5. Divide-and-Conquer

Divide et impera.
Veni, vidi, vici.
- Julius Caesar

5.1 Mergesort

Divide-and-Conquer

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.
- Break up problem of size n into two equal parts of size $\frac{1}{2}n$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.
- Brute force: n^2.
- Divide-and-conquer: $n \log n$.

Sorting

Given n elements, rearrange in ascending order.

Obvious sorting applications.
- List files in a directory.
- Organize an MP3 library.
- List names in a phone book.
- Display Google PageRank results.

Non-obvious sorting applications.
- Data compression.
- Computer graphics.
- Interval scheduling.
- Computational biology.
- Minimum spanning tree.
- Supply chain management.
- Simulate a system of particles.
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

Problems become easier once sorted.
- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.
- Find duplicates in a mailing list.
A Useful Recurrence Relation

Def. \(T(n) \) = number of comparisons to mergesort an input of size \(n \).

Mergesort recurrence.

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
T\left(\left\lfloor n/2 \right\rfloor \right) + T\left(\left\lfloor n/2 \right\rfloor \right) + n & \text{otherwise}
\end{cases}
\]

Solution. \(T(n) = O(n \log_2 n) \).

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume \(n \) is a power of 2 and replace \(\approx \) with \(= \).

Proof by Recursion Tree

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

- Linear number of comparisons.
- Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

using only a constant amount of extra storage

Mergesort

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)
Claim. If $T(n)$ satisfies this recurrence, then $T(n) = n \log_2 n$.

Pf. (by induction on n)
- Base case: $n = 1$.
- Inductive hypothesis: $T(n) = n \log_2 n$.
- Goal: show that $T(2n) = 2n \log_2 (2n)$.

\[
T(2n) = 2T(n) + 2n = 2n \log_2 n + 2n = 2n \log_2 (2n) - 1 + 2n = 2n \log_2 (2n)
\]
Counting Inversions

Music site tries to match your song preferences with others.
- You rank \(n \) songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
- My rank: \(1, 2, \ldots, n \).
- Your rank: \(a_1, a_2, \ldots, a_n \).
- Songs \(i \) and \(j \) inverted if \(i < j \), but \(a_i > a_j \).

Brute force: check all \(\Theta(n^2) \) pairs \(i \) and \(j \).

<table>
<thead>
<tr>
<th>Songs</th>
<th>Inversions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C D E</td>
<td>3-2, 4-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Me</th>
<th>1 2 3 4 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>You</td>
<td>1 3 4 2 5</td>
</tr>
</tbody>
</table>

Applications

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

\[1 \ 5 \ 4 \ 8 \ 10 \ 2 \ 6 \ 9 \ 12 \ 11 \ 3 \ 7 \]

Divide:
- **Divide**: separate list into two pieces.

\[1 \ 5 \ 4 \ 8 \ 10 \ 2 \ 6 \ 9 \ 12 \ 11 \ 3 \ 7 \]

\[1 \ 5 \ 4 \ 8 \ 10 \ 2 \ 6 \ 9 \ 12 \ 11 \ 3 \ 7 \]
Counting Inversions: Divide-and-Conquer

Divide-and-conquer:
- **Divide**: separate list into two pieces.
- **Conquer**: recursively count inversions in each half.
- **Combine**: count inversions where \(a_i \) and \(a_j \) are in different halves, and return sum of three quantities.

\[
\begin{align*}
\text{Divide: } & O(1) \\
\text{Conquer: } & 2T(n/2) \\
\text{Combine: } & \text{count} \end{align*}
\]

\[
\begin{align*}
\text{Divide: } & O(1) \\
\text{Conquer: } & 2T(n/2) \\
\text{Combine: } & 3 \text{ quantities}
\end{align*}
\]

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.

Post-condition. [Sort-and-Count] L is sorted.

```plaintext
Sort-and-Count(L) {
    if list L has one element
        return 0 and the list L
    Divide the list into two halves A and B
    \( r_A, A \leftarrow \text{Sort-and-Count}(A) \)
    \( r_B, B \leftarrow \text{Sort-and-Count}(B) \)
    \( r, L \leftarrow \text{Merge-and-Count}(A, B) \)
    return \( r = r_A + r_B + r \) and the sorted list L
}
```

Counting Inversions: Combine

Combine: count blue-green inversions
- Assume each half is sorted.
- Count inversions where \(a_i \) and \(a_j \) are in different halves.
- **Merge** two sorted halves into sorted whole.

\[
\begin{align*}
\text{Divide: } & O(1) \\
\text{Conquer: } & 2T(n/2) \\
\text{Combine: } & \text{count} \end{align*}
\]

\[
\begin{align*}
\text{Divide: } & O(1) \\
\text{Conquer: } & 2T(n/2) \\
\text{Combine: } & 3 \text{ quantities}
\end{align*}
\]

\[
\begin{align*}
13 \text{ blue-green inversions: } & 6 + 3 + 2 + 0 + 0 \\
\text{Count: } & O(n) \\
2 + 3 + 7 + 10 + 11 + 14 + 16 + 17 + 18 + 19 + 23 + 25 \text{ Merge: } & O(n)
\end{align*}
\]

\[
T(n) \leq T\left(\left\lceil n/2 \right\rceil\right) + T\left(\left\lfloor n/2 \right\rfloor\right) + O(n) \quad \Rightarrow \quad T(n) = O(n \log n)
\]
5.4 Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with \(\Theta(n^2) \) comparisons.

1-D version. \(O(n \log n) \) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.
Closest Pair of Points

Algorithm.
- **Divide**: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.

Find closest pair with one point in each side, assuming that distance $< \delta$.

Closest Pair of Points

Algorithm.
- **Divide**: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer**: find closest pair in each side recursively.

Combine: find closest pair with one point in each side. \sim seems like $O(n^{1.5})$
- Return best of 3 solutions.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 - Observation: only need to consider points within δ of line L.
 - Sort points in 2δ-strip by their y coordinate.
 - Only check distances of those within 11 positions in sorted list!

Def. Let s_i be the point in the 2δ-strip, with the ith smallest y-coordinate.

Claim. If $|i - j| \geq 12$, then the distance between s_i and s_j is at least δ.

Pf.
 - No two points lie in same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box.
 - Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$.

Fact. Still true if we replace 12 with 7.
Closest Pair Algorithm

Closest-Pair(p_1, ..., p_n) {
 Compute separation line L such that half the points
 are on one side and half on the other side.
 \(\delta_1 = \text{Closest-Pair(left half)} \)
 \(\delta_2 = \text{Closest-Pair(right half)} \)
 \(\delta = \min(\delta_1, \delta_2) \)
 Delete all points further than \(\delta \) from separation line L
 Sort remaining points by y-coordinate.
 Scan points in y-order and compare distance between
 each point and next 11 neighbors. If any of these
 distances is less than \(\delta \), update \(\delta \).
 return \(\delta \). }

Running time.

T(n) \leq 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n)

Q. Can we achieve \(O(n \log n) \)?

A. Yes. Don’t sort points in strip from scratch each time.

 - Each recursive returns two lists: all points sorted by y coordinate,
 and all points sorted by x coordinate.
 - Sort by merging two pre-sorted lists.

T(n) \leq 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)

Integer Arithmetic

Add. Given two n-digit integers a and b, compute a + b.

 - \(O(n) \) bit operations.

Multiply. Given two n-digit integers a and b, compute a \(\times \) b.

 - Brute force solution: \(\Theta(n^2) \) bit operations.

\[
\begin{array}{cccccccc}
 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
 \times & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
 \hline \\
 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
 \end{array}
\]

Add: 11111101 01111111 11010101 00000000 11010101 11010101 11010100 00000000 01101000 00000000 00010000
To multiply two \(n \)-digit integers:
- Multiply four \(\frac{1}{2} n \)-digit integers.
- Add two \(\frac{1}{2} n \)-digit integers, and shift to obtain result.

\[
x = 2^{n/2}x_1 + x_0 \\
y = 2^{n/2}y_1 + y_0 \\
x'y = (2^{n/2}x_1 + x_0)(2^{n/2}y_1 + y_0) = 2^n(x_1y_1 + x_0y_0) + 2^{n/2}(x_1y_0 + x_0y_1) + x_0y_0
\]

Theorem. [Karatsuba-Ofman, 1962] Can multiply two \(n \)-digit integers in \(O(n^{1.585}) \) bit operations.

\[
T(n) = 4T(n/2) + \Theta(n) \Rightarrow T(n) = O(n^{1.585})
\]

Assumes \(n \) is a power of 2.
Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute $C = AB$.

$$
C_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}
$$

Brute force. $\Theta(n^3)$ arithmetic operations.

Fundamental question. Can we improve upon brute force?

Key Idea

Key idea. multiply 2-by-2 block matrices with only 7 multiplications.

$$
\begin{bmatrix}
 C_{11} & C_{12} \\
 C_{21} & C_{22}
\end{bmatrix}
= \begin{bmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
\end{bmatrix}
\times
\begin{bmatrix}
 B_{11} & B_{12} \\
 B_{21} & B_{22}
\end{bmatrix}
$$

Divide and Conquer.

- **Divide:** partition A and B into $\frac{1}{2}n$-by-$\frac{1}{2}n$ blocks.
- **Conquer:** multiply $8 \frac{1}{2}n$-by-$\frac{1}{2}n$ recursively.
- **Combine:** add appropriate products using 4 matrix additions.

$$
\begin{align*}
C_{11} &= (A_{11} \times B_{11}) + (A_{12} \times B_{21}) \\
C_{12} &= (A_{11} \times B_{12}) + (A_{12} \times B_{22}) \\
C_{21} &= (A_{21} \times B_{11}) + (A_{22} \times B_{21}) \\
C_{22} &= (A_{21} \times B_{12}) + (A_{22} \times B_{22})
\end{align*}
$$

Fast Matrix Multiplication

Fast matrix multiplication. (Strassen, 1969)

- **Divide:** partition A and B into $\frac{1}{2}n$-by-$\frac{1}{2}n$ blocks.
- **Compute:** 14 $\frac{1}{2}n$-by-$\frac{1}{2}n$ matrices via 10 matrix additions.
- **Conquer:** multiply $7 \frac{1}{2}n$-by-$\frac{1}{2}n$ matrices recursively.
- **Combine:** 7 products into 4 terms using 8 matrix additions.

Analysis.

- Assume n is a power of 2.
- $T(n) = \#$ arithmetic operations.

$$
T(n) = 7T(n/2) + \Theta(n^3) \quad \Rightarrow \quad T(n) = \Theta(n^{\log_27}) = O(n^{\log_27})
$$
Fast Matrix Multiplication in Practice

Implementation issues.
- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around \(n = 128 \).

Common misperception: "Strassen is only a theoretical curiosity."
- Advanced Computation Group at Apple Computer reports 8x speedup on 64 Velocity Engine when \(n \sim 2,500 \).
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax=b, determinant, eigenvalues, and other matrix ops.

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969] \(\Theta(n^{3/2}) = O(n^{2.5}) \)

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971] \(\Theta(n^{3/2}) = O(n^{2.75}) \)

Q. Two 3-by-3 matrices with only 21 scalar multiplications?
A. Also impossible. \(\Theta(n^{3/2}) = O(n^{2.75}) \)

Q. Two 70-by-70 matrices with only 143,640 scalar multiplications?
A. Yes! [Pan, 1980] \(\Theta(n^{10/9 \cdot 143640}) = O(n^{2.80}) \)

Decimal wars.
- December, 1979: \(O(n^{2.521813}) \).
- January, 1980: \(O(n^{2.521801}) \).

Best known. \(O(n^{2.376}) \) [Coppersmith-Winograd, 1987.]

Conjecture. \(O(n^{2+\varepsilon}) \) for any \(\varepsilon > 0 \).

Caveat. Theoretical improvements to Strassen are progressively less practical.