Router Construction

Outline
Switched Fabrics
IP Routers
Tag Switching

Workstation-Based

• Aggregate bandwidth
 – 1/2 of the I/O bus bandwidth
 – capacity shared among all hosts connected to switch
 – example: 1Gbps bus can support 5 x 100Mbps ports (in theory)

• Packets-per-second
 – must be able to switch small packets
 – 1M packets-per-second is achievable
 – e.g., 64-byte packets implies 622Mbps

Switching Hardware

• Design Goals
 – throughput (depends on traffic model)
 – scalability (a function of n)

• Ports
 – circuit management (e.g., map VCIs, route datagrams)
 – buffering (input and/or output)

• Fabric
 – as simple as possible
 – sometimes do buffering (internal)

Buffering

• Wherever contention is possible
 – input port (contend for fabric)
 – internal (contend for output port)
 – output port (contend for link)

• Head-of-Line Blocking
 – input buffering
Crossbar Switches

Knockout Switch
- Example crossbar
- Concentrator
 - select l of n packets
- Complexity: n^2

Knockout Switch (cont)
- Output Buffer

Self-Routing Fabrics
- Banyan Network
 - constructed from simple 2×2 switching elements
 - self-routing header attached to each packet
 - elements arranged to route based on this header
 - no collisions if input packets sorted into ascending order
 - complexity: $n \log_2 n$
Self-Routing Fabrics (cont)

- Batcher Network
 - switching elements sort two numbers
 - some elements sort into ascending (clear)
 - some elements sort into descending (shaded)
 - elements arranged to implement merge sort
 - complexity: \(n \log^2 n \)

- Common Design: Batcher-Banyan Switch

High-Speed IP Router

- Switch (possibly ATM)
- Line Cards
 - link interface (input, output)
 - router lookup (input)
 - common IP path (input)
 - packet queue (output)
- Control Processor
 - routing protocol(s)
 - exceptional cases

IP Forwarding is Slow

- Problem: classless IP addresses (CIDR)
- Route by variable-length Forwarding Equivalence Classes (FEC)
 - FEC = IP address plus prefix of 1-32 bits; e.g., 172.200.0.0/16
- IP Router
 - forwarding tbl: \(<\text{FEC}> \rightarrow<\text{next hop, port}>\)
 - match IP address to FEC w/ longest prefix

ATM Forwarding

- Primary goal: fast, cheap forwarding
- 1Gb/s IP router: $187,000
- 5Gb/s ATM switch: $41,000
- Create Virtual Circuit at Flow Setup
 - \(<\text{in VCI}> \rightarrow<\text{port, out VCI}>\)
- Cell Forwarding
 - index, swap, switch
Tag Switching (MPLS)

- Add a VCI-like tag to packets
 - \(<\text{in tag}> \rightarrow <\text{next hop, port, out tag}>\)
- Use ATM switch hardware
- IP routing protocols (OSPF, RIP, BGP)
 - build forwarding table from routing table
- Goal: IP router functionality at ATM switch speeds/costs

Forwarding

- Shim before IP header

<table>
<thead>
<tr>
<th>Tag (20 bits)</th>
<th>CoS</th>
<th>S</th>
<th>TTL (8 bits)</th>
</tr>
</thead>
</table>

- Tag Forwarding Information Base (TFIB)
 - \(<\text{in tag}> \rightarrow <\text{next hop, port, out tag}>\)
- Just like ATM
 - index, swap, switch

Tag Binding

- New FEC from IP routing protocols
 - Select local tag (index in TFIB)
 - \(<\text{in tag}> \rightarrow <\text{next hop, port, ??}>\)
- Need <out tag> for next hop
- Other routers need my <in tag>
- Solution: distribute tags like other routing info

Tag Distribution Protocol

- Send TDP messages to peers
 - <FEC, my tag>
- Upon receiving TDP message, check if sender is next hop for FEC
 - yes, save tag in TFIB
 - no, can discard or save for future use
- ‘Control-driven’ label assignment
The First Tag

- Two kinds of routers: edge vs. interior
- Edge: add shim based on IP lookup, strip at exit
- Interior: forward by tag only

Robustness Issues

- What if tag fault?
 - try to forward (default route)
 - discard packet
- Forwarding Loops
 - topology changes cause temporary loops
 - TTL field in tag, same as IP

Ipsilon: IP Switching

- Run on ATM switch over ATM network
 - ATM hardware + IP switching software
- Idea: Exploit temporal locality of traffic to cache routing decisions
- Associate labels (VCI) with flows
 - forward packets as usual
 - main difference is in how labels are created, distributed to other routers

Alternative: IP Switch

- Assume default ATM virtual circuits between routers
- Router runs IP routing protocol, can forward IP packets on default VCs
- Identify flows, assign flow-specific VC
 - flow = port pair or host pair
- ‘Data-driven’ label assignment