
3D Rendering

Adam Finkelstein

Princeton University

COS 426, Spring 2005

Course Syllabus

I. Image processing

II. Rendering

III. Modeling

IV. Animation

Image Processing
(Rusty Coleman, CS426, Fall99)

Modeling
(Dennis Zorin, CalTech)

Rendering
(Michael Bostock, CS426, Fall99)

Animation
(Jon Beyer, CS426, Spring04)

Where Are We Now?

I. Image processing

II. Rendering

III. Modeling

IV. Animation

Image Processing
(Rusty Coleman, CS426, Fall99)

Modeling
(Dennis Zorin, CalTech)

Rendering
(Michael Bostock, CS426, Fall99)

Animation
(Jon Beyer, CS426, Spring04)

Rendering

• Generate an image from geometric primitives

Rendering

Geometric
Primitives

Raster
Image

3D Rendering Example

What issues must be addressed by a

3D rendering system?

Overview

• 3D scene representation

• 3D viewer representation

• Visible surface determination

• Lighting simulation

Overview

» 3D scene representation

• 3D viewer representation

• Visible surface determination

• Lighting simulation

How is the 3D scene

described in a computer?

How is the 3D scene

described in a computer?

3D Scene Representation

• Scene is usually approximated by 3D primitives
! Point

! Line segment

! Polygon

! Polyhedron

! Curved surface

! Solid object

! etc.

3D Point

• Specifies a location

Origin

3D Point

• Specifies a location
! Represented by three coordinates

! Infinitely small

typedef struct {
Coordinate x;
Coordinate y;
Coordinate z;

} Point;

typedef struct {
Coordinate x;
Coordinate y;
Coordinate z;

} Point;
(x,y,z)

Origin

3D Vector

• Specifies a direction and a magnitude

3D Vector

• Specifies a direction and a magnitude
! Represented by three coordinates

! Magnitude ||V|| = sqrt(dx dx + dy dy + dz dz)

! Has no location

typedef struct {
Coordinate dx;
Coordinate dy;
Coordinate dz;

} Vector;

typedef struct {
Coordinate dx;
Coordinate dy;
Coordinate dz;

} Vector;

(dx,dy,dz)

3D Vector

• Dot product of two 3D vectors
! V1·V2 = ||V1 || || V2 || cos(")

(dx1,dy1,dz1)

(dx2,dy2 ,dz2)"

3D Vector

• Cross product of two 3D vectors
! V1·V2 = (dy1dx2 - dz1dy2, dz1dx2 - dx1dz2, dx1dy2 - dy1dx2)

! V1xV2 = vector perpendicular to both V1 and V2

! ||V1xV2|| = ||V1 || || V2 || sin(")

(dx1,dy1,dz1)

(dx2,dy2 ,dz2)

"

V1xV2

3D Line Segment

• Linear path between two points

Origin

3D Line Segment

• Use a linear combination of two points
! Parametric representation:

» P = P1 + t (P2 - P1), (0 # t # 1)

typedef struct {
Point P1;
Point P2;

} Segment;

typedef struct {
Point P1;
Point P2;

} Segment;

P1

P2

Origin

3D Ray

• Line segment with one endpoint at infinity
! Parametric representation:

» P = P1 + t V, (0 <= t < $)

typedef struct {
Point P1;
Vector V;

} Ray;

typedef struct {
Point P1;
Vector V;

} Ray;

P1

V

Origin

3D Line

• Line segment with both endpoints at infinity
! Parametric representation:

» P = P1 + t V, (-$ < t < $)

P1

typedef struct {
Point P1;
Vector V;

} Line;

typedef struct {
Point P1;
Vector V;

} Line;

V

Origin

Origin

3D Plane

• A linear combination of three points

P1

P3P2

Origin

3D Plane

• A linear combination of three points
! Implicit representation:

» P·N + d = 0, or

» ax + by + cz + d = 0

! N is the plane “normal”

» Unit-length vector

» Perpendicular to plane

typedef struct {
Vector N;
Distance d;

} Plane;

typedef struct {
Vector N;
Distance d;

} Plane;

P1

N = (a,b,c)

d

P3P2

3D Polygon

• Area “inside” a sequence of coplanar points
! Triangle

! Quadrilateral

! Convex

! Star-shaped

! Concave

! Self-intersecting

! Holes (use > 1 polygon struct)

typedef struct {
Point *points;
int npoints;

} Polygon;

typedef struct {
Point *points;
int npoints;

} Polygon;

Points are in counter-clockwise order

3D Sphere

• All points at distance “r” from point “(cx, cy, cz)”
! Implicit representation:

» (x - cx)
2 + (y - cy)

2 + (z - cz)
2 = r 2

! Parametric representation:

» x = r cos(%) cos(") + cx

» y = r cos(%) sin(") + cy

» z = r sin(%) + cz

typedef struct {
Point center;
Distance radius;

} Sphere;

typedef struct {
Point center;
Distance radius;

} Sphere;

r

Origin

3D Scenes

• Comprise set of geometric primitives

(Dennis Zorin, CalTech)

(Angel, Plate 1)

(Michael Bostock, CS426, Fall99)

Other Geometric Primitives

• More detail on 3D modeling later in course
! Point

! Line segment

! Polygon

! Polyhedron

! Curved surface

! Solid object

! etc.

H&B Figure 10.46

Overview

• 3D scene representation

» 3D viewer representation

• Visible surface determination

• Lighting simulation

How is the viewing device

described in a computer?

How is the viewing device

described in a computer?

Camera Models

• The most common model is pin-hole camera
! All captured light rays arrive along paths toward focal

point without lens distortion (everything is in focus)

! Sensor response proportional to radiance

Other models consider ...

Depth of field

Motion blur

Lens distortion

View plane

Eye position

(focal point)

Camera Parameters

• What are the parameters of a camera?

Camera Parameters

• Position
! Eye position (px, py, pz)

• Orientation
! View direction (dx, dy, dz)

! Up direction (ux, uy, uz)

• Aperature
! Field of view (xfov, yfov)

• Film plane
! “Look at” point

! View plane normal right

back

Up direction

Eye
Position

View direction

View
Plane

“Look at”
Point

View Frustum

View Frustum

Right

Back
Towards

Up

Overview

• 3D scene representation

• 3D viewer representation

» Visible surface determination

• Lighting simulation

How can the front-most surface

be found with an algorithm?

How can the front-most surface

be found with an algorithm?

Visible Surface Determination

• The color of each pixel on the view plane
depends on the radiance emanating from
visible surfaces

View plane

Eye position

Simplest method

is ray casting

Simplest method

is ray casting

Rays
through

view plane

Ray Casting

• For each sample …
! Construct ray from eye position through view plane

! Find first surface intersected by ray through pixel

! Compute color of sample based on surface radiance

Ray Casting

• For each sample …
!Construct ray from eye position through view plane

! Find first surface intersected by ray through pixel

! Compute color of sample based on surface radiance

Construct Ray

right

back

Up direction

P0

towards

View
Plane

P

V

Ray: P = P0 + tVRay: P = P0 + tV

Ray Casting

• For each sample …
! Construct ray from eye position through view plane

!Find first surface intersected by ray through pixel

! Compute color of sample based on surface radiance

Find First Surface Intersection

P

P0

V
&

'
T1

T2

T3

Visible Surface Determination

• For each sample …
! Construct ray from eye position through view plane

! Find first surface intersected by ray through pixel

!Compute color of sample based on surface radiance

More efficient algorithms

utilize spatial coherence!

More efficient algorithms

utilize spatial coherence!

Rendering Algorithms

• Any samples can be used!
! Rendering is a problem in sampling and reconstruction

Overview

• 3D scene representation

• 3D viewer representation

• Visible surface determination

» Lighting simulation

How do we compute the

radiance for each sample ray?

How do we compute the

radiance for each sample ray?

Lighting Simulation

• Lighting parameters
! Light source emission

! Surface reflectance

! Atmospheric attenuation

! Camera response

N
N

Camera

Surface

Light
Source

Lighting Simulation

N

L2

V

Viewer L1

Lighting Simulation

• Direct illumination
! Ray casting

! Polygon shading

• Global illumination
! Ray tracing

! Monte Carlo methods

! Radiosity methods

More on these

methods later!

More on these

methods later!

N
N

Camera

Surface

Light
Source

N

Summary

• Major issues in 3D rendering
! 3D scene representation

! 3D viewer representation

! Visible surface determination

! Lighting simulation

• Concluding note
! Accurate physical simulation

is complex and intractable

» Rendering algorithms apply

many approximations to simplify
representations and computations

Next Lecture

• Ray intersections

• Light and reflectance models

• Indirect illumination

For assignment #2, you will write a ray tracer!For assignment #2, you will write a ray tracer!

Tricycle
(James Percy, CS 426, Fall99)

