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Representing Raw Sound

•• So Many Bits, So Little Time (Space)So Many Bits, So Little Time (Space)
–– CD audio rate: 2 * 2 * 8 * 44100 =CD audio rate: 2 * 2 * 8 * 44100 =

1,411,200 bps1,411,200 bps
–– CD audio storage: 10,584,000 bytes /CD audio storage: 10,584,000 bytes /

minuteminute
–– A CD holds only about 70 minutes of audioA CD holds only about 70 minutes of audio
–– An ISDN line can only carry 128,000 bpsAn ISDN line can only carry 128,000 bps

•• Security:  Best compressor removes all Security:  Best compressor removes all 
recognizable about the original soundrecognizable about the original sound

•• Graphics people eat up all the spaceGraphics people eat up all the space



New Audio FormatsNew Audio Formats

• 24 bit, common on soundcards
• 48 KHz (standard DVD) and other
• 96 Khz
• 192 KHz
• 5.1, 7.2, 14.2
• Highest spec to date:

– 192KHz, 24 bit, 14.2, uncompressed  (SACD,
DVDAudio)

– This is 9MBytes per second!!
– 552,950,000 bytes per minute
– 33,177,600,000 per hour



MusicMusic
•  4 million recorded CDs
•  4000 CDs / month
•  60-80% ISP bandwidth
•  Global
•  Pervasive
•  Complex



Sound in lifeSound in life

• Capture work hours:
–8-10 hours per day
–5-6 days per week
–16KHz, 16 bit
–Over average work life (40 years)

• 10*5*60*60*16k*2*40 = 230,400,000,000 bytes
• (compare to Steve Jobs’ 1989 256MByte)



Compression/
Representation

• Classical Data Compression View:
• Take advantage of

–Redundancy/Correlation
–Statistics (Local/Global)
–Assumptions / Models

• Problem:  Much of this doesn’t work
directly on sound waveform data

–Redundancy, nope
–Correlation, not really



One View of Sound
Sound is a waveform, 

we can record it, store it, 
and play it back accurately

PCM playback is all we need for 
interactions, movies, games, etc.

Features and statistics of the raw data, or
waveform shape, is enough to classify.

But, take some visual analogies:
“If I take lots of polaroid images, I can flip through them real
fast and make any image sequence”

“We should be able to use correlations, similar to color in
images, to compress, segment, etc. sound”



Views of Sound:
•    Time Domain      x( t )   

(from physics, and time’s arrow)

•    Frequency Domain  X( f )   
(from math, and perception)

•    Production what caused it

•    Perception our “image” of it

We Can Compute Sound!!



Views of Sound:
Production
••Throughout most of history, someThroughout most of history, some
physical mechanism wasphysical mechanism was
responsible for sound production.responsible for sound production.
••From our experience, certainFrom our experience, certain
gesturesgestures produce certain audible produce certain audible
resultsresults

Examples:
Hit harder --> louder AND brighter
Can’t move instantaneously
Can’t do exactly the same thing twice



Views of Sound:
Perception

further refine
time & frequency

information

convert to
frequency
dependent

nerve firings

receive
1-D

waves

High level
cognition,

object
formation,

interpretation

Auditory system does time to frequency conversion



Views of Sound

• The Time Domain 
is most closely related to 

Production

• The Frequency Domain 
is most closely related to 

Perception



Limits of Human
Hearing

• Time and Frequency

Events longer than 0.03 seconds are 
resolvable in time

    shorter events are perceived as
features in frequency

20 Hz. <  Human Hearing  <   20 KHz.
(for those under 15 or so)

“Pitch” is PERCEPTION related to FREQUENCY
     Human Pitch Resolution is about 40 - 4000 Hz.



Limits of Human
Hearing

•   Amplitude or Power???

– “Loudness” is PERCEPTION related to POWER, 
not     AMPLITUDE

–  Power is proportional to (integrated) square of
signal

–  Human Loudness perception range is about 120 dB,
   where  +10 db    = 10 x power    = 20 x amplitude

–  Waveform shape is of little consequence.
Energy    at each frequency, and  how that
changes in time,   is the most important feature
of a sound.



Limits of Human
Hearing

• Waveshape or Frequency Content??

• Here are two waveforms with identical power spectra, and
which are (nearly) perceptually identical:

• Wave 1
• Wave 2
• Magnitude

Spectrum
of Either



Limits of Human
Hearing

•Masking in Amplitude, Time, and Frequency

– Masking in Amplitude: Loud sounds ‘mask’ soft ones.
Example: Quantization Noise

– Masking in Time: A soft sound just before a louder
sound is more likely to be heard than if it is just after.

Example (and reason): Reverb vs. “Preverb”

– Masking in Frequency: Loud ‘neighbor’ frequency
masks soft spectral components.  Low sounds
mask higher ones more than high masking low.



Limits of Human
Hearing

• Masking in Amplitude
• Intuitively, a soft sound will not be heard

if there is a competing loud sound.
Reasons:
–Gain controls in the ear

stapedes reflex and more

– Interaction (inhibition) in the cochlea
–Other mechanisms at higher levels



Limits of Human
Hearing
• Masking in Time

– In the time range of a few
milliseconds:

– A soft event following a louder event
tends to be grouped perceptually as
part of that louder event

– If the soft event precedes the louder
event, it might be heard as a separate
event (become audible)



Limits of Human
Hearing

• Masking in Frequency

Only one component in this spectrum is
  audible because of  frequency masking



Sound Views:
Frequency Domain

–Many physical systems have modes 
(damped oscillations)

–Wave equation (2nd order) or
Bar equation (4th order) 
need 2 or 4 “boundary conditions” 
for solution

–Once boundary conditions are set,
solutions are sums of exponentially
damped sinusoidal modes

–One more important aspect of frequency:



The (discrete)
Fourier Series

A time waveform is a sum of sinusoids

A “Spectrum”
is a

Sinusoidal
decomposition

of a signal
unique and
invertible

The (discrete) Fourier Transform

(Am is complex)
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Spectra: Magnitude
and Phase

• Often only magnitude is plotted
– Human perception is most sensitive to magnitude

• Environment corrupts and changes phase

– 2 (pseudo-3) dimensional plots easy to view

• Phase is important, however
– Especially for transients (attacks, consonants, etc.)

• If we know instantaneous amplitude and 
frequency, we can derive phase



Common Types of
Spectra

•Harmonic
•sines at integer
•multiple freqs.

•Inharmonic
•sines (modes),
•but not integer
•multiples



Common Types of
Spectra

•Noise
•random
•amplitudes
•and phases

•Mixtures
•(most real-
•world sounds)



Perception: Spectral
Shape

• Formants
(resonances)
are peaks in
spectrum.

• Human ear
is sensitive
to these
peaks.



Spectral Shape and
Timbre

• Quality of a
sound is
determined by
many factors

• Spectral shape
is one
important
attribute



Spectra Vary in Time

• Spectrogram (sonogram)
                                                        

amplitude as darkness (color) 
vs. frequency and time



Spectra in Time (cont.)

•Waterfall Plot
pseudo 3-d
amplitude as
height vs. freq.
and time

•Each horizontal
slice is an
amplitude vs. time
magnitude
spectrum

sndpeek demo



Sound PerceptionSound Perception

• What are human mechanisms for
identifying sounds?

• How do humans classify sounds as to
similarity, difference, quality, etc.?

• If the auditory system doesn’t care,
we might not need to compute it.

• (How) does sound interact with other
sensory modalities?

• How can we say it sounds “right,”,
“real,” “good,” “effective,” etc.



PerceptionPerception

Clustering and
categorization
of sound
effects

(with Lakatos,
Scavone,
Harbke)

The Sonic Mapper



Clustering
Results
Clustering
Results

MDS
matches
pair-wise

Ecological
vs.
abstract



PerceptionPerception

Learning by
interacting
with physical
models

(with Lakatos,
Scavone,
Harbke)

Learning is
proportional
to structure
of interface

PhISEM interface



Machine “perception”Machine “perception”

• Low level audio features
–Power (loudness), sometimes/not
–Spectral Centroid (brightness)
–Spectral Rolloff (tilt, shape)
–Zero Crossings (a hack, but works)  DEMO
–Spectral Flux (Δ of adjacent spectra)

–Minimum Energy (% silence)
–Means and standard deviations of all these



Machine perception 2Machine perception 2
• Higher level features:

–Mel Frequency Cepstral Components
–Multi-band time periodicity 

(rhythm) the “beat histogram”
–Pitch histogram

• “Cognitive” level features:
–Style, Genre, Scene, Situation, …

• Multi-Resolution
–Short “event” windows
–Longer “texture” windows 



Wavelet-based
Rhythm Analysis
Wavelet-based
Rhythm Analysis

Tzanetakis et al    AMTA01
Goto, Muraoka    CASA98
Foote, Uchihashi ICME01
Scheirer               JASA98

Input
Signal

  Full Wave Rectification - Low Pass Filtering - Normalization

+

Peak Picking

Beat Histogram

Envelope Extraction

D
W
T

Autocorrelation



Beat HistogramsBeat Histograms
Tzanetakis et al     AMTA01



Musical Content FeaturesMusical Content Features

• Timbral Texture (19)
–Spectral Shape
–MFCC (perceptually motivated

features, ASR)

• Rhythmic structure (6)
–Beat Histogram Features

• Harmonic content   (5)
–Pitch Histogram Features



UnderstandingUnderstanding

Musical 
Piece 

Trajectory Point



Query-by-Example
Content-based Retrieval
Query-by-Example
Content-based Retrieval

Rank List Collection of clips

Demo



Automatic Musical
Genre Classification
Automatic Musical
Genre Classification

• Categorical music descriptions
created by humans
–Fuzzy boundaries

• Statistical properties
–Timbral texture, rhythmic structure,

harmonic content

• Evaluate musical content features
• Structure audio collections



 p(    |   ) * P(  ) 

  Statistical Supervised
Learning
  Statistical Supervised
Learning

Decision boundary

Partitioning of feature space

P(   |    )=
 p(   )

Music
Speech



Non-parametric
classifiers
Non-parametric
classifiers

 p(    |   ) * P(  ) 
P(   |    )=

 p(   )

Nearest-neighbor classifiers
(K-NN)



Parametric classifiersParametric classifiers

 p(    |   ) * P(  ) 
P(   |    )=

 p(   )

Gaussian Classifier 

Gaussian Mixture Models



 Classification
Evaluation – 10 genres
 Classification
Evaluation – 10 genres

Automatic (different collection)

Gaussian Mixture Model (GMM)
10-fold cross-validation      61% (70%)

Perrot & Gjerdingen, M.Cognition 99 Tzanetakis & Cook, TSAP 10(5) 2002
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GenreGram DEMOGenreGram DEMO

Dynamic real time 3D display 
for classification of radio signals 



Audio SegmentationAudio Segmentation

• Segmentation =  changes of sound "texture"

Music Male Voice Female Voice

News:



Multifeature Segmentation
Methodology
Multifeature Segmentation
Methodology

• Time series of feature vectors V(t)
•  f(t) = d(V(t), V(t-1))

– D(x,y) = (x-y)C-1(x-y)t    (Mahalanobis)

• df/dt peaks correspond to texture changes

Tzanetakis & Cook, WASPAA 99



Principal Components
Analysis
Principal Components
Analysis

Projection 
matrix

PCA
Eigenanalysis
of collection 
correlation matrix



Timbregrams and
Timbrespaces
Timbregrams and
Timbrespaces

PCA = content & context  

Tzanetakis & Cook DAFX00, ICAD01 



Timbregram ClassesTimbregram Classes

Speech (different languages)   Music (orch, or opera (lower))Speech (different languages)   Music (orch, or opera (lower))



IntegrationIntegration



ImplementationImplementation

• MARSYAS : free software framework for
computer audition research
– Server in C++ (numerical signal processing

and machine learning)
–  Client in JAVA (GUI)
– Linux, Solaris, Irix and Wintel (VS , Cygwin)

• Apr. 2004, 5500 downloads, 2300 different
hosts, 30 countries since March 2001

• Recent ISMIR conference, 80% citations, and
65% users

 Tzanetakis & Cook Organized Sound 4(3) 00



Marsyas usersMarsyas users

Desert Island

Jared Hoberock
Dan Kelly
Ben Tietgen

Marc Cardle

Music-driven
motion editing

Real time
music-speech
discrimination



What we can(‘t) doWhat we can(‘t) do



What we can(‘t) doWhat we can(‘t) do

• Identify Genres
• Identify scenes, situations
• Speaker/singer identification
• Query

• Separate sounds (polyphony)
• Model high level human ranking
• “understand”


