Shared Access Networks

Outline
- Bus (Ethernet)
- Token ring (FDDI)
- Wireless (802.11)

Ethernet Overview

• History
 - developed by Xerox PARC in mid-1970s
 - roots in Aloha packet-radio network
 - standardized by Xerox, DEC, and Intel in 1978
 - similar to IEEE 802.3 standard

• CSMA/CD
 - carrier sense
 - multiple access
 - collision detection

• Frame Format

<table>
<thead>
<tr>
<th></th>
<th>64</th>
<th>48</th>
<th>48</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>Dest addr</td>
<td>Src addr</td>
<td>Type</td>
<td>Body</td>
<td>CRC</td>
</tr>
</tbody>
</table>

Ethernet (cont)

• Addresses
 - unique, 48-bit unicast address assigned to each adapter
 - example: 8:0:e4:b1:2
 - broadcast: all 1s
 - multicast: first bit is 1

• Bandwidth: 10Mbps, 100Mbps, 1Gbps
• Length: 2500m (500m segments with 4 repeaters)
• Problem: Distributed algorithm that provides fair access

Transmit Algorithm

• If line is idle...
 - send immediately
 - upper bound message size of 1500 bytes
 - must wait 9.6us between back-to-back frames

• If line is busy...
 - wait until idle and transmit immediately
 - called 1-persistent (special case of p-persistent)
Algorithm (cont)

- If collision...
 - jam for 32 bits, then stop transmitting frame
 - minimum frame is 64 bytes (header + 46 bytes of data)
 - delay and try again
 - 1st time: 0 or 51.2us
 - 2nd time: 0, 51.2, 102.4, or 153.6us
 - nth time: $k \times 51.2$us, for randomly selected $k=0..2^{n-1}$
 - give up after several tries (usually 16)
 - exponential backoff

Collisions

Token Ring Overview

- Examples
 - 16Mbps IEEE 802.5 (based on earlier IBM ring)
 - 100Mbps Fiber Distributed Data Interface (FDDI)

Token Ring (cont)

- Idea
 - Frames flow in one direction: upstream to downstream
 - special bit pattern (token) rotates around ring
 - must capture token before transmitting
 - release token after done transmitting
 - immediate release
 - delayed release
 - remove your frame when it comes back around
 - stations get round-robin service

Frame Format

<table>
<thead>
<tr>
<th>8</th>
<th>8</th>
<th>8</th>
<th>48</th>
<th>48</th>
<th>Variable</th>
<th>32</th>
<th>8</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start delimiter</td>
<td>Access control</td>
<td>Frame control</td>
<td>Dest addr</td>
<td>Src addr</td>
<td>Body</td>
<td>Checksum</td>
<td>End delimiter</td>
<td>Frame status</td>
</tr>
</tbody>
</table>
Timed Token Algorithm

- **Token Holding Time (THT)**
 - upper limit on how long a station can hold the token

- **Token Rotation Time (TRT)**
 - how long it takes the token to traverse the ring
 - $TRT \leq ActiveNodes \times THT + RingLatency$

- **Target Token Rotation Time (TTRT)**
 - agreed-upon upper bound on TRT

Algorithm (cont)

- Each node measures TRT between successive tokens
 - if measured-TRT > TTRT: token is late so don’t send
 - if measured-TRT < TTRT: token is early so OK to send

- Two classes of traffic
 - synchronous: can always send
 - asynchronous: can send only if token is early

- Worse case: $2 \times TTRT$ between seeing token
- Back-to-back $2 \times TTRT$ rotations not possible

Token Maintenance

- **Lost Token**
 - no token when initializing ring
 - bit error corrupts token pattern
 - node holding token crashes

- **Generating a Token (and agreeing on TTRT)**
 - execute when join ring or suspect a failure
 - send a *claim frame* that includes the node’s TTRT bid
 - when receive claim frame, update the bid and forward
 - if your claim frame makes it all the way around the ring:
 - your bid was the lowest
 - everyone knows TTRT
 - you insert new token

Maintenance (cont)

- Monitoring for a Valid Token
 - should periodically see valid transmission (frame or token)
 - maximum gap = ring latency + max frame $\leq 2.5ms$
 - set timer at 2.5ms and send claim frame if it fires
Wireless LANs

- IEEE 802.11
- Bandwidth: 1 - 11 Mbps
- Physical Media
 - spread spectrum radio (2.4GHz)
 - diffused infrared (10m)

Spread Spectrum

- Idea
 - spread signal over wider frequency band than required
 - originally designed to thwart jamming
- Frequency Hopping
 - transmit over random sequence of frequencies
 - sender and receiver share
 - pseudorandom number generator
 - seed
 - 802.11 uses 79 x 1MHz-wide frequency bands

Spread Spectrum (cont)

- Direct Sequence
 - for each bit, send XOR of that bit and \(n \) random bits
 - random sequence known to both sender and receiver
 - called \(n \)-bit chipping code
 - 802.11 defines an 11-bit chipping code

Collisions Avoidance

- Similar to Ethernet
- Problem: hidden and exposed nodes
MACAW

- Sender transmits \texttt{RequestToSend} (RTS) frame
- Receiver replies with \texttt{ClearToSend} (CTS) frame
- Neighbors...
 - see CTS: keep quiet
 - see RTS but not CTS: ok to transmit
- Receive sends ACK when has frame
 - neighbors silent until see ACK
- Collisions
 - no collisions detection
 - known when don’t receive CTS
 - exponential backoff

Supporting Mobility

- Case 1: \textit{ad hoc} networking
- Case 2: \textit{access points} (AP)
 - tethered
 - each mobile node associates with an AP

Mobility (cont)

- Scanning (selecting an AP)
 - node sends \texttt{Probe} frame
 - all AP’s w/in reach reply with \texttt{ProbeResponse} frame
 - node selects one AP; sends it \texttt{AssociateRequest} frame
 - AP replies with \texttt{AssociationResponse} frame
 - new AP informs old AP via tethered network
- When
 - active: when join or move
 - passive: AP periodically sends \texttt{Beacon} frame