
-4

princeton u. sp’02 cos 598B: algorithms and complexity

Lecture 3-4: Embedding metrics into �1 and applications to
sparsest cut

Lecturer: Sanjeev Arora Scribe:Elad Hazan

1 Bourgain’s theorem (�1 version)

The main goal of these lectures is to prove the following theorem, which is a special case of Bour-
gain’s theorem from the mid-eighties.

Theorem 1 (Bourgain, 1985)

Every metric space embeds into �1 with distortion O(log n).

Bourgain’s theorem is actually more general, and holds for any lp. (We present a proof for
the �1 case due to Fakcharoenphol, Rao and Talwar (2003) since it has been useful in subsequent
developments, as we will see.) Furthermore, examining the proof of the theorem one can derive
an efficient algorithm to produce such a low-distortion embedding. (Aside, this is not always the
case with mathematical proofs. Later in the course we shall encounter proofs of existence for
combinatorial objects that do not entail efficient algorithms to construct these objects.)

We start with some notation we will use throughout this scribe. Denote the original metric by
(X, d), where X is a set of |X| = n elements and d : X × X �→ �+ a distance function. Denote by
Ball(x,R) ⊆ X the set of all elements y ∈ X such that the distance to x is at most R.

We now describe a (fairly efficient) procedure to partition the elements of X. This procedure
lies at the heart of the embedding.

Procedure Partition(A,B)

1. Pick uniformly at random a number R ∈ [A,B].

2. Pick uniformly at random an order σ on the elements of X.

3. Partition the items of X into at most n = |X| blocks as follows.

(a) Proceed with the elements of X according to the order σ.

(b) For each element x ∈ X, pick all non-assigned elements within distance R from
it, and form a new block.

We call Pσ,R the partition created above, and denote by Pσ,R(x) the block in which
x was placed.

remarks: (i) Some blocks may be empty. (ii) Pσ,R(x) may not be the same as the block created
using x in part 3(b) of the above procedure. The reason is that x may already be assigned to some
other block.

The crucial property of this partitioning procedure is the following:

1

2

�
�������	
��

������
������������

��		������

Figure 1: At each step, Partition takes the next element in order σ, say x, and creates a block
consisting of all nonassigned elements in Ball(x,R).

Theorem 2 (Padded decomposition property)

For every τ > 0, x ∈ X we have:

Pr
σ,R

[Ball(x, τ) � Pσ,R(x)] ≤ 4τ
B − A

log
|Ball(x,B + τ)|
|Ball(x,A − τ)|

Proof: Denote by Ez the event that z is the first element by the order σ such that d(x, z) ≤ R+τ .
Obviously,

Pr[Ez] =
1

|Ball(x,R + τ)| .

Notice,
∨

z∈Ball(x,R+τ) Ez always happens.
We claim if Ball(x, τ) � Pσ,R(x), then the event

∨
z:d(x,z)∈[R−τ,R+τ] Ez must have happened.

(Indeed, consider the z which is the first element in Ball(x,R + τ) in the order σ. If d(x, z) were
≤ R − τ then the block created using z would swallow all of Ball(x, τ).) We therefore bound the
probability that Ball(x, τ) � Pσ,R(x) by:

Pr
R,σ

[Ball(x, τ) � Pσ,R(x)] ≤ ∑
z PrR,σ [Ez

∧
R ∈ [d(x, z) ± τ]]

=
∑

z Pr [R ∈ [d(x, z) ± τ]] · Pr[Ez | R ∈ [d(x, z) ± τ]]
≤ 2τ

B−A

∑
z Pr [Ez| R ∈ [d(x, z) ± τ]] R is chosen uniformly

≤ 2τ
B−A

∫ |Ball(x,B+τ)|
r=|Ball(x,A−τ)|

1
rdr

≤ 4τ
B−A log |Ball(x,B+τ)|

|Ball(x,A−τ)|

�

Using the above procedure, we can now define the embedding into �1. We assume w.l.o.g (by
scaling) that the given metric (X, d) has shortest distance 4, and largest distance Δ. The embedding
we describe is probabilistic.

The final embedding of (X, d) into �1 is a composition of several �1 pseudo-metrics, one for each
distance scale.

3

Procedure Embed(X, d)
For every t ≥ 1 such that 2t < Δ do:

Invoke Partition(2t, 2t+1) to create a partition Pσ,R. Then define an embedding
ρt : X → �K where K is the number of blocks in Pσ,R and

|ρt(x) − ρt(y)|1 =

{
2t if x, y are in different blocks of Pσ,R

0 otherwise
(1)

(Notice that embedding ρt consists of placing each block of Pσ,R on a coordinate axis in
�K at a distance 2s−1 from the origin.)
The final embedding f is the trivial composition of ρt for all scales. (Namely, use fresh
coordinates to accomodate each ρt and never reuse them for any other scale.)

Now we prove that the expected distortion of the embedding f is O(log n). We give a trivial
(deterministic) lowerbound on |f(x) − f(y)|1, and a probabilistic (expectation) upperound.

Lemma 3

For any x, y ∈ X it holds that ‖f(x) − f(y)‖1 ≥ 1
4d(x, y).

Proof: Let Pσ,R be the partition created at scale t. Notice that if t is such that 2t+2 < d(x, y),
then since R ≤ 2t+1, any ball of radius R cannot contain both x and y, and it must be that
Pσ,R(x)
= Pσ,R(y) and therefore ρt(x, y) = 2t. Hence,

‖f(x) − f(y)‖1 =
�log Δ�∑

t=0

ρt(x, y) ≥
∑

t|2t+2<d(x,y)

2t ≥ 1
4
d(x, y)

�

Lemma 4

For any x, y ∈ X it holds that Eσ,R[‖f(x) − f(y)‖1] ≤ O(d(x, y) · log n).

Proof: Using the definitions:

E[‖f(x) − f(y)‖1] =
∑�log Δ�

t=0 Eσ,R[ρt(x, y)]

≤ ∑�log d(x,y)�
t=0 Eσ,R[ρt(x, y)] +

∑�log Δ�
t>�log d(x,y)� Eσ,R[ρt(x, y)]

≤ ∑�log d(x,y)�
t=0 2t +

∑�log Δ�
t>�log d(x,y)� Eσ,R[ρt(x, y)]

≤ 4d(x, y) +
∑�log Δ�

t>�log d(x,y)� Eσ,R[ρt(x, y)]

For the larger values of t we have:

4

�log Δ�∑
t>�log d(x,y)�

Eσ,R[ρt(x, y)] =
∑�log Δ�

t>�log d(x,y)� 2t · Pr[Pσ,R(x)
= Pσ,R(y)]

≤ ∑�log Δ�
t>�log d(x,y)� 2t · Pr[Ball(x, d(x, y)) � Pσ,R(x)]

≤ ∑�log Δ�
t>�log d(x,y)� 2t · 2d(x,y)

2t log |Ball(x,2t+1+d(x,y))|
|Ball(x,2t−d(x,y))| by theorem 2

≤ 2d(x, y)
∑�log Δ�

t>�log d(x,y)� log |Ball(x,2t+2)|
|Ball(x,2t−1)|

≤ 2d(x, y) · 3 log |Ball(x,Δ)| = 6d(x, y) log n

Combining both previous equations we get Eσ,R[‖f(x) − f(y)‖1] = O(d(x, y) · log n). �

From lemmas 3 and 4 we derive that the embedding described into �1 has expected distortion
O(log n). In order to prove theorem 1, we need an embedding that has a worst case distortion
guaranty. Here, again, we use the fact that the set of n-point �1 metrics is a convex cone. The
randomized embedding that we have described thus far can be viewed as a distribution over deter-
ministic embeddings into �1. The convex combination of all these �1 metrics is itself a an �1 metric
with worst case distortion which is precisely equal to the expected distortion of the randomized
embedding, i.e. O(log n).

Efficiency issues: Note that even though we have described a polynomial time procedure
for embedding into �1 with low expected distortion, the last argument does not directly imply
an efficient method to produce an embedding with worst case distortion O(log n). A polynomial
time procedure with a worst case distortion guaranty can be derive using a standard method for
derandomization - repeat the randomized constructed many times and take the average �1 metric
of all those produced. This requires some care, since so far we have only bounded the expected
distortion, and did not bound the standard deviation or other moments. The trivial bound is
poly(Δ, n) time, which will be good enough for the application below.

2 Application to Sparsest Cut

For the rest of this lecture we use the following definition of the sparsest cut problem: Given a
graph G = (V,E), find the subset of vertices S ⊆ V that minimizes:

min
S⊆V

|E(S, S̄)|
|S||S̄|

Notice that this is equivalent to finding the cut metric dS minimizes
�

(i,j)∈E dS(i,j)
�

i<j dS(i,j) , and as �1 is
exactly the cone of cut metrics, the objective to minimize is:

min
dS cut metric

∑
(i,j)∈E dS(i, j)∑

i<j dS(i, j)
= min

d∈�1

∑
(i,j)∈E d(i, j)∑

i<j d(i, j)
.

(In going from optimizing over cut metrics to optimizing over the cone of cut metrics we used
the fact that mini

{
ai
bi

}
≤ a1+a1+···

b1+b2+··· , and thus the optimum in the latter case is wlog achieved at a
single cut metric.)

5

As the sparsest cut problem is NP-hard, we consider a relaxation of the objective to all metrics,
mind is a metric

�
(i,j)∈E d(i,j)
�

i<j d(i,j) . The optimum of this relaxation can be found in polynomial time by
linear-programming. The linear programming formulation is:

min
∑

(i,j)∈E

d(i, j)

∑
i<j

d(i, j) = 1

∀i, j ∈ V d(i, j) ≥ 0
∀i, j, k ∈ V d(i, j) + d(i, k) ≥ d(j, k)

This relaxation was first formulated by Sharokhi and Matula in the mid 80’s, and first analyzed
by Leighton and Rao in 1988, who showed —using duality theory—that the objective value of this
relaxation is within O(log n) of the sparsest cut optimum.

In 1994, Linial, London and Rabinovich, and independently Aumann and Rabani, proposed
a metric embedding viewpoint and showed how a O(log n) approximation can be derived using
Bourgain’s theorem. We now briefly describe how this is done.

Denote by OPT the value of the objective for the sparsest cut in the graph. Let d be the
metric obtained from solving the linear program above. Since every �1 metric is feasible for the LP
relaxation above, we have ∑

(i,j)∈E d(i, j)∑
i<j d(i, j)

≤ OPT.

Using Bourgain, one can embed metric d into �1 with distortion O(log n). Let d′ be the resulting
metric. Naturally, this increases the objective by at most a factor O(log n). Hence:∑

(i,j)∈E d′(i, j)∑
i<j d′(i, j)

≤ O(log n) ·
∑

(i,j)∈E d(i, j)∑
i<j d(i, j)

≤ O(log n) · OPT

As we’ve in previous lectures, the �1 metric d′ can be expressed as a positive combination of a
polynomial number of cut metrics d′ =

∑
S αSdS . Picking the cut amongst these to minimize the

objective ratio yields O(log n)-approximate solution.

Efficiency issues. Now we have to confront the issue of how to make the above algorithm —
particularly the embedding part—run in polynomial time. The embedding algorithm runs in time
poly(n,Δ), where Δ is the aspect ratio, ie the ratio of the maximum internode distance to the
smallest internode distance. It is easy to see that Δ never needs to be more than OPTf/n3, where
OPTf is the fractional optimum. The reason is that we could merge all node pairs whose distance
in the optimum solution is at most OPTf/n3. This has negligible effect of the numerator and the
denominator (at most an additive error of OPTf/n) and still gives a metric. This metric can be
embedded into �1 in polynomial time since its aspect ratio is poly(n).

(Aside: the above analysis of the running time can be greatly improved. The best running time
to date is O(n2). It is obtained by multicommodity flow computations, which correspond to solving
the dual of the linear program.)

6

3 Lower Bounds

The O(log n) bound on the approximation ratio of the above algorithm is in fact tight. Leighton
and Rao proved in 1988 that the integrality gap for the above linear program (the maximum ratio
between OPT and the LP objective) can be as large as Ω(log n).

Theorem 5

The integrality gap for the LP in the previous section is Ω(log n).

In order to prove Theorem 5, we need the following definition:

Definition 1 A 3-regular graph G = (V,E) is called a β-expander if for any set of nodes S ⊆
V, |S| ≤ n

2 , it holds that:
|E(S, S̄)| ≥ β|S|

Expander graphs are useful combinatorial objects we shall probably encounter more later in the
course. A simple fact is that there is a β > 0 such that for any large enough n, a β-expander exists.
(One can prove this by the probalistic method: imagine picking a graph randomly, and show that
the probability that it is not a β-expander is < 1/2.)

Proof:[Theorem 5] The counterexample is any β-expander family. Let G = (V,E) be a β-expander.
Then

min
S⊆V

|E(S, S̄)|
|S||S̄| ≥ β |S|

|S|n/2
=

2β
n

.

We show that the optimum value of the linear program is O(1
n log n).

This is shown by considering a particular metric (i.e., feasible solution): the shortest-path metric
d on G. Since G is a 3-regular graph, we have:

∑
(i,j)∈E

d(i, j) =
3n
2

= O(n).

Furthermore, the average distance between two nodes in the graph is Ω(log n). To see that, consider
any vertex v ∈ V . This vertex has at most 3 other nodes —its neighbors—at distance 1, at most 32

vertices at distance 2, and so forth. Thus there are Ω(n) vertices at distance Ω(log3 n) = Ω(log n).
Therefore: ∑

i<j

d(i, j) ≥
(

n

2

)
· Ω(log n) = Ω(n2 log n).

Hence, the value obtained by this graph metric is:

O(n)
Ω(n2 log n)

= O(
1

n log n
).

�

Next time we will see a recent new algorithm that gives an O(
√

log n) approximation.

7

References

[1] J. Bourgain. On lipschitz embeddings of finite metric spaces in hilbert space. Israel Journal
of Mathematics, 52(1-2):46–52, 1985.

[2] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multicom-
modity flow problems with application to approximation algorithms. In IEEE Symposium on
Foundations of Computer Science, pages 422–431, 1988.

[3] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic
applications. Combinatorica, 15, 1995.

[4] Jittat Fakcharoenphol , Satish Rao and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics, STOC ’03: Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing, 2003, pages 448–455,

