
Software Explorations

Sqzng Engl Txt
BY JON BENTLEY

My colleague was working on a huge archival data-
base that occupied an expensive farm of disk drives. His
predecessors on the task had boasted that by using a
commercial data compression scheme, they had
reduced the space required by a factor of five (compared
to the input records). My colleague was impressed but
not awed: he combined a few standard data compres-
sion tricks with a couple of new ones, and ended up
squeezing an additional factor of four, for a total com-
pression factor of twenty.

That story has two important morals. The first is that
standard compression schemes usually work quite well.
The second is that special-purpose schemes are some-
times useful, too. In this column we will examine a few
data compression techniques by using them on an inter-
esting problem.

The Input File

Our task will be to compress a large file of English text:
the biblical Book of Genesis. Here is the first line of the
file (broken across two lines to fit this page):

GEN 1:1 In the beginning God
created the heaven and the earth.

Each of the 1533 verses in the book is presented in a
single line in the file:

$ wc gen.txt
1533 41330 212986

$

Exercise 1. Find an online Bible and try to compress
its first book. Your techniques must be capable of
restoring the file to exactly its original condition.

The book, chapter and verse at the start of each line
are important when we grep the file, but they are redun-
dant when we read the file from the beginning. We can
remove that information entirely, and replace it with a
special line at the start of each chapter; the new line
might contain, for instance, the single word ‘‘CHAPTER’’.

Before we remove the information, though, we should
check to ensure that all verses are in the proper order.
Here is an Awk program for the task:



Software Explorations — Galley 2

{ split ($2, x, ":")
chap = x[1]
vers = x[2]
if ((chap == ochap) ? \

(vers!=overs+1) : \
(chap!=ochap+1 || vers!=1))

print "BREAK", ochap, overs,
chap, vers

ochap = chap
overs = vers

}

Because there is no pattern, the action is repeated on
each input line. The first three lines pry chapter and
verse from the second field. The logic is divided into two
cases: If this chapter is the same as the old chapter, then
this verse must be the successor to the old verse. If the
chapters differ, though, then the new chapter must be
succeed the old, and the new verse must be one. When
I ran this program on the input file, all verses appeared in
order.

Exercise 2. Run this program on an online Bible to
find if any verses are missing.

Because no verses are missing, we may remove the
chapter and verse. This Awk program sets both fields to
blank, removes spaces at the beginning of each line, and
the prints the modified line:

{ $1 = $2 = ""
sub(/ˆ */, "")
print

}

A complete program would also have to put in a chapter
marker (such as ‘‘CHAPTER’’), and a marker for any
missing verses (such as ‘‘MISSING’’).

This program reduces the number of characters in the
file from 212,986 to 196,808, so the file is 92.4% of its
original size. This little exercise illustrates the rules of
our game. Our job is to sketch a compression scheme
and measure its effectiveness. We don’t have to build a
decoder, or even a complete encoder. The techniques,
though, must be able to restore the file to its original con-
dition. We may make a few approximations in evaluating
compression efficiency (such as ignoring the space
required by ‘‘CHAPTER’’ lines), but our answer should
be in the right ballpark.

Exercise 3. Sketch techniques that you would use to
compress this file.

Huffman Codes

Variable-length codes save space by assigning short
codes to common messages and long codes to rare
messages. Common English words like ‘‘in’’ tend to be
shorter than less common words like ‘‘beginning’’. In



Software Explorations — Galley 3

Morse code, the common letter ‘‘e’’ is ‘‘dot’’ while the
rare letter ‘‘y’’ is ‘‘dash dot dash dash’’. In 1952, David
Huffman gave a precise mathematical statement to this
intuitive idea.

Figure 1 shows a binary Huffman code for the letters in
Genesis (after stripping the verse numbers). To find the
code for a given character, start at the root of the tree
and proceed down to that character. A left branch repre-
sents a zero and a right brance represents a one. To go
to the space character (‘‘sp’’) for instance, we take two
left branches, so its code is ‘‘00’’. Similarly, the code for
‘‘o’’ is ‘‘0101’’, and the code for ‘‘b’’ is ‘‘010010’’. (Punc-
tuation characters are represented by two-letter codes:
‘‘sc’’ for semicolon, ‘‘qu’’ for quote, ‘‘ap’’ for apostrophe,
and so forth.)

sp
•

g
•

S
•
R

•

x
•

q
•
U

•
F

•
qu

•
E

•

sc
•

G
•

H
•
P

•

b
•
c

•
o

•

l
•

pe
•
v

•
y

•
n

•

co
•

I

•
nl

•
w

•

L
•

W
•

Z
•

K
•

rp
•

ex
•
lp

•
Y

•
O

•

J
•

B
•
D

•
A

•
u

•
h

•

t
•
a

•

f
•

p
•

k
•

C
•
M

•

N
•

z
•

j

•

T
•
ap

•
r

•

ca
•
m

•
i

•

s
•
d

•
e

Figure 1. A byte-level Huffman code for Genesis.

In this section we will study Huffman’s algorithm to
construct trees; in the next section, we will apply the
algorithm to yield the tree in Figure 1. We’ll consider the
example of encoding the single word ‘‘MISSISSIPPI’’.
We start by counting all letters:

M 1
I 4
S 4
P 2

Our task is to build a tree with minimal transmission cost
for those letter frequencies, which we’ll call counts.

Huffman’s algorithm starts with a forest of one-node
trees and iteratively combines them to form a single tree.
Here is the initial set of leaves:

M:1 P:2 S:4 I:4

The main step of the algorithm is to choose the two sub-
trees with minimal count and combine them. In this



Software Explorations — Galley 4

case, the two smallest values are 1 (‘‘M’’) and 2 (‘‘P’’), so
we combine them to make a new node with count 3:

M:1 P:2

S:4 I:43

The two smallest counts in the resulting forest are 3 and
4 (‘‘S’’ — ties may be broken arbitrarily), so we combine
those into a new node with count 7:

M:1 P:2

S:4

I:4

3

7

The final step combines the two last trees to yield the
optimal Huffman tree:

M:1 P:2

S:4

I:4

3

7

11

This tree gives us a simple encoding table:

M 000
P 001
S 01
I 1

The encoded version of ‘‘MISSISSIPPI’’ is therefore

000101011010110010011

This example shows the essence of Huffman’s algo-
rithm: we start with a set of counts, and iteratively sum
the two smallest until a single count remains.

Exercise 4. What algorithms would you use in a pro-
gram to build Huffman trees?

We could keep all counts in an array and at each itera-
tion scan the whole length to find the two smallest counts
— that requires quadratic time and is sloppy to code. If
we instead store the N counts in a priority queue, we can
reduce the total time to O(NlogN), but that can be even
more difficult to code. We will weasel around all of these
difficulties by sorting the counts in O(NlogN) time and
then scanning through them in increasing order in O(N)
time.

This table shows the history of the weights in the
‘‘MISSISSIPPI’’ example. The four original weights are



Software Explorations — Galley 5

presented in increasing order at the left of the first pic-
ture. The first step sums 1 and 2 to make 3; in the sec-
ond line, 1 and 2 are therefore crossed out, and 3 is
added to the right.

1 2 4 4
1 / 2 / 4 4 3
1 / 2 / 4 / 4 3 / 7
1 / 2 / 4 / 4 / 3 / 7 / 11

The third line crosses out the (original) 4 and the (new)
3, and writes a (new) 7 on the left. In the final line only
the 11 remains, corresponding to the root of the tree we
saw earlier.

This linear representation makes it easy to find the two
smallest elements. Because both the input and gener-
ated weights appear in increasing order, we can keep
two indices into the array to point to the smallest input
and generated counts. Program 1 implements this idea
in an Awk program. In addition to the count array, the
program also uses a recursive definition to compute a
cost array to show the cost in bits of transmitting all
symbols below this node in the tree. As its final act, the
program prints the cost of sending the root symbol,
which is the number of bits required to transmit the com-
plete message.

Exercise 5. Program 1 computes a great deal of infor-
mation and ignores most of it. Modify the program to
print out the Huffman codes or to produce a picture
like Figure 1.

{ count[NR] = $1 # Number of symbols
cost[NR] = 0 # Transmission cost
countsum += $1

}
END { n = NR

for (i = n+1; i <= 2*n; i++)
count[i] = 1 + countsum # Sentinel

locheap = 1 # Least input weight
hicheap = n+2 # Least new weight
for (i = n+2; i <= 2*n; i++) {

j = cheaper()
k = cheaper()
count[i] = count[j] + count[k]
cost[i] = cost[j]+cost[k]+count[i]

}
print cost[2*n]

}
function cheaper() {

if (count[locheap] < count[hicheap])
return(locheap++)

else
return(hicheap++)

}

Program 1. hufcost: Given counts, find cost of Huffman code.



Software Explorations — Galley 6

Character-Level Huffman Codes

To apply hufcost to our text file, we need to count
how many times each character occurs. Here is the
main body of the bytecount program to do that:

int c, i;
long count[BYTESIZE];

for (i = 0; i < BYTESIZE; i++)
count[i] = 0;

while ((c = getchar()) != EOF)
count[c]++;

for (i = 0; i < BYTESIZE; ++i)
if (count[i])

printf("%ld\n", count[i]);

The first loop initializes the counts to zero, the second
loop increments the count for each character read, and
the third loop prints nonzero counts.

We can now compute the cost of Huffman coding the
(stripped) file with this pipeline:

denum gen.txt | bytecount | sort -n | hufcost

The final answer is 865,571 bits, which is 55.0% of the
original file size.

This experiment ignores a small ‘‘implementation
detail’’ that will loom large in the next section: we have
accounted for sending the Huffman-encoded bit stream,
but how do we send the tree itself? We will use the stan-
dard parenthesized representation for trees; the tree we
saw earlier for ‘‘MISSISSIPPI’’ will be encoded as

(((MP)S)I)

Exercise 6. Show that a tree with N leaves can be
represented using N − 1 pairs of parentheses.

Because our text contains only 60 distinct characters, we
can represent the tree in about 180 extra bytes.

Exercise 7. The pack(1) program uses Huffman
codes to compress text files. Measure pack on this
file, and compare its performance to our quick esti-
mate.

One pack I use compressed the file to 877,256 bits, and
another reduced it to 866,264 bits; both are close to our
prediction of 865,571.

Word-Level Huffman Codes

The often employed but rarely quoted Pig Principle
states that ‘‘If some is good, more is better.’’ If encoding
letters gives good compression, perhaps encoding whole
words will give even better compression.

Our first job is to break the input text into a string of
tokens, one per line. Here is the body of the main func-
tion in the token program:



Software Explorations — Galley 7

int c, type, otype, started = 0;

while ((c = getchar()) != EOF) {
if (c == ’\n’) c = ’*’;
if (c == ’ ’) c = ’_’;
type = isalpha(c) != 0;
if (type != otype && started)

putchar(’\n’);
putchar(c);
otype = type;
started = 1;

}

To ease character processing, the first two lines in the
loop replace newlines with asterisks and spaces with
underscores. Subsequent lines print a newline between
alphabetic and nonalphabetic characters. The phrase ‘‘it
was so.’’ therefore becomes

it
_
was
_
so
.*

To feed the hufcost program, we have to count how
many times each token occurs. This wordcount pro-
gram prints the count of how many times a token occurs
followed by the token itself (the token is ignored by huf-
cost but will be used later):

{ count[$1]++ }
END { OFS = " "

for (i in count)
print count[i], i

}

It produces a file that (after it is sorted) ends with these
five lines:

1359 of
2408 the
2428 and
3626 ,_
31822 _

We now have all the pieces to measure the cost of
Huffman encoding the input text:

denum gen.txt | token | wordcount |
sort -n | hufcost

The result is 439,276 bits, or 25.8% of the original file
size. This is a huge compression, but it is also a huge
lie: we still have to send the words and their Huffman
tree.

This little experiment tells us a lot about the size of the
token dictionary:



Software Explorations — Galley 8

$ denum gen.txt | token | wordcount |
awk ’{print $2}’ | wc

2631 2631 18210
$

There are 2631 distinct tokens, and the tokens require
15,579 characters (ignoring the newlines). By Exercise
6, we can parenthesize the tree using 2630 pairs of, say,
angle brackets (‘‘<>’’). The Huffman tree can therefore
be represented in 2×2630 + 15 , 579 or 20,839 charac-
ters, or 166,712 bits. The total number of bits for both
the Huffman tree and the stream is 605,988, which is
35.6% of the original file size.

We can use two old tricks to reduce the space even
further. Both common sense and inspection of the out-
put of the token program tell us that most words are fol-
lowed by a single space character. We may delete those
from the stream at the cost of a slightly smarter decoding
program (supply a space unless the next token is punc-
tuation). To measure this approach, I manually deleted
the last line in the counts file:

31822 _

When I ran the hufcost program again, the cost
decreased from 439,276 bits to 362,236 bits.

The new Huffman tree (without the ‘‘_’’ word) is repre-
sented in 20,836 characters. Because there are only 62
distinct characters, though, we may represent each one
in 6 bits. The cost of sending the tree is therefore
125,016 bits, and the total cost is 487,252 bits, or 28.6%
of the original file size.

Exercise 8. While pack(1) is based on Huffman
codes, compress(1) uses the more powerful Lempel-
Ziv algorithm. How well does compress do on this
file?

Principles

Prototyping and Measuring. We’ve learned a lot about
data compression, but we’ve built only little pieces of
encoders and no decoders at all. Instead, we’ve built
tools to measure the performance of methods. Some-
times such measurements help us avoid the work of
building the complete tool. If we do build a working sys-
tem, we should be careful to compare its performance to
the cheap measurements from our prototypes.

Huffman Codes. This elegant algorithm is eminently
practical. We can apply the scheme to encoding individ-
ual letters, English words, or a variety of other objects.
We computed new Huffman trees for this particular docu-
ment, but we might compute general trees for English
letters or words, and thereby avoid the cost of computing
and transmitting the tree for each document.

Engineering Data Compression. Beyond its underlying
mathematics, data compression has a rich heritage of



Software Explorations — Galley 9

engineering tricks. We exploited problem-specific knowl-
edge in removing the spaces between words and chap-
ter and verse numbers. We have ‘‘mixed and matched’’
a few tools, but there is more work to be done.

Exercise 9. How much further can you squeeze this
file?

Solutions to Selected Exercises

1. Try the online Bible at Project Gutenberg:

ftp://mrcnext.cso.uiuc.edu/
gutenberg/etext92/bible10.txt

2. The online Authorized Version had all verses present.
Since that translation (dedicated to King James), modern
scholarship has found still more ancient manuscripts, so
some verses are missing in new translations (see, for
instance, John 7:53-8:11).

8. On my system, compress squeezes the file down to
35.9% of its original size, which is about 25% larger than
our method. The gzip program reduces the file to
29.6%.

9. We could use Huffman codes to encode the word-
level Huffman tree. The June, 1991, edition of this col-
umn compressed an English dictionary; many of those
techniques are useful in sending the Huffman tree.
____________________________________________________________________________________________________________

Jon Bentley is a Member of Technical Staff in the
Computing Science Research Center at AT&T Bell Labo-
ratories.


