6. Dynamic Programming

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
 - “it’s impossible to use dynamic in a pejorative sense”
 - “something not even a Congressman could object to”

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, systems, ...

Some famous dynamic programming algorithms.

- Unix diff for comparing two files.
- Viterbi for hidden Markov models.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.
6.1 Weighted Interval Scheduling

Weighted interval scheduling problem.
- Job \(j \) starts at \(s_j \), finishes at \(f_j \), and has weight or value \(v_j \).
- Two jobs compatible if they don’t overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Notation.
- Label jobs by finishing time: \(f_1 < f_2 < \ldots < f_n \).
- \(p(j) \) = largest index \(i < j \) such that job \(i \) is compatible with \(j \).
- Example: \(p(8) = 5, p(7) = 3, p(2) = 0 \).

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.
Dynamic Programming: Binary Choice

Notation. $OPT(j)$ = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- Case 1: OPT selects job j.
 - can't use incompatible jobs \{ $p(j) + 1$, $p(j) + 2$, ..., $j - 1$ \}
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., $p(j)$

- Case 2: OPT does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., $j - 1$

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max \{ v_j + OPT(p(j)), OPT(j - 1) \} & \text{otherwise} \end{cases}$$

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Input: n, $s_1, ..., s_n$, $f_1, ..., f_n$, $v_1, ..., v_n$

Sort jobs by finish times so that $f_1 \leq f_2 \leq ... \leq f_n$.

Compute $p(1)$, $p(2)$, ..., $p(n)$

Compute-Opt(j)
- if ($j = 0$) return 0
- else return $\max(v_j + \text{Compute-Opt}(p(j)), \text{Compute-Opt}(j-1))$

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.

Input: n, $s_1, ..., s_n$, $f_1, ..., f_n$, $v_1, ..., v_n$

Sort jobs by finish times so that $f_1 \leq f_2 \leq ... \leq f_n$.

Compute $p(1)$, $p(2)$, ..., $p(n)$

for $j = 1$ to n
- $M[j] = \text{empty}$ ← global array
- $M[j] = 0$

M-Compute-Opt(j)
- if ($M[j]$ is empty)
 - $M[j] = \max(v_j + \text{M-Compute-Opt}(p(j)), \text{M-Compute-Opt}(j-1))$
- return $M[j]$
Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes $O(n \log n)$ time.
- Sort by finish time: $O(n \log n)$.
- Computing $p()$: $O(n)$ after sorting by start time.

- M-Compute-Opt$: each invocation takes $O(1)$ time and either
 - (i) returns an existing value $M[j]$.
 - (ii) fills in one new entry $M[j]$ and makes two recursive calls.

- Progress measure $\Phi = \#$ nonempty entries of $M[]$.
 - Initially $\Phi = 0$, throughout $\Phi \leq n$.
 - (ii) increases Φ by 1 \Rightarrow at most $2n$ recursive calls.

- Overall running time of M-Compute-Opt(n) is $O(n)$.

Remark. $O(n)$ if jobs are pre-sorted by start and finish times.

Automated Memoization

Automated memoization. Many functional programming languages (e.g., Lisp) have built-in support for memoization.

Q. Why not in imperative languages (e.g., Java)?

A.

```
(defun F (n)
  (if (<= n 1)
      n
      (+ (F (- n 1)) (F (- n 2)))))
```

Lisp (efficient)

```
static int F(int n) {
  if (n <= 1) return n;
  else return F(n-1) + F(n-2);
}
```

Java (exponential)

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
A. Do some post-processing.

```
Run M-Compute-Opt(n) 
Run Find-Solution(n)

Find-Solution(j) {
  if (j = 0)
    output nothing
  else if ($v_j + M[p(j)] > M[j-1]$)
    print j
    Find-Solution(p(j))
  else
    Find-Solution(j-1)
}
```

- # of recursive calls $\leq n \Rightarrow O(n)$.
6.3 Segmented Least Squares

Segmented Least Squares

- Points lie roughly on a sequence of several line segments.
- Given \(n \) points in the plane \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) with \(x_1 < x_2 < \ldots < x_n \), find a sequence of lines that minimizes \(f(x) \).

Q. What's a reasonable choice for \(f(x) \) to balance accuracy and parsimony?

Solution. Calculus \(\Rightarrow \) min error is achieved when

\[
SSE = \sum_{i=1}^{n} (y_i - ax_i - b)^2
\]

Tradeoff function: \(E + cL \), for some constant \(c > 0 \).
6.4 Knapsack Problem

Knapsack problem.
- Given \(n \) objects and a "knapsack."
- Item \(i \) weighs \(w_i \) kg and has value \(v_i > 0 \).
- Knapsack has capacity of \(W \) kg.
- Goal: fill knapsack so as to maximize total value.

Ex: \(\{3, 4\} \) has value 40.

\[
\begin{array}{|c|c|c|}
\hline
\text{Item} & \text{Value} & \text{Weight} \\
\hline
1 & 1 & 1 \\
2 & 6 & 2 \\
3 & 18 & 5 \\
4 & 22 & 6 \\
5 & 28 & 7 \\
\hline
\end{array}
\]

Greedy: repeatedly add item with maximum ratio \(v_i / w_i \).
Ex: \(\{5, 2, 1\} \) achieves only value = 35 \(\Rightarrow \) greedy not optimal.

Running time. \(O(n^2) \). \(\text{can be improved to } O(n^3) \text{ by pre-computing various statistics} \)
- Bottleneck = computing \(e(i, j) \) for \(O(n^2) \) pairs, \(O(n) \) per pair using previous formula.

Knapsack—summarized.
- \(\text{OPT}(j) = \min \{ e(i, j) + c + \text{OPT}(i-1), 0 \} \)
- \(\text{OPT}(0) = 0 \)
- \(\text{OPT}(j) = \min \{ e(i, j) + c + \text{OPT}(i-1), 0 \} \) for \(j = 1, 2, \ldots, n \).

Optimal substructure. If \(i \) is chosen, \(\text{OPT}(j) \) optimal.
- \(\text{OPT}(j) = \min \{ e(i, j) + c + \text{OPT}(i-1), 0 \} \) for \(j = 1, 2, \ldots, n \).
- \(\text{OPT}(0) = 0 \).

Knapsack—summarized.
- \(\text{OPT}(j) = \min \{ e(i, j) + c + \text{OPT}(i-1), 0 \} \) for \(j = 1, 2, \ldots, n \).
- \(\text{OPT}(0) = 0 \).
- Optimal substructure. If \(i \) is chosen, \(\text{OPT}(j) \) optimal.

Algorithm:

\[
\text{OPT}(j) = \min \{ e(i, j) + c + \text{OPT}(i-1), 0 \} \text{ for } j = 1, 2, \ldots, n \\
\text{OPT}(0) = 0
\]

Bottleneck = computing \(e(i, j) \) for \(O(n^2) \) pairs, \(O(n) \) per pair using previous formula.

Knapsack—summarized.
- \(\text{OPT}(j) = \min \{ e(i, j) + c + \text{OPT}(i-1), 0 \} \) for \(j = 1, 2, \ldots, n \).
- \(\text{OPT}(0) = 0 \).
- Optimal substructure. If \(i \) is chosen, \(\text{OPT}(j) \) optimal.

Algorithm:

\[
\text{OPT}(j) = \min \{ e(i, j) + c + \text{OPT}(i-1), 0 \} \text{ for } j = 1, 2, \ldots, n \\
\text{OPT}(0) = 0
\]
Dynamic Programming: False Start

Def. \(\text{OPT}(i) = \text{max profit subset of items 1, ..., i} \)

- Case 1: \(\text{OPT} \) does not select item \(i \).
 - \(\text{OPT} \) selects best of \(\{1, 2, ..., i-1\} \)

- Case 2: \(\text{OPT} \) selects item \(i \).
 - accepting item \(i \) does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before \(i \), we don’t even know if we have enough room for \(i \)

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. \(\text{OPT}(i, w) = \text{max profit subset of items 1, ..., i with weight limit } w \)

- Case 1: \(\text{OPT} \) does not select item \(i \).
 - \(\text{OPT} \) selects best of \(\{1, 2, ..., i-1\} \) using weight limit \(w \)

- Case 2: \(\text{OPT} \) selects item \(i \).
 - new weight limit = \(w - w_i \)
 - \(\text{OPT} \) selects best of \(\{1, 2, ..., i-1\} \) using this new weight limit

\[
\text{OPT}(i, w) = \begin{cases}
0 & \text{if } i = 0 \\
\text{OPT}(i-1, w) & \text{if } w_i > w \\
\max \{ \text{OPT}(i-1, w), \ v_i + \text{OPT}(i-1, w-w_i) \} & \text{otherwise}
\end{cases}
\]

Knapsack Problem: Bottom-Up

Knapsack. Fill up an \(n \times W \) array.

<table>
<thead>
<tr>
<th>Input: (n, w_1, ..., w_n, v_1, ..., v_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>for (w = 0) to (W)</td>
</tr>
<tr>
<td>(M[0, w] = 0)</td>
</tr>
<tr>
<td>for (i = 1) to (n)</td>
</tr>
<tr>
<td>for (w = 1) to (W)</td>
</tr>
<tr>
<td>if (w_i > w)</td>
</tr>
<tr>
<td>(M[i, w] = M[i-1, w])</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>(M[i, w] = \max { M[i-1, w], v_i + M[i-1, w-w_i] })</td>
</tr>
<tr>
<td>return (M[n, W])</td>
</tr>
</tbody>
</table>

Knapsack Algorithm

<table>
<thead>
<tr>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
</tr>
</tbody>
</table>

\(W = 11 \)

\(\text{OPT: } \{4, 3\} \)

value = 22 + 18 = 40
RNA Secondary Structure

RNA. String $B = b_1b_2...b_n$ over alphabet \{A, C, G, U\}.

Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

Ex: GUCCGAAUGGGGUAAGCACCGUGCCUACGCGGAGA

complementary base pairs: A-U, C-G

6.5 RNA Secondary Structure

Knapsack Problem: Running Time

Running time. $\Theta(nW)$.

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]

Secondary structure. A set of pairs $S = \{(b_i, b_j)\}$ that satisfy:

- [Watson-Crick.] S is a matching and each pair in S is a Watson-Crick complement: A-U, U-A, C-G, or G-C.
- [No sharp turns.] The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_j) \in S$, then $i < j - 4$.
- [Non-crossing.] If (b_i, b_j) and (b_k, b_l) are two pairs in S, then we cannot have $i < k < j < l$.

Free energy. Usual hypothesis is that an RNA molecule will form the secondary structure with the optimum total free energy, approximate by number of base pairs.

Goal. Given an RNA molecule $B = b_1b_2...b_n$, find a secondary structure S that maximizes the number of base pairs.
RNA Secondary Structure: Examples

Examples.

RNA Secondary Structure: Subproblems

First attempt. $OPT(j)$ = maximum number of base pairs in a secondary structure of the substring $b_1b_2\ldots b_j$.

![Diagram](image1)

Difficulty. Results in two sub-problems:
- Finding secondary structure in: $b_1b_2\ldots b_{t-1}$.
- Finding secondary structure in: $b_{t+1}b_{t+2}\ldots b_{n-1}$.

![Diagram](image2)

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

```
RNA(b_1\ldots b_n) {
    for k = 5, 6, \ldots, n-1
    for i = 1, 2, \ldots, n-k
        j = i + k
        Compute M[i, j] using recurrence
    return M[1, n]
}
```

Running time. $O(n^2)$.

Dynamic Programming Over Intervals

Notation. $OPT(i, j)$ = maximum number of base pairs in a secondary structure of the substring $b_i b_{i+1} \ldots b_j$.

- Case 1. If $i = j - 4$.
 - $OPT(i, j) = 0$ by no-sharp turns condition.

- Case 2. Base b_i is not involved in a pair.
 - $OPT(i, j) = OPT(i, \ j-1)$

- Case 3. Base b_i pairs with b_t for some $i \leq t < j - 4$.
 - non-crossing constraint decouples resulting sub-problems
 - $OPT(i, j) = 1 + \max_t \{ OPT(i, t-1) + OPT(t+1, j-1) \}$

 take max over t such that $i \leq t < j-4$ and b_t and b_i are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse context-free grammars.
Dynamic Programming Summary

Recipe.
- Characterize structure of problem.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Dynamic programming techniques.
- Binary choice: weighted interval scheduling.
- Multi-way choice: segmented least squares.
- Adding a new variable: knapsack.
- Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up: different people have different intuitions.

String Similarity

How similar are two strings?
- occurrence
- occurrence

<table>
<thead>
<tr>
<th>occurrence</th>
<th>occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mismatches, 1 gap</td>
<td></td>
</tr>
<tr>
<td>occurrence</td>
<td>occurrence</td>
</tr>
<tr>
<td>1 mismatch, 1 gap</td>
<td></td>
</tr>
<tr>
<td>occurrence</td>
<td>occurrence</td>
</tr>
<tr>
<td>0 mismatches, 3 gaps</td>
<td></td>
</tr>
</tbody>
</table>

Edit Distance

Applications.
- Basis for Unix diff.
- Speech recognition.
- Computational biology.

- Gap penalty δ; mismatch penalty α_{pq}
- Cost = sum of gap and mismatch penalties.

\[\alpha_{TC} + \alpha_{CT} + \alpha_{AG} + 2\alpha_{CA} \]

\[2\delta + \alpha_{CA} \]
Sequence Alignment

Goal: Given two strings $X = x_1 x_2 \ldots x_m$ and $Y = y_1 y_2 \ldots y_n$, find the alignment of minimum cost.

Def. An alignment M is a set of ordered pairs x_i, y_j such that each item occurs in at most one pair and no crossings.

Def. The pair x_i, y_j and x_i, y_j' cross if $i < i'$, but $j > j'$.

\[
\text{cost}(M) = \sum_{(x_i, y_j) \in M} \alpha_{x_i, y_j} + \sum_{i, y_j \text{ unmatched}} \delta_j + \sum_{j, x_i \text{ unmatched}} \delta_i
\]

Ex: CTACCG vs. TACAG.

Sol: $M = x_2\cdot y_1, x_3\cdot y_2, x_4\cdot y_3, x_5\cdot y_4, x_6\cdot y_6.$

Sequence Alignment: Algorithm

```
Sequence-Alignment(m, n, x_1 \ldots x_m, y_1 \ldots y_n, \delta, \alpha) {
    for i = 0 to m
        M[0, i] = i\delta
    for j = 0 to n
        M[j, 0] = j\delta
    for i = 1 to m
        for j = 1 to n
            M[i, j] = \min(\alpha_{x_i, y_j} + M[i-1, j-1],
                       \delta + M[i-1, j],
                       \delta + M[i, j-1])
    return M[m, n]
}
```

Analysis. $O(mn)$ time and space.

English words or sentences: $m, n \leq 10$.

Computational biology: $m = n = 100,000$. 10 billions ops OK, but 10GB array?

Sequence Alignment: Problem Structure

Def. $\text{OPT}(i, j) = \min$ cost of aligning strings $x_1 x_2 \ldots x_i$ and $y_1 y_2 \ldots y_j$.

- Case 1: OPT matches x_i, y_j.
 - pay mismatch for x_i, y_j + min cost of aligning two strings $x_1 x_2 \ldots x_i$ and $y_1 y_2 \ldots y_j$.

- Case 2a: OPT leaves x_i unmatched.
 - pay gap for x_i and min cost of aligning $x_1 x_2 \ldots x_i$ and $y_1 y_2 \ldots y_{j-1}$.

- Case 2b: OPT leaves y_j unmatched.
 - pay gap for y_j and min cost of aligning $x_1 x_2 \ldots x$ and $y_1 y_2 \ldots y_j$.

```
\[
\text{OPT}(i, j) = \begin{cases}
    j\delta + \text{OPT}(i-1, j-1) & \text{if } i = 0 \\
    \alpha_{x_i, y_j} + \text{OPT}(i-1, j-1) & \text{if } j = 0 \\
    \min \left( \delta + \text{OPT}(i-1, j), \delta + \text{OPT}(i, j-1) \right) & \text{otherwise}
\end{cases}
\]
```

6.7 Sequence Alignment in Linear Space
Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in $O(m + n)$ space and $O(mn)$ time.
 - Compute $OPT(i, \cdot)$ from $OPT(i-1, \cdot)$.
 - No longer a simple way to recover alignment itself.

Theorem. [Hirschberg, 1975] Optimal alignment in $O(m + n)$ space and $O(mn)$ time.
 - Clever combination of divide-and-conquer and dynamic programming.
 - Inspired by idea of Savitch from complexity theory.

Edit distance graph.
 - Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
 - Can compute $f(\cdot, j)$ for any j in $O(mn)$ time and $O(m + n)$ space.

Edit distance graph.
 - Let $g(i, j)$ be shortest path from (i, j) to (m, n).
 - Can compute by reversing the edge orientations and inverting the roles of $(0,0)$ and (m,n).
Edit distance graph.
- Let $g(i, j)$ be shortest path from (i, j) to (m, n).
- Can compute $g(\cdot, j)$ for any j in $O(mn)$ time and $O(m + n)$ space.

Observation 1. The cost of the shortest path that uses (i, j) is $f(i, j) + g(i, j)$.
Observation 2. Let q be an index that minimizes $f(q, n/2) + g(q, n/2)$. Then, the shortest path from $(0, 0)$ to (m, n) uses $(q, n/2)$.

Sequence Alignment: Linear Space
Divide: find index q that minimizes $f(q, n/2) + g(q, n/2)$ using DP.
Conquer: recursively compute optimal alignment in each piece.
Theorem. Let $T(m, n) = \max$ running time of algorithm on strings of length at most m and n. $T(m, n) = O(mn \log n)$.

Remark. Analysis is not tight because two sub-problems are of size $(q, n/2)$ and $(m - q, n/2)$. In next slide, we save log n factor.

Sequence Alignment: Running Time Analysis Warmup

$T(m, n) = 2T(m, n/2) + O(mn) \Rightarrow T(m, n) = O(mn \log n)$

Sequence Alignment: Running Time Analysis

Theorem. Let $T(m, n) = \max$ running time of algorithm on strings of length m and n. $T(m, n) = O(mn)$.

Pf. (by induction on n)
- $O(mn)$ time to compute $f(\cdot, n/2)$ and $g(\cdot, n/2)$ and find index q.
- $T(q, n/2) + T(m - q, n/2)$ time for two recursive calls.
- Choose constant c so that:
 - Base cases: $m = 2$ or $n = 2$.
 - Inductive hypothesis: $T(m, n) \leq 2cmn$.

\[
\begin{align*}
T(m, 2) & \leq cm \\
T(2, n) & \leq cn \\
T(m, n) & \leq cmn + T(q, n/2) + T(m-q, n/2)
\end{align*}
\]

\[
\begin{align*}
T(m, n) & \leq T(q, n/2) + T(m-q, n/2) + cmn \\
& \leq 2cmn/2 + 2c(m-q)n/2 + cmn \\
& = cmn + cmn - cmn + cmn \\
& = 2cmn
\end{align*}
\]