Minimum Spanning Tree

MST Red Rule Blue Rule Minimum spanning tree. Given a connected graph 6 with real-valued
* ‘

edge weights c,, an MST is a spanning tree of G whose sum of edge

weights is minimized.
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6=(V,E) T=(V,F)
w(T) =50

Cayley's Theorem (1889). There are n"?2 spanning trees of K,.

can't solve by brute force
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Minimum Spanning Tree Origin Applications

Otakar Boruvka (1926). MST is fundamental problem with diverse applications.

« Electrical Power Company of Western Moravia in Brno.
= Most economical construction of electrical power network.
« Concrete engineering problem is now a cornerstone problem in

combinatorial optimization. « Approximation algorithms for NP-hard problems.
- traveling salesperson problem, Steiner tree

« Network design.
- telephone, electrical, hydraulic, TV cable, computer, road

« Indirect applications.
- max bottleneck paths
- LDPC codes for error correction
- image registration with Renyi entropy
- learning salient features for real-time face verification
- reducing data storage in sequencing amino acids in a protein
- model locality of particle interactions in turbulent fluid flows
- autoconfig protocol for Ethernet bridging to avoid cycles in a network

« Cluster analysis.



Cycles and Cuts

Cycle. Set of edges the form a-b, b-c, c-d, ..., y-z, z-a.

Cycle = 1-2,2-3,3-4,4-5,5-6, 6-1

Cut. The cut induced by a subset of nodes S is the set of all edges
with exactly one endpoint in S.

{4.5.8})
5-6,5-7,3-4,3-5,7-8
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Generic MST Algorithm

Red rule. Let C be a cycle with no red edges. Select an uncolored
edge of C of max weight and color it red.

Blue rule. Let D be a cut with no blue edges. Select an uncolored edge
in D of min weight and color it blue.

Greedy algorithm. Apply the red and blue rules (non-deterministically!)
until all edges are colored.
r =1

can stop once n-1 edges colored blue

Theorem. The blue edges form a MST.

Reference: Data Structures and Algorithms by R E. Tarjan

Cycle-Cut Intersection

Claim. A cycle and a cut intersect in an even number of edges.

Pf. (by picture)

Cycle =1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cut = 3-4, 3-5,5-6,5-7,7-8
Intersection = 3-4, 5-6

Greedy Algorithm: Proof of Correctness

Claim. The greedy algorithm terminates.
Pf. (by contradiction)

« Suppose edge e is left colored:; let's see what happens.

« Blue edges form a forest F.

« Case 1: adding e to F creates a cycle C.
« Case 2: adding e to F connects two components A; and A,. =

Case 1: apply red rule to cycle C
and color e red.

e
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Case 2: apply blue rule to A, or A,, and
color some edge blue.



Greedy Algorithm: Proof of Correctness Greedy Algorithm: Proof of Correctness

Theorem. Upon termination, the blue edges form a MST. Theorem. Upon termination, the blue edges form a MST.
Pf. (by induction on number of iterations) Pf. (by induction on humber of iterations)
Color Invariant: There exists a MST T* containing all Color Invariant: There exists a MST T* containing all
the blue edges and none of the red ones. the blue edges and none of the red ones.
« Base case: no edges colored = every MST satisfies invariant. = Induction step (cont): suppose color invariant true before red rule.
- let C be chosen cycle, and let e be edge colored red
« Induction step: suppose color invariant true before blue rule. - if e & T*, T* still satisfies invariant
- let D be chosen cut, and let f be edge colored blue - o/w, consider fundamental cut D by deleting e from T*
- if f € T, T* still satisfies invariant - let f be another edge inC N D
- o/w, consider fundamental cycle C by adding f to T* - f is uncolored and ¢, = ¢; since
- let e be another edge in C N D L f& T = f not blue

redrule = f notred, c, = ¢;
- T*U{f}-{e} satisfies invariant =

- eis uncolored and c, = ¢, since
eeT* = enotred
blue rule = e not blue, ¢, = ¢;
- T*U{f}-{e} satisfies invariant

Special Case: Prim's Algorithm Implementation: Prim's Algorithm
Prim's algorithm. [Jarnik 1930, Dijkstra 1957, Prim 1959] Implementation. Use a priority queue ala Dijkstra.
« S = vertices in tree connected by blue edges. = Maintain set of explored nodes S.
« Initialize S = any node. « For each unexplored node v, maintain attachment cost a[v] = cost of
« Apply blue rule to cut induced by S. cheapest edge v to a node in S.

« O(n?) with an array; O(m log n) with a binary heap.

Prim(G, c) {
foreach (v € V) a[v] < «
Initialize an empty priority queue Q
foreach (v € V) insert v onto Q
Initialize set of explored nodes S < ¢

while (Q is not empty) {
u < delete min element from Q
S<«< S U {u}
foreach (edge e = (u, v) incident to u)
if ((v & S) and (c, < a[v]))
decrease priority a[v] to c,




Special Case: Kruskal's Algorithm Implemention: Kruskal's Algorithm

Kruskal's algorithm. [Kruskal, 1956] Implementation. Use the union-find data structure.
« Consider edges in ascending order of weight. « Build set T of edges in the MST.
« Case 1: If both endpoints of e in same blue free, color e red by » Maintain set for each connected component.
applying red rule to unique cycle. = O(m log n) for sorting and O(m o (m, n)) for union-find.
« Case 2: Otherwise color e blue by applying blue rule to cut
consisting of all nodes in blue tree of one endpoint. Kruskal(G, c) {
Sort edges weights so that ¢c; = ¢, = ... = c,.
T <9

foreach (u € V) make a set containing singleton u

for i =1¢tom are u andv in different connected components?
(u,v) = e; r e
if (u and v are in different sets) {
T« T U {e;}
merge the sets containing u and v

}

merge two components

return T
}
Case 1 Case 2
Special Case: Boruvka's Algorithm Implementing Boruvka's Algorithm
Boruvka's algorithm. [Boruvka, 1926] Boruvka implementation. O(m log n)
= Apply blue rule to cut corresponding to each blue tree. « Contract blue trees, deleting loops and parallel edges.
« Color all selected edges blue. = Remember which edges were contracted in each super-node.

= O(log n) phases since each phase halves total # nodes.




MST Algorithms: Theory

Deterministic comparison based algorithms. :

= O(m log n) Jarnik, Prim, Dijkstra, Kruskal, Boruvka 47 CIUSTemng
« O(m log log n). Cheriton-Tarjan (1976), Yao (1975)

= O(m B(m, n)). Fredman-Tarjan (1987)

« O(m log B(m, n)). Gabow-Galil-Spencer-Tarjan (1986)

. O(m a (m, n)). Chazelle (2000)

Holy grail. O(m).

Notable.
= O(m) randomized. Karger-Klein-Tarjan (1995)
= O(m) verification. Dixon-Rauch-Tarjan (1992)

Euclidean. Outbreak of cholera deaths in London in 1850s.
. Ref e: Nina Mishra, HP Labs
« 2-d: O(nlogn). compute MST of edges in Delaunay e e
. k-d: O(k n?). dense Prim
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Clustering Clustering of Maximum Spacing
Clustering. Given a set U of n objects labeled py, ..., p,. classify into k-clustering. Divide objects into k non-empty groups.

coherent groups.
hotos, documents. micro-organisms . . . P .
prete erergn Distance function. Assume it satisfies several natural properties.

- d(p;, pJ.) =0iffp, = P (identity of indiscernibles)
Distance function. Numeric value specifying "closeness" of two objects. » d(p;. p)=0 (nonnegativity)
« d(pi. py) = d(p;. p)) (symmetry)

number of corresponding pixels whose
intensities differ by some threshold . . . . . . .
Spacing. Min distance between any pair of points in different clusters.

Fundamental problem. Divide into clusters so that points in different Clustering of maximum spacing. Given an integer k, find a k-clustering
clusters are far apart. of maximum spacing.

« Similarity searching in medical image databases ° 4

« Skycat: cluster 2 x 10° sky objects into stars, quasars, galaxies. coe _

« Routing in mobile ad hoc networks. A \/spacmg

« Document categorization for web search. . 000 e k=4

« Identify patterns in gene expression. %% ceee



Dendrogram

Dendrogram. Scientific visualization of hypothetical sequence of
evolutionary events.

« Leaves = genes.

« Internal nodes = hypothetical ancestors.

height of bar indicates
degree of distance
within cluster

distance scale

STy

leaves represent instances (e.g. genes)

Reference: http://www.biostat.wisc.edu/bmi576/fall-2003/lecturel3.pdf

Greedy Clustering Algorithm

Single-link k-clustering algorithm.
« Form a graph on the vertex set U, corresponding to n clusters.
« Find the closest pair of objects such that each object isina
different cluster, and add an edge between them.
« Repeat n-k times until there are exactly k clusters.

Key observation. This procedure is precisely Kruskal's algorithm
(except we stop when there are k connected components).

Remark. Equivalent to finding an MST and deleting the k-1 most
expensive edges.
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Dendrogram of Cancers in Human

Tumors in similar tissues cluster together.

Theorem. Let C* denote the clustering C*,, ..., C*, formed by deleting the
k-1 most expensive edges of a MST. C* is a k-clustering of max spacing.
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Gene 1

Genen

Skin Liver Lung Breast Tumors Breast Normal Kidney Prostate Brain APL Ovary
Luminal Tumors Breast
Basal

[l gene expressed

Reference: Botstein & Brown group B gene rot expressed

Greedy Clustering Algorithm: Analysis

Pf. Let C denote some other clustering C,, ..., C,.

The spacing of C* is the length d* of the (k-1)st most expensive edge.
Let p;, p; be in the same cluster in C*, say C*, but different clusters

in C, say C, and C,.

Some edge (p, q) on pi-p; path in C*_ spans two different clusters in C.

All edges on p;-p; path have length < d*
since Kruskal chose them.

Spacing of C is < d* since p and q

are in different clusters. =
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