Algorithms for duplicate documents

Andrei Broder IBM Research abroder@us.ibm.com

Fingerprinting (discussed last week)

Fingerprints are short tags for larger objects.

Notations

 $\Omega =$ The set of all objects

k = The lenght of the fingerprint $f: \Omega \rightarrow \{0,1\}^k$ A fingerprinting function • Properties

$$f(A) \neq f(B) \Longrightarrow A \neq B$$
$$\Pr(f(A) = f(B) | A \neq B) \approx \frac{1}{2^{k}}$$

Fingerprinting schemes

- Fingerprints vs hashing
 - For hashing I want good distribution so bins will be equally filled
 - For fingerprints I don't want any collisions = much longer hashes but the distribution does not matter!
- Cryptographically secure:
 - MD2, MD4, MD5, SHS, etc
 - ^u relatively slow
- Rabin's scheme
 - Based on polynomial arithmetic
 - Very fast (1 table lookup + 1 xor + 1 shift) /byte
 - ^u Nice extra-properties

Rabin's scheme

February 18, 2005

4

Nice extra properties

Let • = catenation. Then

 $f(a \blacklozenge b) = f(f(a) \blacklozenge b)$

- Can compute extensions of strings easily.
- Can compute fprs of sliding windows.

1995 – AltaVista was born at Digital SRC

• First large scale web search engine

- " "Complete web" then = 30 million documents!!!
- Current estimate = 11.5 B docs [Gullio & Signorini 05]
- First web annoyance: duplication of documents was immediately visible

Background on web indexing

- Web search engines (Google, MSN, Yahoo, etc...)
 - Crawler starts from a set of seed URLs, fetches pages, parses, and repeats.
 - ^u Indexer -- builds the index.
 - ^u Search interface -- talks to users.
- AltaVista (Nov 2001)
 - Explored ~ 2-3 B URL -> global ranking
 - ^u Processed ~ 1B pages -> filtering
 - Indexed fully ~ 650 M pages > 5 TB of text

Reasons for duplicate filtering

- Proliferation of almost but not quite equal documents on the Web:
 - ^u Legitimate: Mirrors, local copies, updates, etc.
 - Malicious: Spammers, spider traps, dynamic URLs, "cookie crumbs"
 - ^u Mistaken: Spider errors
- Costs:
 - u RAM and disks
 - ^u Unhappy users
- Approximately 30% of the pages on the web are (near) duplicates. [B,Glassman,Manasse & Zweig '97, Shivakumar & Garcia-Molina '98]
- In enterprise search even larger amount of duplication.

Cookie crumbs

- Some sites create some session and/or user id that becomes part of the URL = "cookie crumb"
- Real cookies are stored in user space and persistent across sessions.
- Crawler comes many times to the same page with a different cookie crumb
- Page is slightly modified between different visits.
- Example
 - u http://www.crutchfield.com/S-fXyiE5bZS43/
 - u http://www.crutchfield.com/S-LcNLKgc7bMg/

Cookie crumbs

Home Electronics: T		neater by:	stems, vers	, e.c	4
File Edit View Favorite	es Tools Help	- N.			
Address 🛃 http://www.cru	tchfield.com/ <mark>S-H3ya3I9p8B</mark>	v/cgi-bin/Pro	odMenu.asp?c:	=6&cm_re_c 💌	Þ
CRUTCHFIELD	Your Electronics Shapping The best gear and guida to for 3	Alternative c 1 years	art/Checkout	Wish List Your Ac	co
		cies & antees	E-mail Sign-up	FREE Catalog	
Search enter keyword or item #	Send a friend and save!	details F	REE Shipping! Or	n orders over \$199 der	tail
Need Help Deciding? 1-888-955-6000 iHablamos español!	Home » DVD, VCRs, Video	1.54	100 P	Learn more, b with CRUICHFIE	ou LD
1-888-600-3972 Home Products Televisions	Video			Shopping for the DVD/VCR Combe VCRs: How to C	<u>0S</u>
Home Theater	Home entertainment is		-	Save up to \$100	0 0
Audio DVD, VCRs, Video MP3 & Portable Electronics Cameras, Camcorders, &	TVs and DVD players of picture quality and load Crutchfield offers the hi the best brands, with si service you'll love.	s of flexibilit ottest vid			ate
Digital Imaging	Service you nove.				
<					
http://www.crutchfield.co	m <mark>/S-H3ya3I9p8BV</mark> /cgi-bin/f	ProdMo	🧼 т	nternet	

Observations

- Must filter both duplicate and near-duplicate documents
- Computing pair-wise edit distance would take forever
- Natural approach = sampling substrings (letters, words, sentences, etc.)

... but sampling twice even from the same document will not produce identical samples. (Birthday paradox in reverse – need sqrt(n) samples before a collision)

Desiderata

- Store only small sketches for each document.
- On-line processing. (Once sketch is done, source is unavailable)
- Good mathematics. (Small biases might have large impact.)
- At most *n* log *n* time for *n* documents.
- Ridiculous rule of thumb: At web size you can not do anything that is not linear in *n* except sorting

The basics of our solution

[B '97], [B, Glassman, Manasse, & Zweig '97], [B '00]

- 1. Reduce the problem to a set intersection problem
- 2. Estimate intersections by sampling minima

Shingling

 Shingle = Fixed size sequence of w contiguous words (q-gram)

Trees, rain, & shingles (joke!)

CS Rain

Defining resemblance

a.k.a. Jaccard distance

Impact of shingle size

- Long shingles ⇒ small random changes have large impact.
- Short shingles ⇒ unrelated documents can have too much commonality.
- Good sizes: 3 --10
- See also results about q-gram distance vs. edit distance [Ukkonen '91]
- See also discussion in Schleimer & al., "Winnowing: Local Algorithms for Document Fingerprinting" SIGMOD 2003

Sampling minima

- Apply a random permutation σ to the set [0..2⁶⁴]
- Crucial fact

Let $\alpha = \sigma^{-1}(\min(\sigma(S_1)))$ $\beta = \sigma^{-1}(\min(\sigma(S_2)))$ $Pr(\alpha = \beta) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}$ S_1

• More generally, we look at the k smallest elements in $S_1 U S_2$ and check how many are in common.

Observations

- Min Hash = example of locally sensitive hash [Indyk & Motwani '99] (week 5)
 - Hashing such that two items are more likely to collide if they are close under certain metric.
- 1 Res(A,B) obeys the triangle inequality
 - ^u Can be proven directly (painful ...)
 - Follows from general properties of LSH [Charikar '02]

Can it be done differently?

Any family of functions $\{f\}$ such that $f(S) \in S$ that satisfies

$$\Pr(f(S_1) = f(S_2)) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}$$

is such that every f is defined by

$$f(S) = \pi_f^{-1}(\min(\pi_f(S)))\}$$

20

Implementation

- Choose a random permutations of $\pi(U)$.
- For each document keep a sketch S(D) consisting of *t* minimal elements of $\pi(D)$.
- Estimate resemblance of A and B by counting common minimal elements within the first t

elements of $\mathcal{T}(A \ U B)$.

• Details in [B '97]

Alternative implementation

- Choose a random permutations of $\pi(U)$.
- For each document keep a sketch S(D) consisting of all elements of T(D) that are 0 mod m.
- Estimate resemblance of A and B by counting common elements.
- Disadvantage: proportional to the length of original document.

Clustering the Web

- [B, Glassman, Manasse, & Zweig '97]
- We took the 30 million documents found by AltaVista in April 1996
- We found all clusters of similar documents.

Cluster formation

Still, not very easy ...

- On a farm of Alphas (in `97)
 - ^u Sketching: 4.6 alpha-days
 - Exact Duplicate Elimination: 0.3
 - ^u Shingle Merging: 1.7
 - u ID-ID Pair Formation: 0.7
 - u ID-ID Merging: 2.6
- On a large memory MIPS machine
 - ^u Cluster Formation: 0.5 mips-days
- TOTAL: ~10 alpha-days (~ 150KB/sec)

What did we learn in '97?

- Most documents were unique but also there were lots of duplicates.
 - 18 million unique documents (roughly 60%)
- Most clusters were small
 - ^u ~70% of the clusters had 2 documents
- The average cluster was small
 - ^u ~3.4 documents/cluster
- A few clusters were big
 - ^u 3 clusters had between 10000 and 40000 documents
- This distribution of cluster sizes was still roughly correct in 2001 (based on AV data from 2001)

Filtering

- In many cases value of resemblance not needed.
- Check only if the resemblance is above a certain (high) threshold, e.g. 90%
- Might have false positive and false negatives

New approach – Use multiple perms

- [B '98]
- Advantages
 - ^u Simpler math \Rightarrow better understanding.
 - ^u Better for filtering
- Disadvantage
 - ^u Time consuming
- Similar approach independently proposed by [Indyk & Motwani '99]

Sketch construction

- Choose a set of t random permutations of U
- For each document keep a sketch S(D) consisting of t minima = samples
- Estimate resemblance of A and B by counting common samples
- Need to worry about quality of randomness
- The permutations should be from a min-wise independent family of permutations.

Min-wise independent permutations

- A truly random permutation on 2⁶⁴ elements is undoable.
- Need an easy-to-represent polynomial size family of permutations such that
 - For every set *X*

every element x in X

has an equal chance to become the minimum

See [B, Charikar, Frieze, & Mitzenmacher '97].

MWI Issues

- Size of MWI families
- How good are easy-to-implement families? (e.g. linear transformation)

Minimum size of MWI families

- Exact case P = 1/|X|
 - u exponential UB = LB = Icm(1, 2, ..., n)
 - LB [BCFM '98], UB [Takei, Itoh, & Shinozaki]
 - Ł See also [Norin '02]
- Approximate case $P = (1 \pm \varepsilon) / |X|$
 - ^u polynomial (non-constructive)
 - $O(n^{1/\epsilon})$ [Indyk '98, Saks & al. '99]
- "Application": Derandomization of the Rajagopalan-Vazirani approximate parallel set cover [B, Charikar, & Mitzenmacher '98]

Quality of MWI families

- Linear transformation are not good in the worst case but work reasonable well in practice.
 - See [BCFM '97], [Bohman, Cooper, & Frieze '00]
- Matrix transformations
 - u [B & Feige '00]
- Some code available from

http://www.icsi.berkeley.edu/~zhao/minwise/ [Zhao '05]

The filtering mechanism

- Divide into k groups of s elements. (t = k * s)
- Fingerprint each group => feature
- Two documents are fungible if they have more than r common features.

Real implementation

- *ρ* = 90%. In a 1000 word page with shingle

 length = 8 this corresponds to
 - ▲ Delete a paragraph of about 50-60 words.
 - ▲ Change 5-6 random words.
- Sketch size t = 84, divided into k = 6 groups of s = 14 samples
- 8 bytes fingerprints → store 6 x 8= 48 bytes/document
- Threshold r = 2
- Variant: 200 samples, divided into 8 groups of 25. Threshold r = 1.

Probability that two documents are deemed fungible

Two documents with resemblance ρ

Using the full sketch

$$P = \sum_{i=t}^{k \cdot s} \binom{k \cdot s}{i} \rho^{i} (1-\rho)^{k \cdot s-i}$$

Using features

$$P = \sum_{i=r}^{k} \binom{k}{i} \rho^{s \cdot i} (1 - \rho^s)^{k-i}$$

The second polynomial approximates the first

Features vs. full sketch

Probability that two pages are deemed fungible

February 18, 2005

Prob of acceptance - LOG scale

Prob of rejection - LOG scale

A. Broder near-duplicate documents February 18, 2005

Timing

[B, Burrows, & Manasse 98]

- 85M documents
- 1000 word/doc
- 300 MHz machines

Using many math and programming tricks plus DCPI tuning we got it down to 1.5 µsec/word !!

1 µsec/word ~ 1 CPU day

- Speed ~ 3 MB/sec (20 X vs full sketch)
 - ^u Speed by 2001 ~ 10-20 MB/sec

One trick based on left-to-right minima [B, Burrows, Manasse]

- For each shingle instead of a permutation
 p(s) compute an injection h(s)
- The injection h(s) consists of 1 byte + 8 bytes = p(s)
- Given s compute the lead byte for 8 permutations in parallel via a random linear transformation
- Compute the remaining 8 bytes only if needed
- No theory, but it works! J

How often do we have to compute (or store) the tail ?

- Eventually first byte = 0 so 1/256 of the time.
- Up until the time this happens, roughly the expected number of left to right minima in a permutation with 256 elements, H₂₅₆ = 6.1243... (Because of repetitions, actual number is 7.1204...)

Small scale problems ...

Most duplicates are within the same host

u Aliasing

- Unix In –s is a big culprit!
- ^u Cookie crumbs problem

8 bytes are enough!

- Same idea with a few twists, threshold = 3 common bytes out of 8.
 - Works only on small scale (say less than 50K documents)
- On a large scale we can use 7 out of 8 bytes
 - Why 7 common bytes is a good idea?
 - ^u Filter is not so sharp

Open problems

- Practical efficient min-wise permutations
- Better filtering polynomials
- Weighted sampling methods
- Document representation as text (using semantics)
- Extensions beyond text: images, sounds, etc. (Must reduce problem to set intersection)
- Extraction of grammar from cookie crumbs URLs (variants are NP-hard)

Conclusions

- Resemblance of documents can be estimated via
 - ^u Translation into set intersection problem
 - Sampling minima
- Filtering is easier than estimating resemblance.
- 30-50 bytes/document is enough for a billion documents, 8 bytes enough for small sets and/or less sharp filters
- Mixing theory & practice is a lot of fun

Further applications & papers

- Chen & al, Selectively estimation for Boolean queries, PODS 2000
- Cohen & al, Finding Interesting Associations, ICDE 2000
- Haveliwala & al, Scalable Techniques for Clustering the Web, WebDB 2000
- Chen & al, Counting Twig Matches in a Tree, ICDE 2001
- Gionis & al, Efficient and tunable similar set retrieval, SIGMOD 2001
- Charikar, Similarity Estimation Techniques from Rounding Algorithms, STOC 2002
- Fogaras & Racz, Scaling link based similarity search, WWW 2005 (to appear)
- A bunch of math papers on "Min-Wise Independent Groups"