7. Network Flow

Maximum Flow and Minimum Cut

Max flow and min cut.
- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions.
- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more . . .

Flow network.
- Abstraction for material flowing through the edges.
- \(G = (V, E) \) = directed graph, no parallel edges.
- Two distinguished nodes: \(s \) = source, \(t \) = sink.
- \(c(e) \) = capacity of edge \(e \).

Minimum Cut Problem

Soviet Rail Network, 1955

Def. An s-t cut is a partition \((A, B)\) of \(V\) with \(s \in A\) and \(t \in B\).

Def. The capacity of a cut \((A, B)\) is:
\[
\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)
\]

Cuts

Def. An s-t cut is a partition \((A, B)\) of \(V\) with \(s \in A\) and \(t \in B\).

Def. The capacity of a cut \((A, B)\) is:
\[
\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)
\]

Minimum Cut Problem

Min s-t cut: find an s-t cut of minimum capacity.

Flows

Def. An s-t flow is a function that satisfies:
- For each \(e \in E\):
 \[
 0 \leq f(e) \leq c(e)
 \]
 (capacity)
- For each \(v \in V - \{s, t\}\):
 \[
 \sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)
 \]
 (conservation)

Def. The value of a flow \(f\) is:
\[
\nu(f) = \sum_{e \text{ out of } s} f(e).
\]

Minimum Cut Problem

Min s-t cut: find an s-t cut of minimum capacity.

Flows

Def. An s-t flow is a function that satisfies:
- For each \(e \in E\):
 \[
 0 \leq f(e) \leq c(e)
 \]
 (capacity)
- For each \(v \in V - \{s, t\}\):
 \[
 \sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)
 \]
 (conservation)

Def. The value of a flow \(f\) is:
\[
\nu(f) = \sum_{e \text{ out of } s} f(e).
\]
Def. An s-t flow is a function that satisfies:
- For each $e \in E$: $0 \leq f(e) \leq c(e)$ (capacity)
- For each $v \in V - \{s, t\}$: $\sum_{e \in \text{in to } v} f(e) = \sum_{e \in \text{out of } v} f(e)$ (conservation)

Def. The value of a flow f is: $v(f) = \sum_{e \in \text{out of } s} f(e)$.

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \in \text{out of } A} f(e) - \sum_{e \in \text{in to } A} f(e) = v(f)$$

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

Maximum Flow Problem

Max flow problem: find s-t flow of maximum value.

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \in \text{out of } A} f(e) - \sum_{e \in \text{in to } A} f(e) = v(f)$$
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

\[
\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = \nu(f)
\]

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

\[
\nu(f) \leq \operatorname{cap}(A, B)
\]

Proof. (by induction on $|A|$)

- **Base case:** $A = \{s\}$.
- **Inductive hypothesis:** assume true for all cuts (A, B) with $|A| < k$.
 - consider cut (A', B') with $|A'| = k$
 - $A' = A \cup \{v\}$ for some $v \in \{s, t\}$
 - By induction, $\operatorname{cap}(A, B) = \nu(f)$,
 - adding v to A increase cut capacity by $\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) = 0$.

Cut capacity = 30 ⇒ Flow value = 30
Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.
If $v(f) = \text{cap}(A, B)$, then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28 ⇒ Flow value ≤ 28

Towards a Max Flow Algorithm

Greedy algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

Flow value = 20

Towards a Max Flow Algorithm

Greedy algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

Flow value = 0

Towards a Max Flow Algorithm

Greedy algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

Flow value = 20

Towards a Max Flow Algorithm

Greedy algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

Flow value = 30

\[\text{locally optimality} \neq \text{global optimality} \]
Residual Graph

Original edge: \(e = (u, v) \in E \).
- Flow \(f(e) \), capacity \(c(e) \).

Residual edge.
- "Undo" flow sent.
- \(e = (u, v) \) and \(e^R = (v, u) \).
- Residual capacity:
 \[
 c_f(e) = \begin{cases}
 c(e) - f(e) & \text{if } e \in E \\
 f(e) & \text{if } e^R \in E
 \end{cases}
 \]

Residual graph: \(G_f = (V, E_f) \).
- Residual edges with positive residual capacity.
- \(E_f = \{ e : f(e) < c(e) \} \cup \{ e^R : c(e) > 0 \} \).

Ford-Fulkerson Algorithm

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow \(f \) is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson, 1956] The value of the max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing the TFAE:

(i) There exists a cut \((A, B)\) such that \(v(f) = \text{cap}(A, B) \).
(ii) Flow \(f \) is a max flow.
(iii) There is no augmenting path relative to \(f \).

(i) \(\Rightarrow\) (ii) This was the corollary to weak duality lemma.

(ii) \(\Rightarrow\) (iii) We show contrapositive.
- Let \(f \) be a flow. If there exists an augmenting path, then we can improve \(f \) by sending flow along path.

Proof of Max-Flow Min-Cut Theorem

(iii) \(\Rightarrow\) (i)
- Let \(f \) be a flow with no augmenting paths.
- Let \(A \) be set of vertices reachable from \(s \) in residual graph.
- By definition of \(A, s \in A \).
- By definition of \(f, t \notin A \).

\[
 v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) \\
 = \sum_{e \text{ out of } A} c(e) \\
 = \text{cap}(A, B).
\]
7.3 Choosing Good Augmenting Paths

Augmenting Path Algorithm

Augment(f, c, P) {
 b ← bottleneck(P)
 foreach e ! P {
 if (e ! E) f(e) ← f(e) + b
 else f(e) ← f(e) - b
 }
 return f
}

Ford-Fulkerson(G, s, t, c) {
 foreach e ∈ E f(e) ← 0
 G_r ← residual graph
 while (there exists augmenting path P) {
 f ← Augment(f, c, P)
 update G_r
 }
 return f
}

Running Time

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.
Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:
- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp, 1972]
- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.
- Don’t worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ.
- Let $G_f(\Lambda)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Λ.

Choosing path with highest bottleneck capacity increases flow by max possible amount.
- Don’t worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ.
- Let $G_f(\Lambda)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Λ.

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.

Pf.
- By integrality invariant, when $\Delta = 1 \implies G_f(\Lambda) = G_f$.
- Upon termination of $\Delta = 1$ phase, there are no augmenting paths.

```
Scaling-Max-Flow(G, s, t, c) {
    foreach e $\in$ E f(e) $\leftarrow$ 0
    $\Delta$ $\leftarrow$ smallest power of 2 greater than or equal to $C$
    $G_r$ $\leftarrow$ residual graph

    while ($\Delta \geq 1$) {
        $G_r(\Lambda)$ $\leftarrow$ $\Delta$-residual graph
        while (there exists augmenting path $P$ in $G_r(\Lambda)$) {
            $f$ $\leftarrow$ augment($f$, $c$, $P$)
            update $G_r(\Lambda)$
        }
        $\Delta$ $\leftarrow$ $\Delta$ / 2
    }
    return $f$
}
```
Lemma 1. The outer while loop repeats $1 + \lceil \log_2 C \rceil$ times.
Pf. Initially $C \leq \Delta < 2C$. Δ decreases by a factor of 2 each iteration. ♦

Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then the value of the maximum flow is at most $v(f) + m \Delta$. ♦
Pf. (almost identical to proof of max-flow min-cut theorem)
 - We show that at the end of a Δ-phase, there exists a cut (A, B) such that $\text{cap}(A, B) \leq v(f) + m \Delta$.
 - Choose A to be the set of nodes reachable from s in G_f.
 - By definition of A, $s \in A$.
 - By definition of f, $t \notin A$.

$$v(f) = \sum_{e \text{ in to } A} f(e) - \sum_{e \text{ out of } A} f(e)$$
$$= \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ in to } A} \Delta$$
$$= \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ in to } A} \Delta$$
$$\geq \text{cap}(A, B) - m \Delta$$

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time. ♦