8.4 Sequencing Problems

Basic genres:
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3-COLOR, 3D-MATCHING.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph \(G = (V, E) \), does there exist a simple cycle \(I \) that contains every node in \(V \).

YES: vertices and faces of a dodecahedron.

NO: bipartite graph with odd number of nodes.

Claim. \(\text{DIR-HAM-CYCLE} \preceq_p \text{HAM-CYCLE} \).

Pf. Given a directed graph \(G = (V, E) \), construct an undirected graph \(G' \) with \(3n \) nodes.

Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a digraph \(G = (V, E) \), does there exists a simple directed cycle \(I \) that contains every node in \(V \)?
Claim. G has a Hamiltonian cycle iff G' does.

Pf. \Rightarrow
- Suppose G has a directed Hamiltonian cycle Γ.
- Then G' has an undirected Hamiltonian cycle (same order).

Pf. \Leftarrow
- Suppose G' has an undirected Hamiltonian cycle Γ'.
- Γ' must visit nodes in G' using one of the following two orders:
 - $\ldots, B, G, R, B, G, R, B, \ldots$
 - $\ldots, B, R, G, B, R, G, B, \ldots$
- Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one.

3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
- Construct G to have 2^n Hamiltonian cycles.
- Intuition: traverse path i from left to right \Rightarrow set variable $x_i = 1$.

3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
- For each clause: add a node and 6 edges.
3-SAT Reduces to Directed Hamiltonian Cycle

Claim. \(\Phi \) is satisfiable iff \(G \) has a Hamiltonian cycle.

Pf. \(\Rightarrow \)
- Suppose 3-SAT instance has satisfying assignment \(x^* \).
- Then, define Hamiltonian cycle in \(G \) as follows:
 - if \(x^*_{i,j} = 1 \), traverse row \(i \) from left to right
 - if \(x^*_{i,j} = 0 \), traverse row \(i \) from right to left
 - for each clause \(C_j \), there will be at least one row \(i \) in which we are going in "correct" direction to splice node \(C_j \) into tour

\(\Leftarrow \)
- Suppose \(G \) has a Hamiltonian cycle \(\Gamma \).
 - If \(\Gamma \) enters clause node \(C_j \), it must depart on mate edge.
 - Thus, nodes immediately before and after \(C_j \) are connected by an edge \(e \) in \(G \)
 - Removing \(C_j \) from cycle, and replacing it with edge \(e \) yields Hamiltonian cycle on \(G - \{ C_j \} \)
 - Continuing in this way, we are left with Hamiltonian cycle \(\Gamma' \) in \(G - \{ C_1, C_2, \ldots, C_k \} \).
 - Set \(x^*_{i,j} = 1 \) iff \(\Gamma' \) traverses row \(i \) left to right.
 - Since \(\Gamma' \) visits each clause node \(C_j \), at least one of the paths is traversed in "correct" direction, and each clause is satisfied.

The Longest Path

\[\text{SHORTEST-PATH.} \text{ Given a digraph } G = (V, E), \text{ does there exists a simple path of length at most } k \text{ edges?} \]

\[\text{LONGEST-PATH.} \text{ Given a digraph } G = (V, E), \text{ does there exists a simple path of length at least } k \text{ edges?} \]

Claim. 3-SAT \(\leq_{P} \) LONGEST-PATH.

Pf. 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from \(t \) to \(s \).

Pf. 2. Show HAM-CYCLE \(\leq_{P} \) LONGEST-PATH.

Music. Sung to the tune of The Longest Time by Billy Joel.

Copyright © 1988 by Daniel J. Barrett.

Copyright © 1988 by Daniel J. Barrett.

The Longest Path

Lyrics. Copyright © 1988 by Daniel J. Barrett.

Music. Sung to the tune of The Longest Time by Billy Joel.

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I’m addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree,
But it’s elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it’s right, and he marks it wrong.
Some how I’ll feel sorry when it’s done.
GPA 2.1
Is more than I hope for.

Gary Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

† Recorded by Dan Barrett while a grad student at Johns Hopkins during a difficult algorithms final.
Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $= D$?

13,509 cities in US with a population of at least 500
Reference: http://www.tsp.gatech.edu

Optimal TSP tour
Reference: http://www.tsp.gatech.edu

11,849 holes to drill in a programmed logic array
Reference: http://www.tsp.gatech.edu
Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

HAM-CYCLE: Given a graph \(G = (V, E) \), does there exist a simple cycle that contains every node in \(V \)?

Claim. HAM-CYCLE \(\leq _ \) TSP.

Pf.
- Given instance \(G = (V, E) \) of HAM-CYCLE, create \(n \) cities with distance function

 \[
 d(u, v) = \begin{cases}
 1 & \text{if } (u, v) \in E \\
 2 & \text{if } (u, v) \notin E
 \end{cases}
 \]

- TSP instance has tour of length \(\leq n \) iff \(G \) is Hamiltonian.

Remark. TSP instance in reduction satisfies \(\Delta \)-inequality.

8.5 3-Dimensional Matching

3-Dimensional Matching

3D-MATCHING. Given \(n \) instructors, \(n \) courses, and \(n \) times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Course</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>MW 11-12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>TTh 11-12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 226</td>
<td>TTh 11-12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 126</td>
<td>TTh 11-12:20</td>
</tr>
<tr>
<td>Tarjan</td>
<td>COS 523</td>
<td>TTh 3-4:20</td>
</tr>
<tr>
<td>Tarjan</td>
<td>COS 423</td>
<td>TTh 11-12:20</td>
</tr>
<tr>
<td>Tarjan</td>
<td>COS 423</td>
<td>TTh 3-4:20</td>
</tr>
<tr>
<td>Sedgewick</td>
<td>COS 226</td>
<td>TTh 3-4:20</td>
</tr>
<tr>
<td>Sedgewick</td>
<td>COS 226</td>
<td>MW 11-12:20</td>
</tr>
<tr>
<td>Sedgewick</td>
<td>COS 423</td>
<td>MW 11-12:20</td>
</tr>
</tbody>
</table>

3-Dimensional Matching

Claim. 3-SAT \(\leq _ \) INDEPENDENT-COVER.

Pf. Given an instance \(\Phi \) of 3-SAT, we construct an instance of 3D-matching that has a perfect matching iff \(\Phi \) is satisfiable.
3-Dimensional Matching

Construction. (part 1)
- Create gadget for each variable \(x_i \) with 2k core and tip elements.
- No other triples will use core elements.
- In gadget \(i \), 3D-matching must use either both grey triples or both blue ones.

For each variable \(x_i \), create two elements and three triples. Exactly one of these triples will be used in any 3D-matching. Ensures any 3D-matching uses either (i) grey core of \(x_i \) or (ii) blue core of \(x_j \) or (iii) grey core of \(x_k \).

\[C_j = x_1 \lor x_2 \lor x_3 \]

Construction. (part 2)
- For each variable \(x_i \), create two elements and three triples.
- In gadget \(i \), 3D-matching must use either both grey triples or both blue ones.
- Set \(x_i = \text{true} \) or \(x_i = \text{false} \).

Construction. (part 3)
- For each tip, add a cleanup gadget.

Claim. Instance has a 3D-matching iff \(\Phi \) is satisfiable.

Detail. What are \(X, Y, \) and \(Z \)? Does each triple contain one element from each of \(X, Y, Z \)?
3-Dimensional Matching

Claim. Instance has a 3D-matching iff \(\Phi \) is satisfiable.

Detail. What are X, Y, and Z? Does each triple contain one element from each of X, Y, Z?

8.6 Graph Coloring

Basic genres.
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3-COLOR, 3D-MATCHING.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Register Allocation

Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin, 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. 3-COLOR \(\leq_p \) k-REGISTER-ALLOCATION for any constant \(k \geq 3 \).
3-Colorability

Claim. 3-SAT ≤p 3-COLOR.

Pf. Given 3-SAT instance Φ, we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges to be described next.

3-Colorability

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. Suppose graph is 3-colorable.
• Consider assignment that sets all T literals to true.
• (ii) ensures each literal is T or F.
• (iii) ensures a literal and its negation are opposites.
• (iv) ensures at least one literal in each clause is T.

3-Colorability

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. Suppose graph is 3-colorable.
• Consider assignment that sets all T literals to true.
• (ii) ensures each literal is T or F.
• (iii) ensures a literal and its negation are opposites.
• (iv) ensures at least one literal in each clause is T.
3-Colorability

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. Suppose 3-SAT formula Φ is satisfiable.
 - Color all true literals T.
 - Color node below green node F, and node below that B.
 - Color remaining middle row nodes B.
 - Color remaining bottom nodes T or F as forced.

Planar 3-Colorability

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

YES instance.

NO instance.

Planarity

Def. A graph is planar if it can be embedded in the plane in such a way that no two edges cross.

Applications: VLSI circuit design, computer graphics.

Kuratowski's Theorem. An undirected graph G is non-planar iff it contains a subgraph homeomorphic to K_5 or $K_{3,3}$.
Planarity Testing

Kuratowski’s Theorem. An undirected graph G is non-planar iff it contains a subgraph homeomorphic to K_5 or $K_{3,3}$.

Brute force. $O(n^6)$.
- Step 1. Contract all nodes of degree 2.
- Step 2. Check all subsets of 5 nodes to see if they form a K_5.
- Step 3. Check all subsets of 6 nodes to see if they form a $K_{3,3}$.

Cleverness. [Hopcroft-Tarjan 1974] $O(n)$.

A simple planar graph can have at most $3n$ edges.

Remark. Many intractable graph problems can be solved in poly-time if the graph is planar; many tractable graph problems can be solved faster if the graph is planar.

Polynomial-Time Detour

Graph minor theorem. [Robertson-Seymour 1980s]

Corollary. There exist an $O(n^3)$ algorithm to determine if a graph is embeddable in the torus.

Pf of theorem. Tour de force.

Planar 3-Colorability

Claim. 3-COLOR \leq_p PLANAR-3-COLOR.

Proof sketch: Given instance of 3-COLOR, draw graph in plane, letting edges cross if necessary.
- Replace each edge crossing with the following planar gadget W.
 - in any 3-coloring of W, opposite corners have the same color
 - any assignment of colors to the corners in which opposite corners have the same color extends to a 3-coloring of W
Planar k-Colorability

PLANAR-2-COLOR. Solvable in linear time.

PLANAR-3-COLOR. NP-complete.

PLANAR-4-COLOR. Solvable in O(1) time.

Theorem. [Appel-Haken, 1976] Every planar map is 4-colorable.
- Resolved century-old open problem.
- Used 50 days of computer time to deal with many special cases.
- First major theorem to be proved using computer.

False intuition. If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR and PLANAR-5-COLOR.

8.7 Numerical Problems

Basic genres.
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3-COLOR, 3D-MATCHING.
- **Numerical problems:** SUBSET-SUM, KNAPSACK.

Subset Sum

SUBSET-SUM. Given natural numbers \(w_1, \ldots, w_n\) and an integer \(W\), is there a subset that adds up to exactly \(W\)?

Ex: \(\{1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344\}\), \(W = 3754\).
Yes. \(1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754\).

Remark. With arithmetic problems, input integers are encoded in binary. Polynomial reduction must be polynomial in binary encoding.

Claim. 3-SAT \(\leq_p\) SUBSET-SUM.

Pf. Given an instance \(\Phi\) of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff \(\Phi\) is satisfiable.

Construction. Given 3-SAT instance \(\Phi\) with \(n\) variables and \(k\) clauses, form \(2n + 2k\) decimal integers, each of \(n+k\) digits, as illustrated below.

Claim. \(\Phi\) is satisfiable iff there exists a subset that sums to \(W\).

Pf. No carries possible.
Scheduling With Release Times

SCHEDULE-RELEASE-TIMES. Given a set of n jobs with processing time \(t_i \), release time \(r_i \), and deadline \(d_i \), is it possible to schedule all jobs on a single machine such that job \(i \) is processed with a contiguous slot of \(t_i \) time units in the interval \([r_i, d_i]\)?

Claim. \(\text{SUBSET-SUM} \leq_p \text{SCHEDULE-RELEASE-TIMES} \).

Pf. Given an instance of \(\text{SUBSET-SUM} \) \(w_1, \ldots, w_n \) and target \(W \),
- Create \(n \) jobs with processing time \(t_i = w_i \), release time \(r_i = 0 \), and no deadline \((d_i = 1 + \sum_j w_j) \).
- Create job 0 with \(t_0 = 1 \), release time \(r_0 = W \), and deadline \(d_0 = W+1 \).

Can schedule jobs 1 to \(n \) anywhere but \([W, W+1]\)

```
0          W          W+1        S+1
```

Polynomial-Time Reductions

- 3-SAT
- INDEPENDENT SET
- DIR-HAM-CYCLE
- GRAPH 3-COLOR
- SUBSET-SUM
- VERTEX COVER
- HAM-CYCLE
- PLANAR 3-COLOR
- SCHEDULING
- SET COVER
- TSP

packing and covering sequencing partitioning numerical