Security

Outline
- Encryption Algorithms
- Authentication Protocols
- Message Integrity Protocols
- Key Distribution
- Firewalls

Overview

- Cryptography functions
 - Secret key (e.g., DES)
 - Public key (e.g., RSA)
 - Message digest (e.g., MD5)

- Security services
 - Privacy: preventing unauthorized release of information
 - Authentication: verifying identity of the remote participant
 - Integrity: making sure message has not been altered

Secret Key (DES)

- 64-bit key (56-bits + 8-bit parity)
- 16 rounds

- Each Round
 - Initial permutation
 - 16 rounds
 - Final permutation
 - 56-bit key

- Ciphertext

plaintext

plaintext

Encrypt with secret key

Decrypt with secret key

plaintext

plaintext
• Repeat for larger messages

![Diagram](image)

Public Key (RSA)

- Encryption & Decryption
 \[c = m^e \mod n \]
 \[m = c^d \mod n \]

Message Digest

- Cryptographic checksum
 - just as a regular checksum protects the receiver from accidental changes to the message, a cryptographic checksum protects the receiver from malicious changes to the message.

- One-way function
 - given a cryptographic checksum for a message, it is virtually impossible to figure out what message produced that checksum; it is not computationally feasible to find two messages that hash to the same cryptographic checksum.

- Relevance
 - if you are given a checksum for a message and you are able to compute exactly the same checksum for that message, then it is highly likely this message produced the checksum you were given.

RSA (cont)

- Choose two large prime numbers \(p \) and \(q \) (each 256 bits)
- Multiply \(p \) and \(q \) together to get \(n \)
- Choose the encryption key \(e \), such that \(e \) and \((p - 1) \times (q - 1) \) are relatively prime.
- Two numbers are relatively prime if they have no common factor greater than one
- Compute decryption key \(d \) such that
 \[d = e^{-1} \mod ((p - 1) \times (q - 1)) \]
- Construct public key as \((e, n) \)
- Construct public key as \((d, n) \)
- Discard (do not disclose) original primes \(p \) and \(q \)
Authentication Protocols

• Three-way handshake

Client

Server

ClientId, E(x, CHK)

E(x + 1, SHK), E(y, CHK)

E(SK, SHK)

E(x + 1, SHK), E(y, SHK)

Message Integrity Protocols

• Digital signature using RSA
 – special case of a message integrity where the code can only have been generated by one participant
 – compute signature with private key and verify with public key

• Keyed MD5
 – sender: $m + \text{MD5}(m + k) + \text{E}(k, \text{private})$
 – receiver
 • recovers random key using the sender’s public key
 • applies MD5 to the concatenation of this random key message

• MD5 with RSA signature
 – sender: $m + \text{E}($\text{MD5}(m)$, \text{private})$
 – receiver
 • decrypts signature with sender’s public key
 • compares result with MD5 checksum sent with message

• Trusted third party (Kerberos)

Public key authentication
Message Integrity Protocols

- Digital signature using RSA
 - special case of a message integrity where the code can only have been generated by one participant
 - compute signature with private key and verify with public key

- Keyed MD5
 - sender: $m + \text{MD5}(m + k) + E(k, \text{rcv-pub})$, private
 - receiver
 - recovers random key using the sender’s public key
 - applies MD5 to the concatenation of this random key message

- MD5 with RSA signature
 - sender: $m + E(\text{MD5}(m)$, private)
 - receiver
 - decrypts signature with sender’s public key
 - compares result with MD5 checksum sent with message

Key Distribution

- Certificate
 - special type of digitally signed document:
 “I certify that the public key in this document belongs to the entity named in this document, signed X.”
 - the name of the entity being certified
 - the public key of the entity
 - the name of the certified authority
 - a digital signature

- Certified Authority (CA)
 - administrative entity that issues certificates
 - useful only to someone that already holds the CA’s public key.

Key Distribution (cont)

- Chain of Trust
 - if X certifies that a certain public key belongs to Y, and Y certifies that another public key belongs to Z, then there exists a chain of certificates from X to Z
 - someone that wants to verify Z’s public key has to know X’s public key and follow the chain

- Certificate Revocation List

Firewalls

- Filter-Based Solution
 - example
 (192.12.13.14, 1234, 128.7.6.5, 80)
 (*, *, 128.7.6.5, 80)
 - default: forward or not forward?
 - how dynamic?
Proxy-Based Firewalls

- Problem: complex policy
- Example: web server
- Solution: proxy
- Design: transparent vs. classical
- Limitations: attacks from within

Denial of Service

- Attacks on end hosts
 - SYN attack
- Attacks on routers
 - Christmas tree packets
 - pollute route cache
- Authentication attacks
- Distributed DoS attacks