Internetworking

Outline
Best Effort Service Model
Global Addressing Scheme

Service Model

- Connectionless (datagram-based)
- Best-effort delivery (unreliable service)
 - packets are lost
 - packets are delivered out of order
 - duplicate copies of a packet are delivered
 - packets can be delayed for a long time
- Datagram format

Fragmentation and Reassembly

- Each network has some MTU
- Design decisions
 - fragment when necessary (MTU < Datagram)
 - try to avoid fragmentation at source host
 - re-fragmentation is possible
 - fragments are self-contained datagrams
 - use CS-PDU (not cells) for ATM
 - delay reassembly until destination host
 - do not recover from lost fragments
Global Addresses

- Properties
 - globally unique
 - hierarchical: network + host

- Dot Notation
 - 10.3.2.4
 - 128.96.33.81
 - 192.12.69.77

Datagram Forwarding

- Strategy
 - every datagram contains destination’s address
 - if connected to destination network, then forward to host
 - if not directly connected, then forward to some router
 - forwarding table maps network number into next hop
 - each host has a default router
 - each router maintains a forwarding table

- Example (R2)

<table>
<thead>
<tr>
<th>Network Number</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R3</td>
</tr>
<tr>
<td>2</td>
<td>R1</td>
</tr>
<tr>
<td>3</td>
<td>interface 1</td>
</tr>
<tr>
<td>4</td>
<td>interface 0</td>
</tr>
</tbody>
</table>

Address Translation

- Map IP addresses into physical addresses
 - destination host
 - next hop router

- Techniques
 - encode physical address in host part of IP address
 - table-based

- ARP
 - table of IP to physical address bindings
 - broadcast request if IP address not in table
 - target machine responds with its physical address
 - table entries are discarded if not refreshed
ARP Details

- **Request Format**
 - HardwareType: type of physical network (e.g., Ethernet)
 - ProtocolType: type of higher layer protocol (e.g., IP)
 - HLEN & PLEN: length of physical and protocol addresses
 - Operation: request or response
 - Source/Target-Physical/Protocol addresses

- **Notes**
 - table entries timeout in about 10 minutes
 - update table with source when you are the target
 - update table if already have an entry
 - do not refresh table entries upon reference

ARP Packet Format

<table>
<thead>
<tr>
<th>Hardware type</th>
<th>ProtocolType</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0x0800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HLen</th>
<th>PLen</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SourceHardwareAddr (bytes 0 – 3)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SourceProtocolAddr (bytes 0 – 1)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TargetHardwareAddr (bytes 2 – 5)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TargetProtocolAddr (bytes 0 – 3)</th>
</tr>
</thead>
</table>

Internet Control Message Protocol (ICMP)

- Echo (ping)
- Redirect (from router to source host)
- Destination unreachable (protocol, port, or host)
- TTL exceeded (so datagrams don’t cycle forever)
- Checksum failed
- Reassembly failed
- Cannot fragment