
princeton u. sp’02 cos 598B: algorithms and complexity

Lecture 8: Approximating Min UnCut and Min-2CNF
Deletion

Lecturer: Sanjeev Arora Scribe:Konstantin Makarychev

In this lecture we will present
√

log n-approximation algorithms for Min UnCut and Min-
2CNF Deletion [1].

1 Approximating Min UnCut

We first formulate the Min UnCut problem.

Definition 1 (Min UnCut Problem) Given a graph G = (V,E), find a cut that minimizes the
number of uncut edges i.e. the number of edges within each part.

Remark 1 The Min UnCut problem is a complement to the MaxCut problem: The sum of the
number of cut edges and uncut edges is equal to the total number of edges in the graph.

We will reduce Min UnCut to an alternate problem which will be convenient for our purposes.
Let us assume that the vertices of the graph G are numbers 1, . . . , n. Construct a new graph G′

on the set of vertices {−n, . . . ,−1} ∪ {1, . . . , n}. We connect two vertices i and j with an edge in
G′ iff i and −j or −i and j are connected with an edge in G. We want to find a symmetric cut
(S′, T ′ = −S′) in the graph G′ which minimizes the number of cut edges, where −S′ ≡ {−i : i ∈ S′}.
Every cut (S, T) in the graph G corresponds to the cut (S ∪ (−T), (−S) ∪ T) in G′. Indeed if an
edge (i, j) is uncut in G, say i, j ∈ S, then the corresponding edges (i,−j) and (−i, j) are cut in
G′: i, j ∈ S and −i,−j ∈ T . If (i, j) is cut in G, the edges (i,−j) and (−i, j) are uncut in G′. On
the other hand, given a cut (S′, T ′) in G′ the corresponding cut (S, T) in G is defined as follows
S = {i ∈ S′ : i ≥ 0}; T = {i ∈ T ′ : i ≥ 0}. Thus Min UnCut is equivalent to the following
problem:

Definition 2 Given a graph G = (V,E), where V = {−n, . . . ,−1} ∪ {−1, . . . ,−n} find a cut
(S, T = −S) that minimizes the number of cut edges i.e. the number of edges going from the part
S to T .

1.1 SDP relaxation

Write an SDP (vector program) relaxation for the new problem:

min
1
4

∑
(i,j)∈E

|vi − vj |2 (1)

s.t. |vi|2 = 1 ∀i ∈ V (2)

|vi − vj|2 ≤ |vi − vk|2 + |vk − vj|2 ∀i, j, k ∈ V (3)
vi = −v−i ∀i ∈ V (4)

1

2

This SDP is indeed a relaxation. Every cut (S, T = −S) corresponds to a feasible set of vectors:

vi =

{
v0 , if i ∈ S;
−v0 , if i ∈ T ;

where v0 is a fixed unit vector. The objective function is equal to the number of cut edges.
Define the volume of a set M ⊂ V to be

vol(M) =
∑

(i,j)∈E
i,j∈M

|vi − vj |2.

In other words, the volume of a set is equal the contribution of the set to the SDP value multiplied
by four. Similarly the volume of an edge (i, j) is |vi − vj|2.

1.2 Applying the ARV separation theorem

We now sketch the algorithm for partitioning the graph. First we solve the SDP relaxation and get
a set of unit vectors (unit-�2

2 representation). Then we apply the ARV separation theorem [2] and
get two Δ = Ω(1/

√
log n)-separated sets S∗ and T ∗ w.r.t the squared Euclidean distance (�2

2). Let
us show why we can use the separation theorem. Our SDP constraints contain all the constraints
of ARV, except for the spreading constraint; which follows from existence of antipodal vectors:
Lemma 1
Every symmetric set of unit vectors is 1/3-spread (for n ≥ 9), that is:

1
n2

∑
i,j

(vi − vj)2 ≥ 1
3

Proof:

∑
i<j

|vi − vj |2

=
∑
i>0

∑
j>i

(|vi − vj|2 + |vi − v−j |2

+|v−i − vj |2 + |v−i − v−j|2
)

=
∑
i>0

∑
j>i

8 = 4(n − 1)n ≥ 4 · 1
3
· 2
3
· 4n2.

�

Another observation is that if the set of vectors given to the separation algorithm is symmetric,
the sets S∗ and T ∗ are also symmetric i.e. S∗ = −T ∗. Indeed, the ARV algorithms has two phases:

• In the first phase, we pick a random unit vector u and set

SI = {vi : 〈vi, u〉 ≥ c/
√

n};
TI = {vi : 〈vi, u〉 ≤ −c/

√
n};

where c is some constant. Clearly, SI = −TI .

3

• In the second phase, we remove a maximum matching M of vectors (vi, vj) s.t. the �2
2 distance

between vi and vj is bigger than Δ. Generally speaking, this matching does not have to be
symmetric , but the algorithm can always pick a symmetric matching since if (vi − vj)2 ≥ Δ,
then (v−i − v−j)2 = ((−vi)− (−vj))2 ≥ Δ. Therefore, the second step of the algorithm (after
some tweaking) also produces symmetric sets S∗ and T ∗.

1.3 Growing Balls

Let us now consider the t-neighborhoods of S∗ and T ∗ for 0 ≤ t < Δ/2:

Nt(S∗) =
{

vi : d(vi, S
∗) ≡ min

u∈S∗(vi − u)2 ≤ t

}
;

Nt(T ∗) =
{

vi : d(vi, T
∗) ≡ min

u∈T ∗(vi − u)2 ≤ t

}
.

Similarly to what we saw in ARV, for some t0 the number of outgoing edges from Nt0(S
∗)

plus the number of incoming edges to Nt0(T
∗) is at most (4/Δ)vol(V). We set S1 = Nt0(S

∗) and
T1 = Nt0(T

∗). Note that the sets S1 and T1 are symmetric and disjoint (since S∗ and T ∗ are
Δ-separated and t < Δ/2).

1.4 Recursion

We apply the same procedure to the remaining part R1 = V \(S1∪T1) and get sets S2 and T2 = −S2

etc. Finally we set S = ∪iSi, T = ∪iTi and return the cut (S, T). Since all sets Si and Ti are
symmetric, the cut (S, T) is also symmetric. The size of the cut is less than or equal to the sum of
the number of outgoing edges from S1, S2, etc plus the number of incoming edges to T1, T2, etc.
Which is bounded by

O(
√

log n) · (vol(V) + vol(R1) + vol(R2) + . . .).

In order this sum to be O(
√

log n vol(G)), it suffices that the volumes of Ri decrease geometrically.
In other words, the sets Si and Ti should contain a constant fraction of the volume of Ri−1 at each
iteration of the algorithm.

To guarantee this we assign to each vertex weight proportional to the volume of the outgoing
edges from this vertex. Then the volume of every set of vertices is approximately (up to a factor
of 2) is equal to the weight of the set. In the algorithm described above, we shall use the weighted
version of the separation algorithm (instead of the unweighted version). The weighted version
finds symmetric Δ-separated sets S∗ and T ∗ that contain a constant fraction of the weight (this
approach is due to [4]). Therefore, the weights of Ri decrease geometrically and thus the volumes
of Ri decrease also geometrically.

We now describe the weighted separation algorithm. The algorithm duplicates each vector the
number of times proportional to its weight and then starts the ARV algorithm on the duplicate
vectors. The ARV algorithm returns two sets Sdup and Tdup. If any duplicate of a vector vi belongs
to Sdup [Tdup], we add vi to S [T]. The total number of duplicate vectors is proportional to the
total weight of the graph; the weight of S is proportional to the number of vectors in S; thus the
weight of S is at least a constant fraction of the total weight of the graph.

4

2 Approximating Min-2CNF Deletion

Definition 3 (Min-2CNF Deletion Problem) Consider boolean variables b1, . . . , bn and a set
of constraints of the form bi∨bj , b̄i∨bj and b̄i∨ b̄j. The goal is to minimize the number of unsatisfied
constraints.

We first note that this problem can be reformulated in a similar form to Min Uncut. For
each variable bi we introduce a new variable b−i and set b−i = b̄i. Then we replace each constraint
bi ∨ bj with two equivalent constraints b−i → bj and b−j → bi. We now want to minimize the
number of unsatisfied constraints of the new form. We consider the graph G = (V,E), where
V = {−n, . . . ,−1} ∪ {1, . . . , n} and (i, j) ∈ E iff there is a constraint bi → bj.

We claim that Min-2CNF Deletion is equivalent to the problem of finding a minimal sym-
metric directed cut (S, T = −S) in G. The symmetric cut gives us an assignment of truth values
to variables in the original instance – one part corresponds to the variables set to true, and the
other corresponds to those set to false. Note that the cut edges in the new problem correspond to
constraints that are unsatisfied in the original instance.

We get the following equivalent definition.

Definition 4 Given a directed graph G = (V,E), where V = {−n, . . . ,−1} ∪ {−1, . . . ,−n} find
a cut (S, T = −S) that minimizes the number of edges going from S to T .

We write an SDP relaxation for Min-2CNF Deletion:

min
1
8

∑
(i,j)∈E

|vi − vj |2 + |vj − v0|2 − |vi − v0|2 (5)

s.t. |vi|2 = 1 ∀i ∈ V (6)

|vi − vj |2 ≤ |vi − vk|2 + |vk − vj|2 ∀i, j, k ∈ V (7)
vi = −v−i ∀i ∈ V (8)

where v0 corresponds to the part S (true); and −v0 corresponds to the part T (false). Note that this
is indeed a valid relaxation. For every edge i → j, we have the term 1

8(|vi−vj|2−|v0−vi|2+|v0−vj|2)
in the objective function. If vi = vj or if vi = −v0, vj = v0 (i.e. the edge does not go from S to T),
the value of this expression is 0. On the other hand, the value is 1 if vi = v0, vj = −v0 (i.e. the
edge goes from S to T).

Instead of the �2
2 metric, we use the following distance function:

d(vi, vj) =
1
8

[|vi − vj|2 + |vj − v0|2 − |vi − v0|2
]
.

This distance function

• is positive: d(vi, vj) ≥ 0, this follows from the triangle inequality for �2
2.

• satisfies the triangle inequality (∀i, j, k ∈ V)

d(vi, vk) + d(vk, vj) = |vi − vk|2 − |v0 − vi|2
+ |v0 − vk|2 + |vk − vj |2 − |v0 − vk|2 + |v0 − vj|2
= |vi − vk|2 + |vk − vj |2 − |v0 − vi|2 + |v0 − vj |2
≥ |vi − vj |2 − |v0 − vi|2 + |v0 − vj |2 = d(vi, vj)

5

• is not symmetric: generally speaking d(vi, vj) �= d(vj , vi);

• if d(vi, vj) = 0, vi does not necessary equal to vj ;

We call this distance function a directed semimetric.

2.1 Separation theorem for the directed semimetric

Replacing �2
2 metric in the Min UnCut approximation algorithm with the distance function d we

get an approximation algorithm for Min 2 CNF Deletion.
The only missing step is a separation theorem for the distance d, which we describe now. First

we find two symmetric sets S and T that are Δ-separated with respect to �2
2. Then we set

S+ = {vi ∈ S : 〈vi, v0〉 ≥ 0}; T+ = {vi ∈ T : 〈vi, v0〉 ≥ 0};
S− = {vi ∈ S : 〈vi, v0〉 ≤ 0}; T− = {vi ∈ T : 〈vi, v0〉 ≤ 0};

The sets S+ and T−; T+ and S− are Δ/8-separated: If vi ∈ S+, vj ∈ T−, then

d(vi, vj) =
1
8

[
(vi − vj)2 + (vj − v0)2 − (vi − v0)2

]
=

1
8

[
(vi − vj)2 − 2〈vj , v0〉 + 2〈vi, v0〉

]
≥ (vi − vj)2

8
≥ Δ

8

Thus S+ and T− are Δ/8-separated w.r.t the directed distance d. Similarly T+ and S− are
Δ/8-separated w.r.t the directed distance. Since S+ ∪S− = S, S+ or S− contains at least a half of
all points. If S+ contains a half of vertices of S, the algorithm returns the sets (S+, T−); otherwise
(T+, S−).

References

[1] A. Agarwal, M. Charikar, K. Makarychev, Y. Makarychev, O(
√

log n) approximation algo-
rithms for Min UnCut, Min-2CNF Deletion, and directed cut problems. To appear in
STOC 2005.

[2] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and graph partition-
ing. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC),
pages 222–231, 2004.

[3] B. Bollobás. Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Probabilistic
Combinatorics, pages 122–130. 1986.

[4] S. Chawla, A. Gupta, and H. Räcke. Approximations for generalized sparsest cut and em-
beddings of l2 into l1. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2005.

6

[5] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut theorems
and their applications. In Proceedings of the 25th Annual ACM Symposium on Theory of
Computing (STOC), pages 698–707, 1993.

[6] G. Karakostas. A better approximation ratio for the vertex cover problem. In Electronic
Colloquium on Computational Complexity Report TR04-084, 2004.

[7] J. R. Lee. On distance scales, embeddings, and efficient relaxations of the cut cone. In
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005.

