

3D Polygon Rendering Pipeline

Adam Finkelstein Princeton University COS 426, Spring 2005

3D Polygon Rendering

Many applications use rendering of 3D polygons with direct illumination

3D Polygon Rendering

 Many applications use rendering of 3D polygons with direct illumination

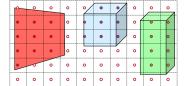
3D Polygon Rendering

 Many applications use rendering of 3D polygons with direct illumination

(Id Software)

Ray Casting Revisited

- · For each sample ...
 - o Construct ray from eye position through view plane
 - o Find first surface intersected by ray through pixel
 - o Compute color of sample based on surface radiance

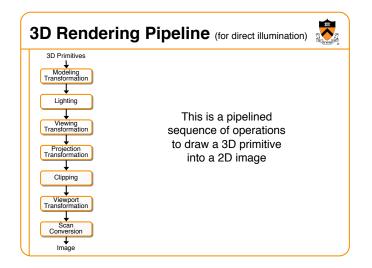


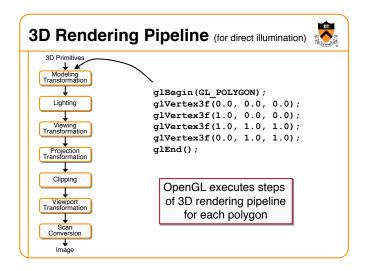
More efficient algorithms utilize spatial coherence!

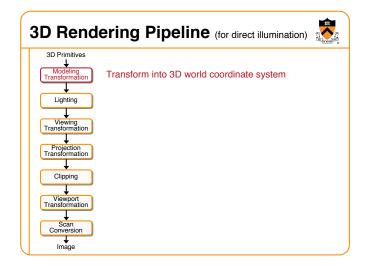
3D Polygon Rendering

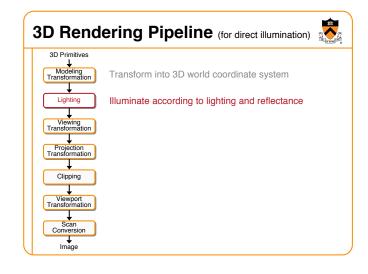
 What steps are necessary to utilize spatial coherence while drawing these polygons into a 2D image?

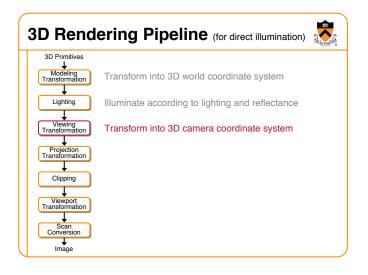


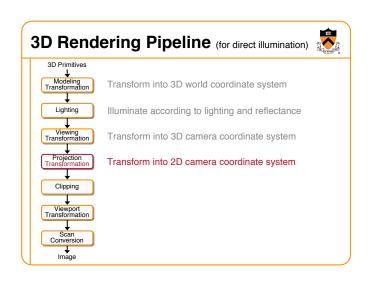


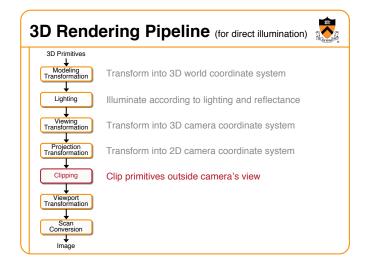


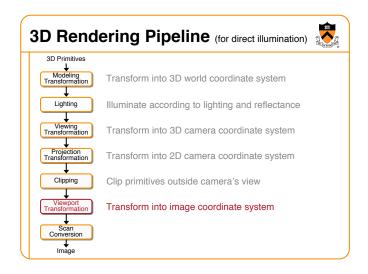


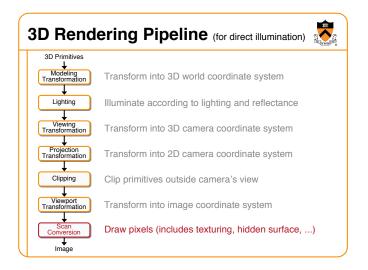


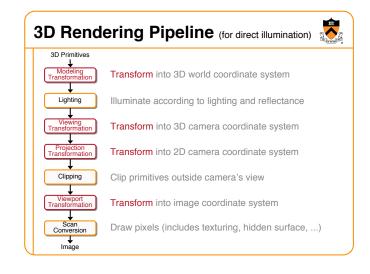


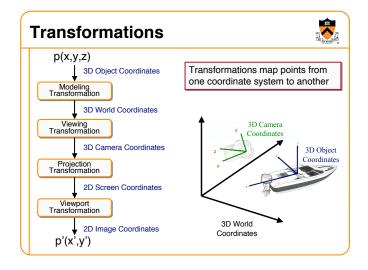


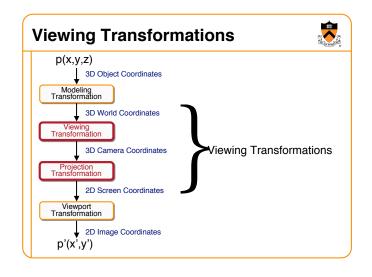




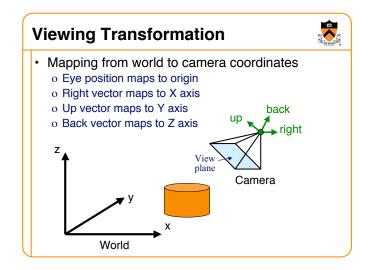








Camera Coordinates Canonical coordinate system o Convention is right-handed (looking down -z axis) o Convenient for projection, clipping, etc. Camera up vector y ↑ maps to Y axis Camera right vector Camera back vector maps to X axis maps to Z axis (pointing out of page) Z



Finding the viewing transformation 🕏

- · We have the camera (in world coordinates)
- We want T taking objects from world to camera

$$p^C = T p^W$$

Trick: find T⁻¹ taking objects in camera to world

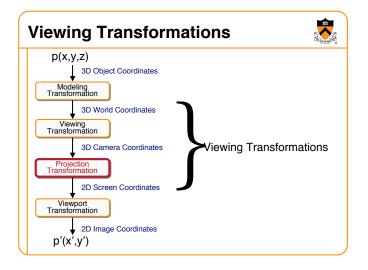
$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Finding the Viewing Transformation

- · Trick: map from camera coordinates to world
 - o Origin maps to eye position _
 - o Z axis maps to Back vector -
 - o Y axis maps to Up vector -
 - o X axis maps to Right vector

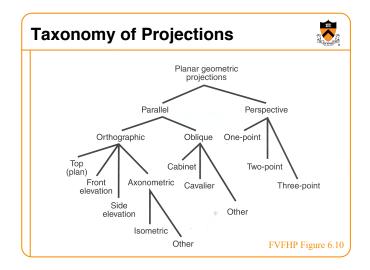
$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} R_x & U_x & B_x & E_x \\ R_y & U_y & B_y & E_y \\ R_z & U_z & B_z & E_z \\ R_w & U_w & B_w & E_w \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

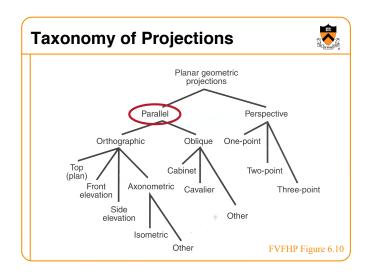
This matrix is T⁻¹ so we invert it to get T ... easy!

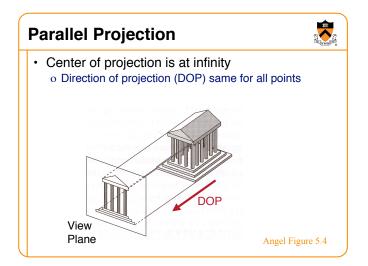


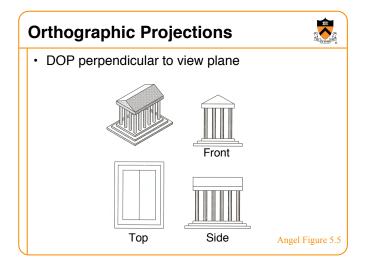
Projection

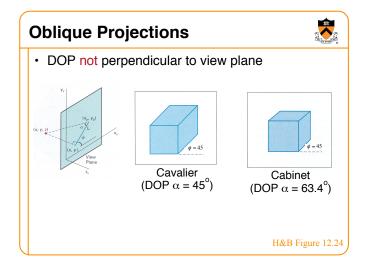
- · General definition:
 - o Transform points in *n*-space to *m*-space (*m*<*n*)
- In computer graphics:
 - o Map 3D camera coordinates to 2D screen coordinates

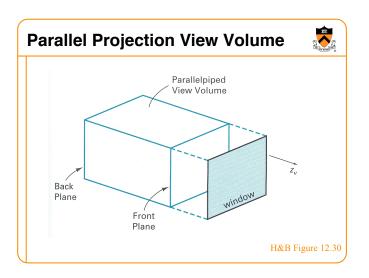


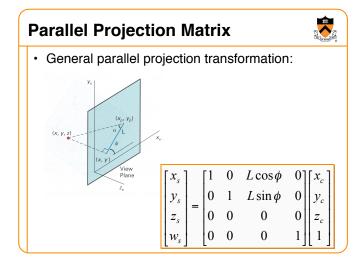


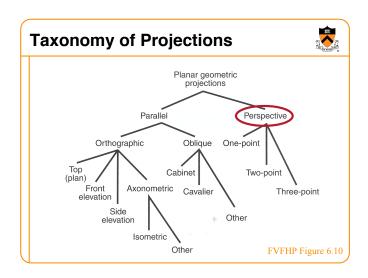


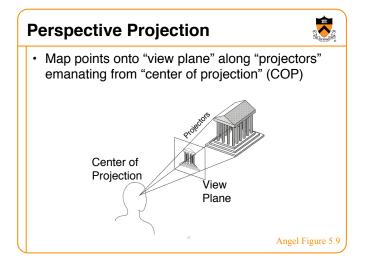


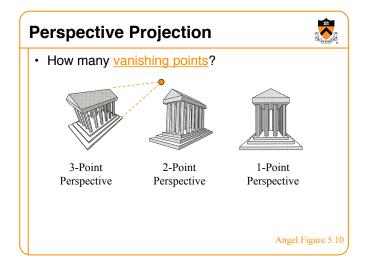


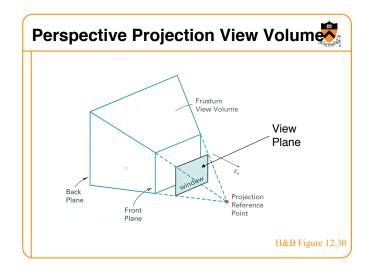


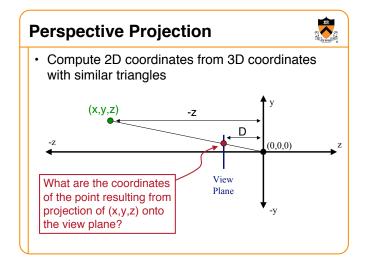






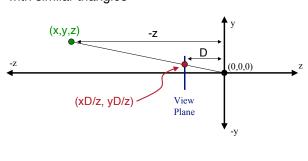






Perspective Projection

Compute 2D coordinates from 3D coordinates with similar triangles



Perspective Projection Matrix

· 4x4 matrix representation?

$$x_s = x_c D / z_c$$

$$y_s = y_c D / z_c$$

$$z_s = D$$

$$w_s = 1$$

Perspective Projection Matrix

· 4x4 matrix representation?

$$x_s = x_c D / z_c$$

$$y_s = y_c D / z_c$$

$$z_s = D$$

$$w_s = 1$$

$$x' = x_c$$

$$y' = y_c$$

$$z' = z_c$$

$$w' = z_c / D$$

Perspective Projection Matrix

· 4x4 matrix representation?

$$x_s = x_c D / z_c$$

$$y_s = y_c D / z_c$$

$$z_s = D$$

$$w_s = 1$$

$$x' = x_c$$

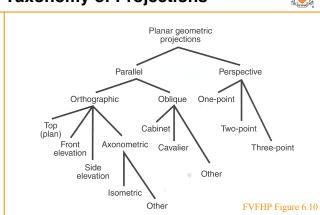
$$y' = y_c$$

$$z' = z_c$$

$$w' = z_c / D$$

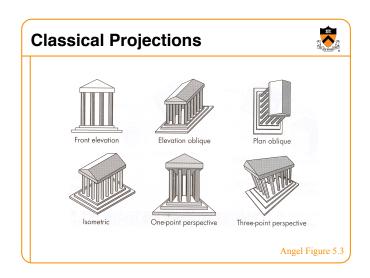
$$\begin{bmatrix} x_s \\ y_s \\ z_s \\ w_s \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/D & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}$$

Taxonomy of Projections



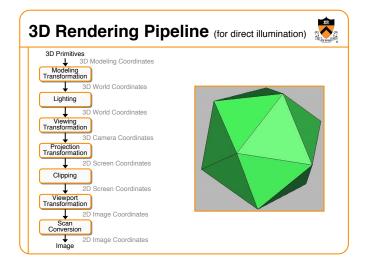
Perspective vs. Parallel

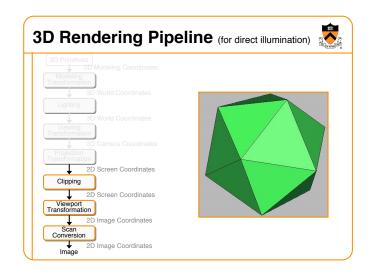
- Perspective projection
 - + Size varies inversely with distance looks realistic
 - Distance and angles are not (in general) preserved
 - Parallel lines do not (in general) remain parallel
- Parallel projection
 - + Good for exact measurements
 - + Parallel lines remain parallel
 - Angles are not (in general) preserved
 - Less realistic looking

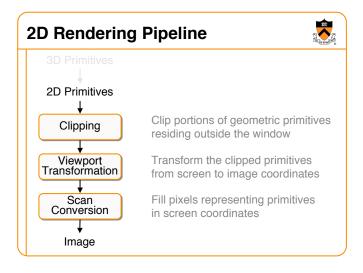


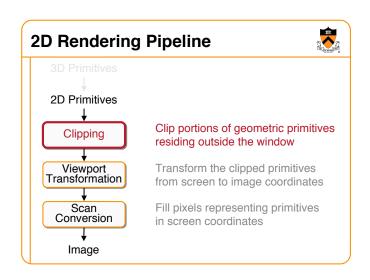
Viewing Transformations Summary

- Camera transformation
 - o Map 3D world coordinates to 3D camera coordinates
 - o Matrix has camera vectors as rows
- Projection transformation
 - o Map 3D camera coordinates to 2D screen coordinates
 - o Two types of projections:
 - » Parallel
 - » Perspective









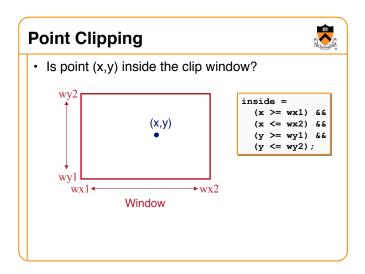
- · Avoid drawing parts of primitives outside window
 - o Window defines part of scene being viewed
 - o Must draw geometric primitives only inside window

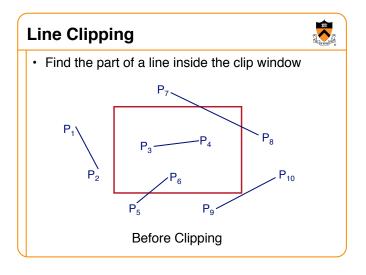
Screen Coordinates

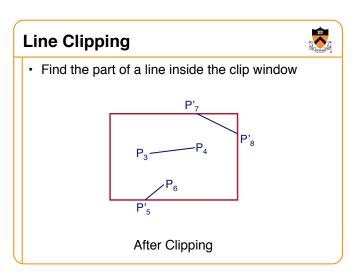
Clipping · Avoid drawing parts of primitives outside window o Window defines part of scene being viewed o Must draw geometric primitives only inside window

Viewing Window

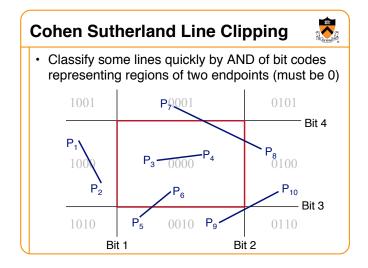
Clipping · Avoid drawing parts of primitives outside window o Points o Lines o Polygons o Circles o etc. Viewing Window

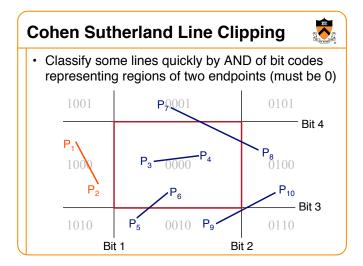


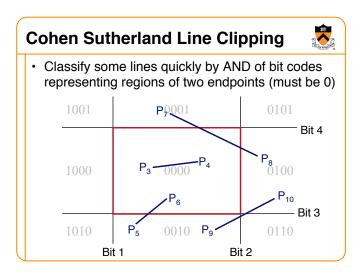


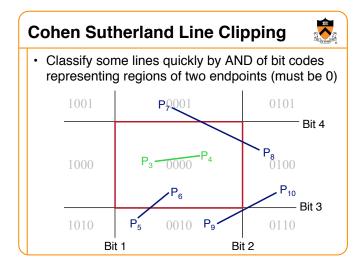


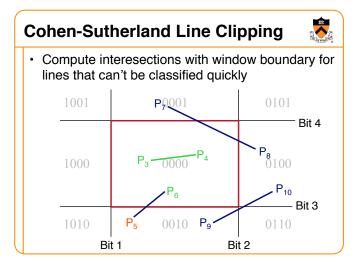
• Use simple tests to classify easy cases first P₁ P₂ P₆ P₁₀ P₁₀







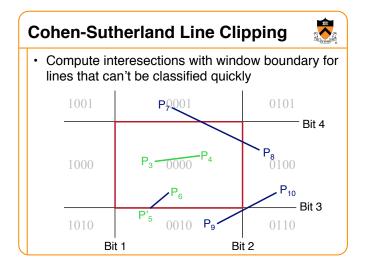


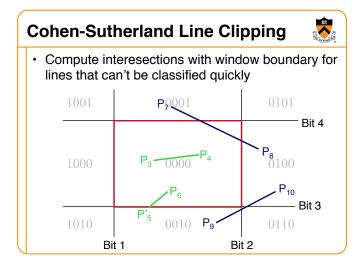


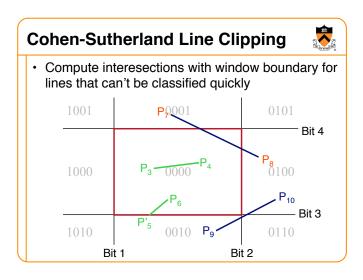
• Compute interesections with window boundary for lines that can't be classified quickly 1001 P7001 0101 Bit 4 1000 P₃ 0000 P₄ P₈ 0100 P₆ P₁₀ Bit 3

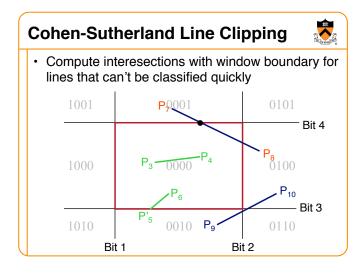
Bit 2

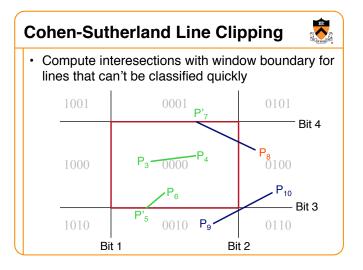
Bit 1



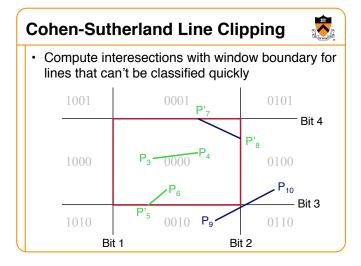


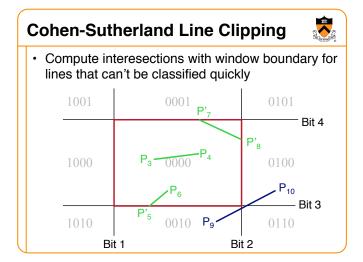




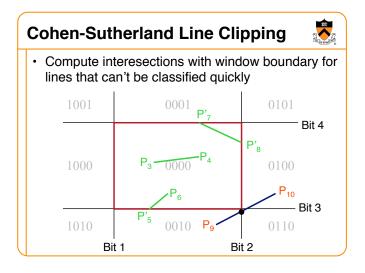


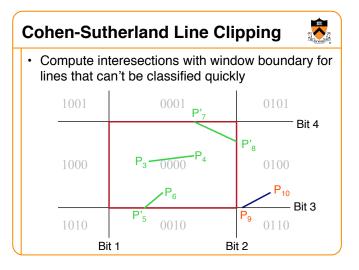
Cohen-Sutherland Line Clipping • Compute interesections with window boundary for lines that can't be classified quickly 1001 0001 0101 Bit 4 1000 P₃ 00100 P₈ 01100 Bit 1 Bit 2

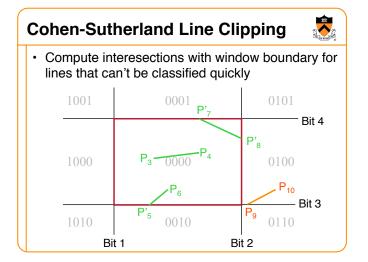


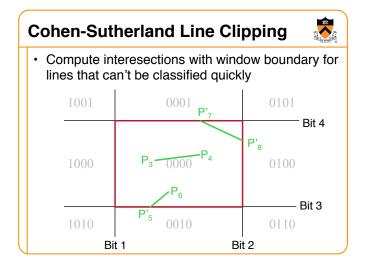


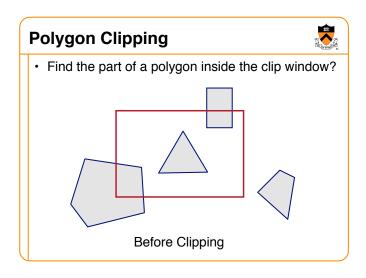


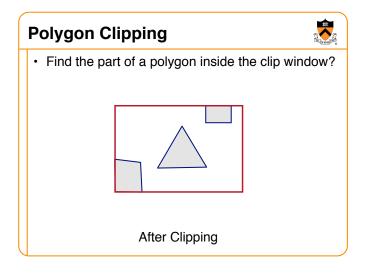


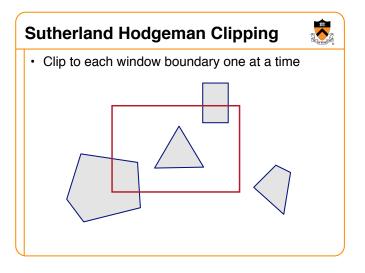


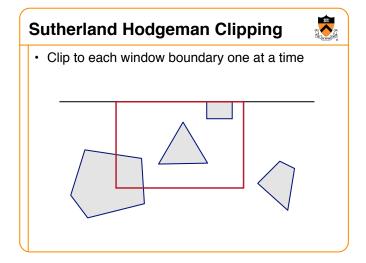


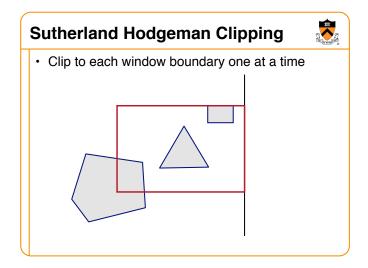


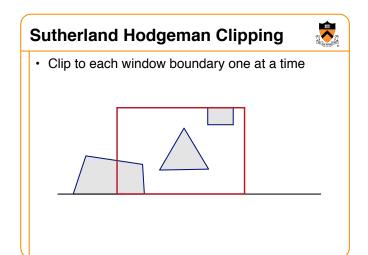


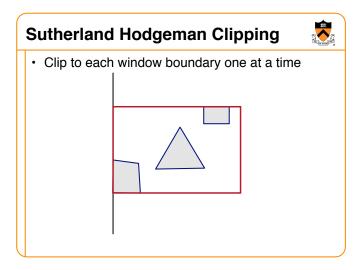


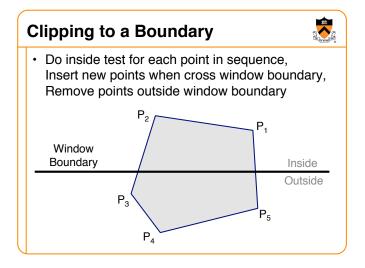


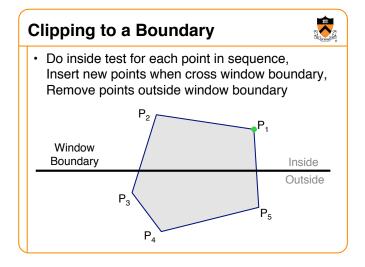






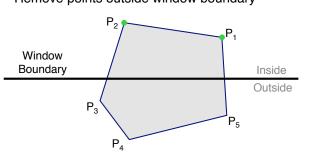






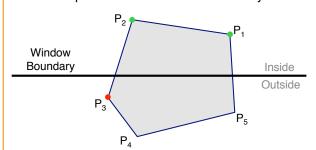
Clipping to a Boundary

 Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary



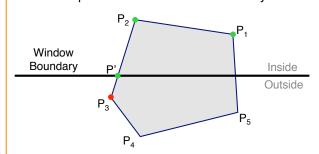
Clipping to a Boundary

 Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary



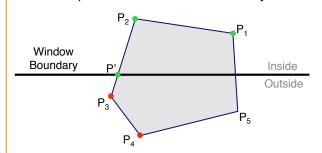
Clipping to a Boundary

 Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary



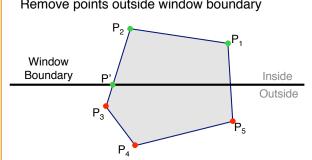
Clipping to a Boundary

 Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary



Clipping to a Boundary

 Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary



Clipping to a Boundary

 Do inside test for each point in sequence, Insert new points when cross window boundary, Remove points outside window boundary

