

Overview	*
3D scene representation	
 3D viewer representation 	
Visible surface determination	
 Lighting simulation 	

- o Construct ray from eye position through view plane
- $o\,$ Find first surface intersected by ray through pixel
- > Compute color of sample based on surface radiance

-	0	0	٥	•/	•	•	•	0	•		
•	•	•	0	•	•	•	•	•	•		
•	•	•	o	•	•	•	0	•	•		
•	•	•	•	0	0	0	•	•	•		
•	-0	0	0	0	•	0	•	•	•		
0	0	0	0	0	0	0	•	~	0		
						More efficient algorithms utilize spatial coherence!					

Summary

- Major issues in 3D rendering
 - o 3D scene representation
 - o 3D viewer representation
 - ${\rm o}\,$ Visible surface determination
 - ${\rm o}\ {\rm Lighting}\ {\rm simulation}$

Concluding note

- o Accurate physical simulation is complex and intractable
 - Rendering algorithms apply many approximations to simplify representations and computations

Next Lecture

- Ray intersections
- · Light and reflectance models
- Indirect illumination

For assignment #2, you will write a ray tracer!