

SOUND!!!!

prc (really gtzan, with many others (Ge, Ananya, Matt))

Representing Raw Sound

- So Many Bits, So Little Time (Space)
 - CD audio rate: 2 * 2 * 8 * 44100 = 1,411,200 bps
 - CD audio storage: 10,584,000 bytes / minute
 - A CD holds only about 70 minutes of audio
 - An ISDN line can only carry 128,000 bps
- Security: Best compressor removes all recognizable about the original sound
- Graphics people eat up all the space

New Audio Formats

- 24 bit, common on soundcards
- 48 KHz (standard DVD) and other
- 96 Khz
- 192 KHz
- 5.1, 7.2, 14.2
- Highest spec to date:
 - 192KHz, 24 bit, 14.2, uncompressed (SACD, DVDAudio)
 - This is 9MBytes per second!!
 - 552,950,000 bytes per minute
 - 33,177,600,000 per hour

Music

- 4 million recorded CDs
- 4000 CDs / month
- 60-80% ISP bandwidth
- Global
- Pervasive
- Complex

Sound in life

- Capture work hours:
 - -8-10 hours per day
 - 5-6 days per week
 - 16KHz, 16 bit
 - Over average work life (40 years)
 - 10*5*60*60*16k*2*40 = 230,400,000,000 bytes
 - (compare to Steve Jobs' 1989 256MByte)

Compression/ Representation

- Classical Data Compression View:
- Take advantage of
 - Redundancy/Correlation
 - Statistics (Local/Global)
 - Assumptions / Models
- Problem: Much of this doesn't work directly on sound waveform data
 - Redundancy, nope
 - Correlation, not really

One View of Sound

Sound is a waveform, we can record it, store it, and play it back accurately PCM playback is all we need for interactions, movies, games, etc.

- Features and statistics of the raw data, or waveform shape, is enough to classify.
- But, take some visual analogies:

"If I take lots of polaroid images, I can flip through them real fast and make any image sequence"

"We should be able to use correlations, similar to color in images, to compress, segment, etc. sound"

We Can Compute Sound!!

Views of Sound:

- Time Domain x(t) (from physics, and time's arrow)
- Frequency Domain X(f) (from math, and perception)
- Production what caused it
- Perception

our "image" of it

Views of Sound: Production

Throughout most of history, some physical mechanism was responsible for sound production.
From our experience, certain gestures produce certain audible results

Examples: Hit harder --> louder AND brighter Can't move instantaneously Can't do exactly the same thing twice

Views of Sound: Perception

Ear Cochlea Nerves Brain

receive 1-D waves convert to frequency dependent nerve firings further refine time & frequency information

High level cognition, object formation, interpretation

Auditory system does time to frequency conversion

Views of Sound

The Time Domain is most closely related to Production

 The Frequency Domain is most closely related to Perception

• Time and Frequency

Events longer than 0.03 seconds are resolvable in time shorter events are perceived as features in frequency

> 20 Hz. < Human Hearing < 20 KHz. (for those under 15 or so)

"Pitch" is <u>PERCEPTION</u> related to <u>FREQUENCY</u> Human Pitch Resolution is about 40 - 4000 Hz.

• Amplitude or Power???

- "Loudness" is <u>PERCEPTION</u> related to <u>POWER</u>, not <u>AMPLITUDE</u>

- Power is proportional to (integrated) square of signal
- Human Loudness perception range is about 120 dB, where +10 db = 10 x power = 20 x amplitude
- Waveform shape is of little consequence.
 Energy at each frequency, and how that changes in time, is the most important feature of a sound.

- Waveshape or Frequency Content??
- Here are two waveforms with identical power spectra, and which are (nearly) perceptually identical:
- Wave 1
- Wave 2
- Magnitude
 Spectrum
 of Either

- Masking in Amplitude, Time, and Frequency
- Masking in Amplitude: Loud sounds `mask' soft ones. Example: Quantization Noise
- Masking in Time: A soft sound just before a louder sound is more likely to be heard than if it is just after. Example (and reason): Reverb vs. "Preverb"
- Masking in Frequency: Loud 'neighbor' frequency masks soft spectral components. Low sounds mask higher ones more than high masking low.

- Masking in Amplitude
- Intuitively, a soft sound will not be heard if there is a competing loud sound. Reasons:
 - Gain controls in the ear stapedes reflex and more
 - Interaction (inhibition) in the cochlea
 - Other mechanisms at higher levels

- Masking in Time
 - In the time range of a few milliseconds:
 - A soft event following a louder event tends to be grouped perceptually as part of that louder event
 - If the soft event precedes the louder event, it might be heard as a separate event (become audible)

Masking in Frequency

Only one component in this spectrum is audible because of frequency masking

Sound Views: Frequency Domain

- Many physical systems have modes (damped oscillations)
- Wave equation (2nd order) or Bar equation (4th order) need 2 or 4 "boundary conditions" for solution
- Once boundary conditions are set, solutions are sums of exponentially damped sinusoidal modes
- One more important aspect of frequency:

The (discrete) Fourier Series

 \mathcal{X}

A time waveform is a sum of sinusoids N-1 i2 mm (A_m is complex)

$$(n) = \sum_{n=0}^{N-1} A_m \exp(\frac{j2\pi nm}{N})$$
$$= \sum_{n=0}^{N-1} B_m \sin(\frac{2\pi nm}{N}) + C_m \cos(\frac{2\pi nm}{N})$$
$$= \sum_{n=0}^{N-1} D_m \cos(\frac{2\pi nm}{N} + \theta_m)$$

The (discrete) Fourier Transform

$$A(m) = X(SRATE * m / N) = \sum_{n=0}^{N-1} x(n) \exp(\frac{-jnm2\pi}{N})$$

A "Spectrum" is a

unique and invertible Sinusoidal decomposition of a signal

Spectra: Magnitude and Phase

- Often only magnitude is plotted
 - Human perception is most sensitive to magnitude
 - Environment corrupts and changes phase
 - 2 (pseudo-3) dimensional plots easy to view
- Phase is important, however
 - Especially for transients (attacks, consonants, etc.)
- If we know instantaneous amplitude and frequency, we can derive phase

Common Types of Spectra

Harmonicsines at integermultiple freqs.

Inharmonic
sines (modes),
but not integer
multiples

Common Types of Spectra

Noise
random
amplitudes
and phases

Mixtures(most real-world sounds)

SIGGRAPH 2003

Perception: Spectral Shape

- Formants (resonances) are peaks in spectrum.
- Human ear
 is sensitive
 to these
 peaks.

SIGGRAP

H 2003

Spectral Shape and Timbre

- Quality of a sound is determined by many factors
- Spectral shape is one important attribute

Spectra Vary in Time

• Spectrogram (sonogram)

amplitude as darkness (color) vs. frequency and time

Spectra in Time (cont.)

•Waterfall Plot pseudo 3-d amplitude as height vs. freq. and time

•Each horizontal slice is an amplitude vs. time magnitude spectrum

sndpeek demo

Sound Perception

- What are human mechanisms for identifying sounds?
- How do humans classify sounds as to similarity, difference, quality, etc.?
- If the auditory system doesn't care, we might not need to compute it.
- (How) does sound interact with other sensory modalities?
- How can we say it sounds "right,", "real," "good," "effective," etc.

Perception

Clustering and categorization of sound effects (with Lakatos, Scavone, Harbke)

The Sonic Mapper

Clustering Results

MDS matches pair-wise

Ecological vs. abstract

2003

SIGGRAP

SAN DIEGO

Perception

Learning by interacting with physical models (with Lakatos, Scavone, Harbke) Learning is proportional to structure of interface

SIGGRAPH 2003

PhISEM interface

Machine "perception"

- Low level audio features
 - Power (loudness), sometimes/not
 - Spectral Centroid (brightness)
 - Spectral Rolloff (tilt, shape)
 - Zero Crossings (a hack, but works) DEMO
 - Spectral Flux (Δ of adjacent spectra)
 - Minimum Energy (% silence)
 - Means and standard deviations of all these

Machine perception 2

- Higher level features:
 - Mel Frequency Cepstral Components
 - Multi-band time periodicity (rhythm) the "beat histogram"
 - Pitch histogram
- "Cognitive" level features:
 - Style, Genre, Scene, Situation, ...
- Multi-Resolution
 - Short "event" windows
 - Longer "texture" windows

Wavelet-based Rhythm Analysis

Tzanetakis et al AMTA01 Goto, Muraoka CASA98 Foote, Uchihashi ICME01 Scheirer JASA98

SIGGRAPH 2003

Beat Histograms

Tzanetakis et al AMTA01

Musical Content Features

Timbral Texture (19)

 Spectral Shape
 MFCC (perceptually motivated features, ASR)

- Rhythmic structure (6)
 Beat Histogram Features
- Harmonic content (5)
 - Pitch Histogram Features

SIGGRA

2003

Query-by-Example Content-based Retrieval

Automatic Musical Genre Classification

- Categorical music descriptions created by humans
 - Fuzzy boundaries
- Statistical properties
 - Timbral texture, rhythmic structure, harmonic content
- Evaluate musical content features
- Structure audio collections

Statistical Supervised Learning

Partitioning of feature space

 $P(\Box| \circ) = \frac{p(\circ|\Box) * P(\Box)}{p(\circ)}$

Decision boundary

MusicSpeech

Non-parametric classifiers

 $P(\Box| \circ) = \frac{p(\circ|\Box) * P(\Box)}{p(\circ)}$

Nearest-neighbor classifiers (K-NN)

Parametric classifiers

P(-)

p()

p(

P(|

Gaussian Classifier

igodol

Gaussian Mixture Models

0

Classification Evaluation – 10 genres

Manual (52 subjects) Perrot & Gjerdingen, M.Cognition 99

0.25 seconds40%3 seconds70%Classification Accuracy

Automatic (different collection) Tzanetakis & Cook, TSAP 10(5) 2002

Gaussian Mixture Model (GMM) 10-fold cross-validation 61% (70%) Classification Accuracy

Randon Automa

2003

GenreGram DEMO

Dynamic <u>real time</u> 3D display for classification of radio signals

Audio Segmentation

Segmentation = changes of sound "texture"

News:

SIGGRAPH 2003

Multifeature Segmentation Methodology

- Time series of feature vectors V(t)
- f(t) = d(V(t), V(t-1))

0

- $-D(x,y) = (x-y)C^{-1}(x-y)^{t}$ (Mahalanobis)
- df/dt peaks correspond to texture changes

2003

Principal Components Analysis

00

° 0

0 0

0

 \circ

• •

0

0 0

 \bigcirc

0 0 0 0

 ∞

PCA Eigenanalysis of <u>collection</u> correlation matrix

 ∞

SIGGRAPH 2003

Timbregrams and Timbrespaces

SIGGRAPH 2003 Tzanetakis & Cook DAFX00, ICAD01

Timbregram Classes

Speech (different languages) Music (orch, or opera (lower))

Integration

Implementation

Tzanetakis & Cook Organized Sound 4(3) 00

- MARSYAS : free software framework for computer audition research
 - Server in C++ (numerical signal processing and machine learning)
 - Client in JAVA (GUI)
 - Linux, Solaris, Irix and Wintel (VS, Cygwin)
- Apr. 2004, 5500 downloads, 2300 different hosts, 30 countries since March 2001
- Recent ISMIR conference, 80% citations, and 65% users

Marsyas users

Desert Island

Jared Hoberock Dan Kelly Ben Tietgen

Music-driven motion editing Marc Cardle

moodlogic The Mix Maker for your MP3s

Real time music-speech discrimination

What we can('t) do

What we can('t) do

- Identify Genres
- Identify scenes, situations
- Speaker/singer identification
- Query
- Separate sounds (polyphony)
- Model high level human ranking
- "understand"