

Compression in General: Why Compress?

So Many Bits, So Little Time (Space)

- CD audio rate: 2 * 2 * 8 * 44100 = 1,411,200 bps
- CD audio storage: 10,584,000 bytes / minute
- A CD holds only about 70 minutes of audio
- An ISDN line can only carry 128,000 bps

Security: Best compressor removes all that is recognizable about the original sound

Graphics people eat up all the space

• Sample and Hold

Sample Rate vs. Aliasing

• Quantize

Word Size vs. Quantization Noise

• Reconstruct: Hold and Smooth (filter)

Filter Order vs. Error and Latency

Limits of Human Hearing

Masking in Amplitude, Time, and Frequency

- Masking in Amplitude: Loud sounds 'mask' soft ones.
 Example: Quantization Noise
- Masking in time: A soft sound just before a louder sound is more likely to be heard than if it is just after.
 Example (and reason): Reverb vs. "Preverb"
- Masking in Frequency: Loud 'neighbor' frequency masks soft spectral components. Low sounds mask higher ones more than high masking low.

Sampling Rates

For Cheap Compression, Look at Lowering the Sampling Rate First

44.1kHz 16 bit = CD Quality

8kHz 8 bit MuLaw = Phone Quality

Examples:

Music: 44.1, 32, 22.05, 16, 11.025kHz

Speech: 44.1, 32, 22.05, 16, 11.025, 8kHz

Production Models	
Build a model of the sound production system, then fit the parameters	
• Example:	If signal is speech, then a well- parameterized vocal model can yield highest quality and compression ratio
Benefits:	Highest possible compression
Drawbacks:	Signal source(s) must be assumed, known, or identified

MIDI and Other 'Event' Models

<u>Musical Instrument Digital Interface</u>

Represents Music as Notes and Events and uses a synthesis engine to "render" it.

An Edit Decision List (EDL) is another example.

A history of source materials, transformations, and processing steps is kept. Operations can be undone or recreated easily. Intermediate non-parametric files are not saved.

Adaptive Resolution: ADPCM

Like Log-Compressor, but bit resolution changes as a result of recent signal history

Signal differences are compressed rather than signal values

Adapting the differences (deltas) yields <u>A</u>daptive <u>D</u>elta <u>PCM</u> coding, claimed to do in 4 bits what μ -law does in 8.

Transform (Subband) Coders

Split signal into frequency subbands, then allocate bits to regions adaptively

Lossless (variable bit rate & comp. ratio):

- Subbands use lower sampling rate (no advantage)
- Bands with less information use less bits
- Adaptive prediction inter/intra bands

Lossy (fixed rate and ratio):

• Fix bit rate, then put bits where ear is most sensitive

References and Resources

Critical Bands and Masking

Old Views

Zwicker, Flottorp, and Stevens, "Critical Bandwidth in Loudness Summation", J. Acoustical Soc. America 29, 1957.

Newer Views

Moore and Glasberg, "Suggested Formulae for Calculating Auditory-Filter Bandwidths and Excitation Patterns," JASA, 7, 4(3) 1983.

References and Resources

MPEG

Dehery, Lever, and Urcun, "A MUSICAM Source CODEC for Digital Audio Broadcasting and Storage," ICASSP A1.9, 1991.

Stoll, Theile, and Link, "MASCAM: Using Psychoacoustic Masking Effects for Low-Bit-Rate Coding of High Quality Complex Sounds," 84th AES, Paris, 1988.

Stoll and Dehery, "MUSICAM: High Quality Audio Bit-Rate Reduction System Family for Different Applications," IEEE Conf. on Communications, 1990.

ISO/IEC Working Papers & Standards Reports, Example: JTCI SC29 WG11 N0403, MPEG 93/479, 1993.

Brandenburg and Bosi, "Overview of MPEG Audio: Current and Future Standards for Low-Bit-Rate Audio Coding," Journal of the AES, 45:1/2 1997.

Source Code

Quantization Program (N bit)

MuLaw Coder/Decoder (8 Bit)

SigLaw Coder/Decoder (4 bit)

ADPCM Coder/Decoder (4 bit)

Xform Coder/Decoder (4 and 8 bit)

LPC Speech Coder/Decoder

Utilities