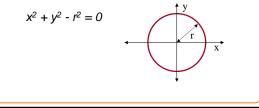


Implicit curves

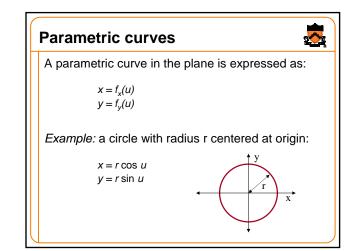
An implicit curve in the plane is expressed as:

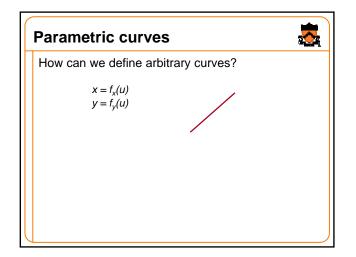
$$f(x, y) = 0$$

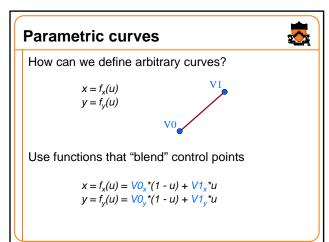
Example: a circle with radius r centered at origin:

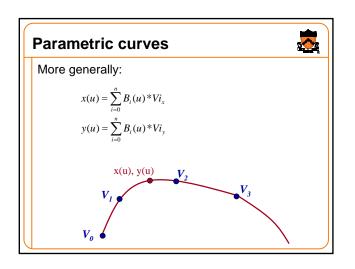


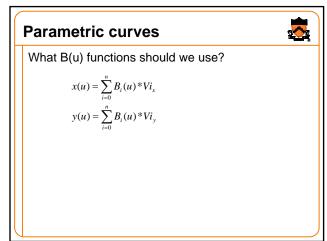
2

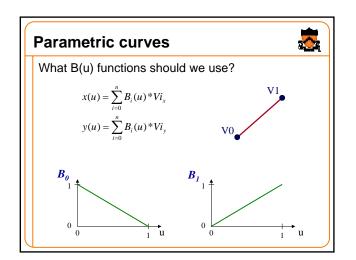


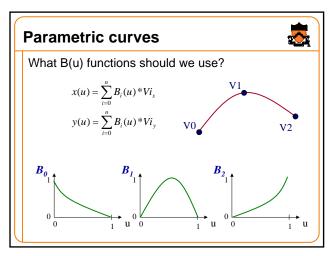






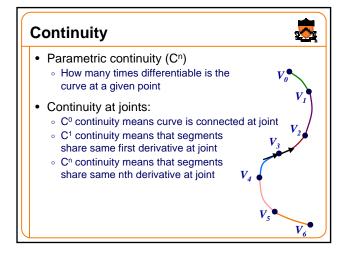


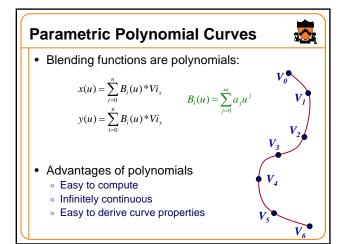


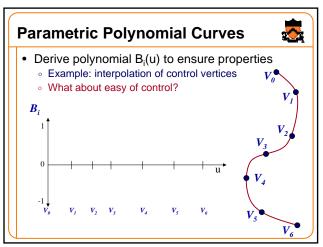


Goals

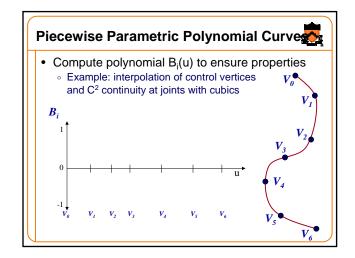
- Some attributes we might like to have:
 - Interpolation
 - Continuity
 - Predictable control
 - Local control
- · We'll satisfy these goals using:
 - Piecewise
 - Parametric
 - Polynomials

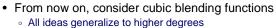




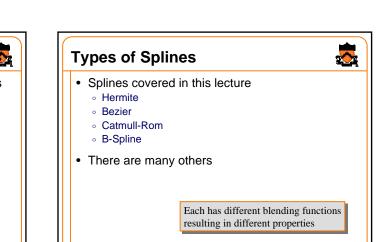


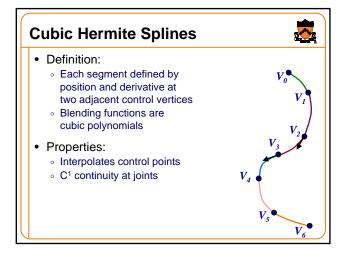
Piecewise Parametric Polynomial Curve Splines: Split curve into segments Each segment defined by blending subset of control vertices Motivation: Provides control & efficiency Same blending function for every segment Prove properties from blending functions Challenges How choose blending functions? How guarantee continuity at joints?

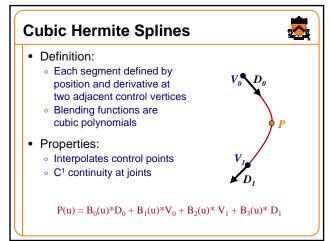


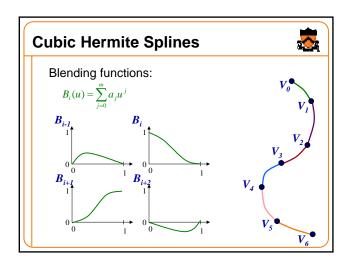


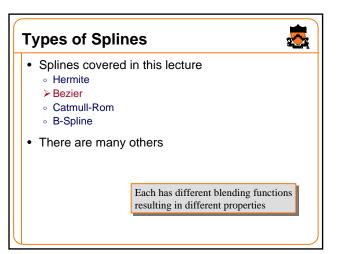
- In CAGD, higher-order functions are often used
 Hard to control wiggles
- In graphics, piecewise cubic curves will do
 - Smallest degree that allows C² continuity for arbitrary curves

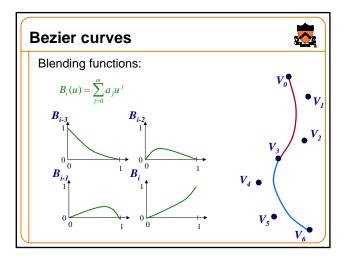


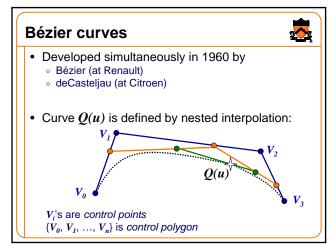












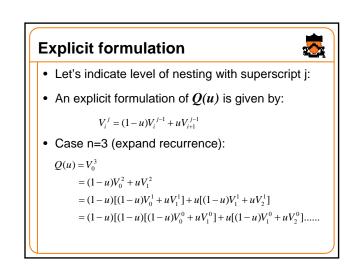
Basic properties of Bézier curves

2

• Endpoint interpolation:

 $Q(0) = V_0$ $Q(1) = V_n$

- Convex hull:
 Ourve is contained within convex hull of control polygon
- Symmetry Q(u) defined by $\{V_0,...,V_n\} \equiv Q(1-u)$ defined by $\{V_n,...,V_0\}$



More properties

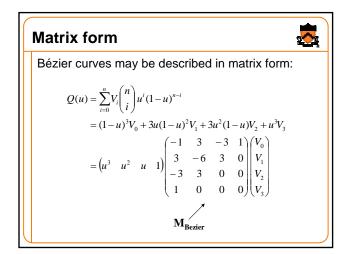
• General case: Bernstein polynomials

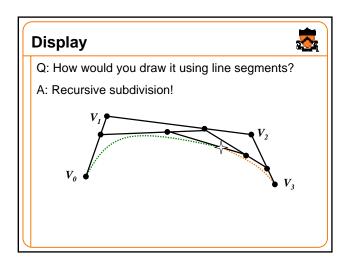
$$Q(u) = \sum_{i=0}^{n} V_i \binom{n}{i} u^i (1-u)^{n-i}$$

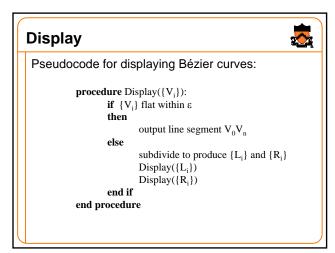
· Degree: is a polynomial of degree n

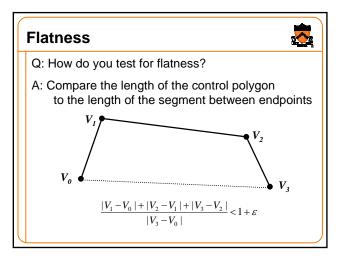
• Tangents:

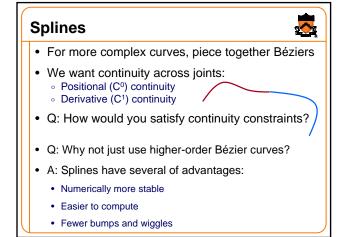
 $Q'(0) = n(V_1 - V_0)$ $Q'(1) = n(V_n - V_{n-1})$







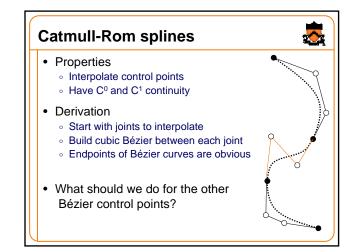


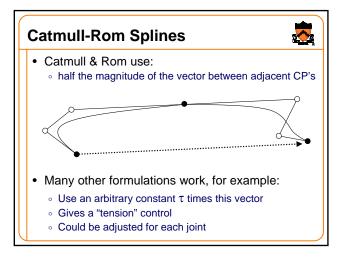


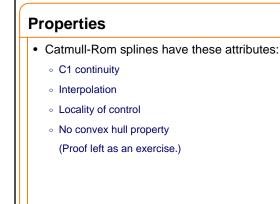
Types of Splines

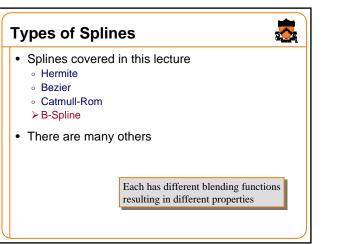
- Splines covered in this lecture
 - Hermite
 - Bezier
 - ≻ Catmull-Rom
 - B-Spline
- There are many others

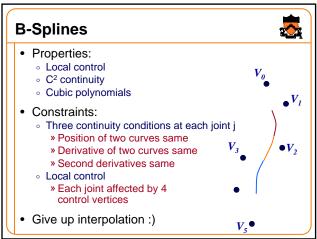
Each has different blending functions resulting in different properties

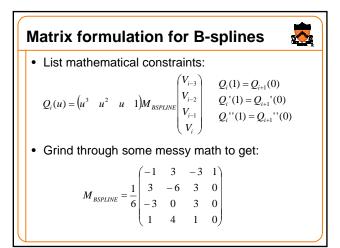


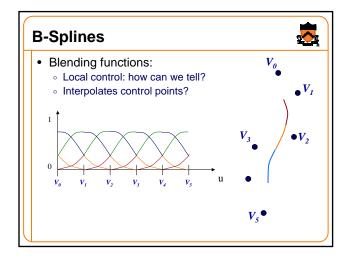


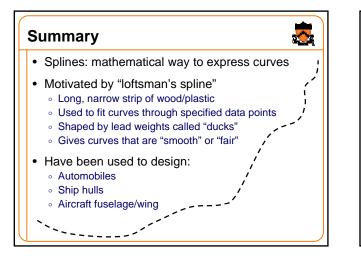












What's next?

- Use curves to create parameterized surfaces
- Surface of revolution
- Swept surfaces
- Surface patches



