes that are “perfect in practice”

– Polynomial (Rabin) hashes that have useful algebraic properties

5

Cryptographic Hashing

• Theoretical ideal: any polynomial time adversary can invert hash
function only with negligble probability

• Systems reality: constructing cryptographic hashes is a dark art

– There are standard analytical tools

– But everything rests on reasonable but unproven assumptions

– “Strong enough” is an ever-moving target

• Old favorites were DES, MD4, and MD5, but they are no longer safe

• More recently, cryptanalysts have begun to make progress on SHA

– Current standby is SHA-1 and its more recent cousins

– SHA-1 maps an arbitrary length string to 160 bits
∗ Typically, we assume SHA-1 is a random oracle

6

Polynomial Hashing

• For the details, see Rabin’s technical report (only now as PDF!)

– Galois theory is beautiful, but takes too long to develop here

• Basic operation is reduction modulo an irreducible polynomial

– Often simpler to just work directly in Z/28
Z

• For an irreducible polynomial p of degree n, compute residues of the
monomial axn+1 mod p(x) for every a in the ground field

– Multiplication by xn corresponds to shifting

– Addition and subtraction of polynomials corresponds to bit-wise xor

– Keep a table of residues, shift and subtract residue to update hash

• From a systems perspective, the issue is managing the L1 and L2 caches

7

Useful Properties of Polynomial Hashes

• For deg p(x) = n and a string of length m, the probability of collision is
bounded above by nm2/2k

• There is a natural, efficient representation of polynomials (bit strings)

• Prefix property: H(A||B) = H(H(A)||B)

• Given H(A), H(B), and n = |B|:
H(A||B) = xn · A(x) + B(x) mod p(x)

= H(H(xn) · H(A)) + H(B)

• Rolling property: if Ai is the first i symbols of A in sqeuence, the
natural algorithm yields H(Ai) for all i as an artifact

– Can also compute the hash of all consecutive subsequences of length
k for fixed k in one pass

8

Syntactic Similarity Search

• Goal: find syntactically similar files without O(n2) diffs

• Anchors: random vs. application-specific break points

– Pitfalls: boiler-plate, e.g. PostScript prologues

• Rank is a function of the fraction of fingerprints in common

– The similarity measure is not transitive

• Query: a single file or all files (clustering)

– For single file query we can use rank-order and a threshold

– For multi-file case, the output is a set of sets

∗ Introduces a difficult user-interface problem
∗ E.g, how to handle small similarity sets that have significant

intersection with larger similarity sets

9

Bandwidth Reduction

• Idea: use hashing to identify similar “chunks” of data in a protocol
stream or cache and replace them on the wire with a reference

– On a thin pipe, bandwidth reduction may also improve latency

• Identitify redundant blocks by computing a rolling hash

– Hash every 16-64 byte block in the protocol stream (cf. rsync)

– A hash collision indicates a potentially redundant block

– Reduce number of tests by selecting a random fraction (e.g. 1/213)

• Parameters: window size; minimum, maximum, & expected chunk size

• Given a hash collision, how do we decide if the block is redundant?

10

Hash Collisions

• Given a hash collision, how do we decide if the block is redundant?

– With a shared, synchronized cache we can test directly

– Use SHA-1 to name blocks and assume collisions don’t happen

• Should system designers be wearing tin-foil hats?

– It is one thing to use the hash as a hint, another to rely on it

• This is an issue we will revisit when we discuss Venti

11

Aside: Other Bandwidth Reduction Techniques

• Related work and common techniques:

– Caching approaches: AFS and Coda, various peer-to-peer systems

– Purely syntactic approaches: traditional compression, rsync

– Optimistic approaches: Bayou, Lenses (B. Pierce), Unison, Tra

– Semantic approaches: Sam (Rob Pike), Protium (Cliff Young et al.)

• Hashing based techniques have the advantage that they are
protocol-agnostic and therefore more or less orthogonal

• Optimism often works well in practice but cost of failure high

• Application-specific techniques such as Sam’s Rasps and token-based
consistency may expose more opportunities to optimize

• Static analyses such as in Lenses is promising but difficult

12

Consistent Hashing and Naming

• It is often convenient to name a block by its hash

– Resulting name is a compact encoding, as in LBFS

– Resulting name is easy to compute without a global name service

– We can compute the location of object as a function of the name
∗ Positive: objects are more or less uniformly distributed
∗ Negative: objects are more or less uniformly distributed
∗ Negative: even if results are good in expectation, variance can kill

• Resolving collisions can be painful if we require uniquness

– For some applications, an additional counter may suffice

13

Consistent Hashing in Distributed Systems

• Distributed hash tables for so-called “peer-to-peer” systems have been
a hot topic in the last four years

• Chord is a prototypical example and probably best documented

– Chord provides a distributed lookup service using consistent hashing

– Each node keeps pointers to a few nodes in power-of-two intervals

– Can therefore find any other node in O(log n) queries in the ring

• Chord is also a good example of the difference between what theorists
and system builders consider efficient:

– Theorists get a warm, fuzzy feeling from O(log n)

– System builders get a warm, fuzzy feeling from O(1)

• In practice, one probably wants to take advantage of the query
distribution (see, for instance, Beehive)

14

Consistent Hashing For Local Storage: Venti

• Background: Plan 9 and Ken’s dump file system

– Optical juke with copy-on-write nightly dumps at 5AM

– Interesting source of traces: snapshot for every night since ∼1989

• Venti: from the Italian for 20

– Venti itself is just a content-addressed block store

– Similar to EMC’s Centera and others

– Intended to be used as a service by application developers

– Consistent hashing makes master-slave replication relatively easy

• There are a number of existing Plan 9 and Unix applications

– vac: a tar replacement

– fossil: a conventional fs with soft-updates and snapshots

– Several physical backup programs, including one used by PDOS

15

Venti Overview

• A data stream is broken into a sequence of fixed size blocks

– Techniques such as chunking in LBFS can be a big win

• Each block is fingerprinted and checked against the index

– Should we retrieve blocks on a hash collision?

• Traditional metadata and indirect blocks become a stream of pointer
blocks that are typed and stored just as ordinary blocks are

– The result is a giant Merkle tree

• Blocks are packed into clumps and compressed

• Clumps are written to a sequence of arenas on disk

16

Why Is Venti Difficult to Implement?

• “When in doubt, introduce another level of indirection”

– In a tradition FS, blocks are addressed by logical block number

– Venti must translate each score to an LBN before issuing I/O

• Fragmentation and locality of reference

– Second and subsequent copies of a file are scattered

– May require agressive caching, hinting, block-level duplication

• It is easy to implement content-addressable stores as append-only logs

– It is much more complicated to permit deletion

– Typical approach is some form of garbage collection

– GC is an opportunity to reorganize, but makes replication harder

• Long-term reliability of disks (vs. tape), more complicated software

– Given good disks and RAID implementation, may be a wash

17

Lessons Learned?
Future Work?

• We’re used to the LAN, but many users are stuck by long, thin pipe

– Can we improve interactive applications over the WAN?

– What can we do to avoid getting stuck behind a thin pipe as the
volume of data explodes?
∗ Content distribution, large scientific datasets, etc.

• How much can we hope to accomplish with syntactic similarity search?

– How can system builders help support application-specific search in
an application-agnostic way?

• Given that individuals can effectively treat the disk as an infinite
resource, deletion is a function of policy rather than necessity

– Can system builders design other policies to take advantage of
available storage and still prevent users from drowning in a sea of

18

data

19

