
1

Java in 21 minutes

• hello world
• basic data types
• classes & objects
• program structure
• constructors
• garbage collection
• I/O
• exceptions
• Strings

Hello world

import java.io.*;

public class hello {

public static void main(String[] args)
{

System.out.println("hello, world");
}

}

• compiler creates hello.class
javac hello.java

• execution starts at main in hello.class
java hello

• filename has to match class name

• libraries in packages loaded with import
– java.lang is core of language

System class contains stdin, stdout, etc.
– java.io is basic I/O package

file system access, input & output streams, ...

2

Basic data types

public class fahr {
public static void main(String[] args){
for (int fahr = 0; fahr < 300; fahr += 20)

System.out.println(fahr + " " +
5.0 * (fahr - 32) / 9.0);

}
}

• basic types:
– boolean true / false
– byte 8 bit signed
– char 16 bit unsigned (Unicode character)
– int 32 bit signed
– short, long, float, double

• String is sort of built in
– "..." is a String
– holds chars, NOT bytes
– does NOT have a null terminator
– + is string concatenation operator

• System.out.println(s) is only for a single string
– formatted output is a total botch

2 versions of echo

public class echo {
public static void main(String[] args) {
for (int i = 0; i < args.length; i++)

if (i < args.length-1)
System.out.print(args[i] + " ");

else
System.out.println(args[i]);

}
}

public class echo1 {
public static void main(String[] args) {

String s = "";

for (int i = 0; i < args.length-1; i++)
s += args[i] + " ";

if (args.length > 0)
s += args[args.length-1];

if (s != "")
System.out.println(s);

}
}

• arrays have a length field (a.length)
– subscripts are always checked

• Strings have a length() function (s.length())

3

Classes, objects and all that

• data abstraction and protection mechanism
• originally from Simula 67, via C++ and others

class thing {

public part:
methods: functions that define what operations
can be done on this kind of object

private part:
functions and variables that implement the
operation

}

• defines a new data type "thing"
– can declare variables and arrays of this type, pass to

functions, return them, etc.
• object: an instance of a class variable
• method: a function defined within the class

– (and visible outside)
• private variables and functions are not accessible
from outside the class

• not possible to determine HOW the operations
are implemented, only WHAT they do

Classes & objects

• in Java, everything is part of some object
– all classes are derived from class Object

public class RE {
String re; // regular expression
int start, end; // of last match

public RE(String r) {...} // constructor
public int match(String s) {...}
public int start() { return _start; }
int matchhere(String re, String text) {...}

// or matchhere(String re, int ri, String text, int ti)

}

• member functions are defined inside the class
– internal variables defined but shouldn't be public
– internal functions shouldn't be public (e.g., matchhere)

• all objects are created dynamically
• have to call new to construct an object

RE re; // null: doesn't yet refer to an object
re = new RE("abc*"); // now it does
int m = re.match("abracadabra");
int start = re.start();
int end = re.end();

4

Constructors: making a new object

public RE(String re) {
this.re = re;

}

RE r;
r = new RE(s);

• "this" is the object being constructed or running
the code

• can use multiple constructors with different
arguments to construct in different ways:

public RE() { /* ??? */ }

Class variables & instance variables

• every object is an instance of some class
– created dynamically by calling new

• class variable: a variable declared static in class
– only one instance of it in the entire program
– exists even if the class is never instantiated
– the closest thing to a global variable in Java

public class RE {
static int num_REs = 0;

public RE(String re) {
num_REs++;
...

}

• class methods
– most methods associated with an object instance
– if declared static, associated with class itself
– e.g., main()

5

Program structure

• typical structure is

class RE {

private variables
public RE methods, including constructor(s)
private functions

public static void main(String[] args) {
extract re
for (i = 1; i < args.length; i++)

fin = open up the file...
grep(re, fin)

}
static int grep(String regexp, FileReader fin) {

RE re = new RE(regexp);
for each line of fin

if (re.match(line)) ...
}

}

• order doesn't matter

Destruction & garbage collection

• interpreter keeps track of what objects are
currently in use

• memory can be released when last use is gone
– release does not usually happen right away
– has to be garbage-collected

• garbage collection happens automatically
– separate low-priority thread manages garbage

collection
• no control over when this happens

– can set object reference to null to encourage it

• Java has no destructor (unlike C++)
– can define a finalize() method for a class to reclaim

other resources, close files, etc.
– no guarantee that a finalizer will ever be called

• garbage collection is a great idea
– but this is not a great design

6

I/O and file system access

• import java.io.*

• byte I/O
– InputStream and OutputStream

• character I/O (Reader, Writer)
– InputReader and OutputWriter
– InputStreamReader, OutputStreamWriter
– BufferedReader, BufferedWriter

• file access
• buffering
• exceptions

• in general, use character I/O classes

Character I/O

• InputStreamReader reads Unicode chars
• OutputStreamWriter write Unicode chars

• use Buffered(Reader|Writer)
– for speed
– because it has a readLine method

public class cp4 {
public static void main(String[] args) {
int b;
try {

BufferedReader bin = new BufferedReader(
new InputStreamReader(

new FileInputStream(args[0])));
BufferedWriter bout = new BufferedWriter(

new OutputStreamWriter(
new FileOutputStream(args[1])));

while ((b = bin.read()) > -1)
bout.write(b);

bin.close();
bout.close();

} catch (IOException e) {
System.err.println("IOException " + e);

}
}

7

Line at a time I/O

public class cat3 {

public static void main(String[] args) {
BufferedReader in = new BufferedReader(

new InputStreamReader(System.in));
BufferedWriter out = new BufferedWriter(

new OutputStreamWriter(System.out));
try {

String s;
while ((s = in.readLine()) != null) {

out.write(s);
out.newLine();

}
out.flush(); // required!!!

} catch (Exception e) {
System.err.println("IOException " + e);

}
}

Exceptions

• C-style error handling
– ignore errors -- can't happen
– return a special value from functions, e.g.,

-1 from system calls like open()
NULL from library functions like fopen()

• leads to complex logic
– error handling mixed with computation
– repeated code or goto's to share code

• limited set of possible return values
– extra info via errno and strerr: global data
– some functions return all possible values

no possible error return value is available

• Exceptions are the Java solution (also in C++)
• exception indicates unusual condition or error
• occurs when program executes a throw statement
• control unconditionally transferred to catch block
• if no catch in current function, passes to calling
method

• keeps passing up until caught
– ultimately caught by system at top level

8

try {…} catch {…}

• a method can catch exceptions

public void foo() {
try {

// if anything here throws an IO exception
// or a subclass, like FileNotFoundException

} catch (IOException e) {
// this code will be executed
// to deal with it

}

• or it can throw them, to be handled by caller

• a method must list exceptions it can throw
– exceptions can be thrown implicitly or explicitly

public void foo() throws IOException {
// if anything here throws an exception
// foo will throw an exception
// to be handled by its caller

}

Why exceptions?

• reduced complexity
– if a method returns normally, it worked
– each statement in a try block knows that the previous

statements worked, without explicit tests
– if the try exits normally, all the code in it worked
– error code grouped in a single place

• can't unconsciously ignore possibility of errors
– have to at least think about what exceptions can be

thrown

public static void main(String args[])
throws IOException {

int b;

while ((b = System.in.read()) >= 0)
System.out.write(b);

}

9

String methods

• a String is sequence of Unicode chars
– immutable: each update makes a new String

s += s2 makes a new s each time
– indexed from 0 to str.length()-1

• useful String methods
– charAt(pos) character at pos
– substring(start, len) substring

for (i = 0; i < s.length(); i++)
if (s.charAt(i) != s.substring(i, 1))

// can't happen

• String parsing

String[] fld = str.split("\\s+");

StringTokenizer st = new StringTokenizer(str)
while (st.hasMoreTokens()) {

String s = st.nextToken();
...

}

"Real" example: regular expressions

• simple class to look like RE
• uses the Java 1.4 regex mechanism
• provides a better interface (or at least less clumsy)

import java.util.regex.*;

public class RE {
Pattern p;
Matcher m;

public RE(String pat) {
p = Pattern.compile(pat);

}
public boolean match(String s) {

m = p.matcher(s);
return m.find();

}
public int start() {

return m.start();
}
public int end() {

return m.end();
}

}

10

Java vs. C and C++

• no preprocessor
– import instead of #include
– constants use static final declaration

• C-like basic types, operators, expressions
– sizes, order of evaluation are specified

byte, short, int, long: signed integers (no unsigned)
char: unsigned 16-bit Unicode character
boolean: true or false

• really object-oriented
– everything is part of some class
– objects all derived from Object class
– static member function applies to whole class

• references instead of pointers for objects
– null references, garbage collection, no destructors
– == is object identity, not content identity

• all arrays are dynamically allocated
– int[] a; a = new int[100];

• strings are more or less built in
• C-like control flow, but

– labeled break and continue instead of goto
– exceptions: try {…} catch(Exception) {…}

• threads for parallelism within a single process
– in language, not a library add-on

