
1

Web interfaces

• Javascript

• HTML
• DOM
• CSS

• XMLHttpRequest
• Ajax

Reprise of HTTP

• What happens when you click on a URL?
• client sends request:

GET url HTTP/1.0
(blank line)

• server returns
header info

(blank line)

HTML
– since server returns the text, it can be created as

needed
– can contain encoded material of many different

types (MIME)

• URL format
service://hostname/filename?other_stuff

filename?other_stuff part can encode
– data values from client (forms)
– request to run a program on server (cgi-bin)

GET url

HTML

client server

2

HTML form

<html>
<body>

<FORM METHOD=GET
ACTION="http://campuscgi.princeton.edu/

~bwk/hello1.cgi" >
<INPUT TYPE="submit" value="hello" >
</FORM>

</body>
</html>

• form data is URL-encoded in query string (GET)
or to server's stdin (POST)

• limited interaction on client side
• requires synchronous exchance with server

– potentially slow, client blocks waiting for response
• requires recreating entire page with whatever

comes back
– even if it's identical to current content

• how can we make web interfaces more
interactive and responsive?

Javascript

• very widely used programming language
• all browsers support it (though not identically)
• usually enabled (though not always)

• simple scripting language
– C/Java-like syntax
– about the level of Awk
– very weakly typed

basic data types: double, bool, string, array, object
– object-oriented

• runs inside browser
<script> javascript program </script>
<script src="url"></script>
<sometag onSomeEvent='javascript code'>

• can catch events from mouse, keyboard, ...
• can access browser's object interface

– window object
– document object (DOM == document object model)

• can create original page and alter it later

3

Javascript on a page or two

• case sensitive
• semicolons or newline as statement terminators
• // or /*...*/ comments
• var x to declare variable

– scope is either global or current function
• double, bool, 'string' or "string" with \ escapes

– null for undefined value
• operators, expressions, and control flow

are like C or Java, sort of
– for (v in obj) ...
– try {...} catch() {...} finally {...}

• user-defined functions
function sum(x, y) { return x + y; }

• arrays are sort of quasi objects
var a = [zero, 1, "2", 'three', 4.5]
var b = new Array()
for (i = 0; i < a.length; i++)

b[i] = a[i]

• other array methods
– sort, shift, join, reverse, ...

Find the largest number

<html>
<body>
<script>

var max = 0
var num
num = prompt("Enter new value")
while (num != null && num != "") {

if (parseFloat(num) > max)
max = num

num = prompt("Enter new value")
}
alert("Max = " + max)

</script>
</body>
</html>

• needs parseInt or parseFloat to coerce
string value to a number

4

Sorting (the hard way)

var name, i = 0, j, temp
var names = new Array()

name = prompt("Enter new name")
while (name != "") {

names[names.length] = name
name = prompt("Enter new name")

}

for (i = 0; i < names.length-1; i++) {
for (j = i+1; j < names.length; j++) {

if (names[i] > names[j]) {
temp = names[i]
names[i] = names[j]
names[j] = temp

}
}

}

s = names[0]
for (i = 1; i < names.length; i++)

s += "\n" + names[i]
alert(s)

• the easy way:
names.sort()
alert(names.join("\n"))

Javascript library

• math
– sqrt, max, min, random, ...

• string
– searching, substring, case conversion,
– convert to HTML, ...

• regular expressions
– about the same as Perl

• date/time
– current time, elapsed time, conversions

• ...

5

Javascript objects

• objects are associative arrays
– associate names with properties
– name of property is the subscript

• can define your own objects
– including inheritance

• can create anonymous objects
var o = { x:1, y:2, z:hello" };

• browser environment includes objects like
window and document

DOC: Document Object Model

• a web page in HTML (or XHTML) is structured
data
– XHTML is a tag set for HTML

• the document object model (DOM) is a
representation of this hierarchy

• DOM methods, properties and events are
accessible from Javascript
– usually in <form> tag for buttons, text, etc.
– can also appear in other tags, images, ...
– event handling code can be attached to tags as

attributes

• window methods and properties
– alert(msg), prompt(msg), ...
– open(url)
– size, position, scrolling, ...
– history, status bar, ...
– document

6

Embedding Javascript

• in a form:
<form>
<input type=button value="Hit me"

onClick='alert("Ouch! That hurt.")'>
<input type=text name=url size=30>
<input type=button value="GO"

onCLick='window.open(url.value)'>
<input type=button value="color it "

onClick='document.bgColor=color.value'>
<input type=text name=color

value='type a color here'>
<input type=button value='make it white'

onClick='document.bgColor="white"'>
</form>

• in a tag
<body onUnload='alert("bugging out")'>

• on an image
<img src="smiley.gif"

onMouseover='src="new.gif"'
onMouseout='src="smiley.gif"'>

• etc.

CSS: Cascading Style Sheets

• a language describing how to display (X)HTML
documents

• separates structure (HTML) from presentation
(CSS)
p { font-family: "Garamond", serif; }
h2 { font-size: 110%; color: red;

background: white; }
a:hover { text-decoration: none;

color: #f0f; font-weight: bold }

• style property of most document entities can be
set by Javascript

<body id="body">
<script>
var b = document.getElementById("body")
b.style.backgroundColor='lightyellow'
b.style.fontFamily='Verdana'
b.style.fontSize='72px'
b.style.color='blue'
</script>
hello

7

XMLHttpRequest

• interactions between client and server are
usually synchronous
– so there can be significant delay
– and page has to be redrawn

• XMLHttpRequest provides asynchronous
communication with server

• used in Google Suggest and Google Maps
– also Orkut, Gmail, Flickr, A9 (it is said)

• "The real importance of Google's map and
satellite program, however, is not its impressive
exterior but the novel technology, known as
Ajax, that lies beneath."
– James Fallows, NY Times, 4/17/05

• Ajax: Asynchronous Javascript + XML
(shorthand/marketing/buzzword term for an oldish idea)

– XHTML + CSS for presentation
– DOM for changing display
– Javascript to implement client actions
– XML for data exchange with server

(but it doesn't have to use XML)

Google Suggest in microcosm

<body>
<form>
Search:
<input type="text" id="pat"

onkeyup='geturl(pat.value); return true;' >
</form>

<pre>

</body>
</html>

8

Basic structure
var req;

function loadXMLDoc(url) {
if (window.XMLHttpRequest) { // native

req = new XMLHttpRequest();
req.onreadystatechange = processReqChange;
req.open("GET", url, true);
req.send(null);

} else if (window.ActiveXObject) { // IE ActiveX
req = new ActiveXObject("Microsoft.XMLHTTP");
if (req) {

req.onreadystatechange = processReqChange;
req.open("GET", url, true);
req.send();

}
}

}

function processReqChange() {
if (req.readyState == 4) { // completed request

if (req.status == 200) // status OK
show(req.responseText)

}
}

function geturl() {
url = 'http://www.cs.princeton.edu/~bwk/echo.cgi';
loadXMLDoc(url); // loading is asynchronous

}

function show(s) { // show whatever came back
var e = document.getElementsByTagName("P")[0]
e.firstChild.nodeValue = s

}

XMLHTTP methods/properties

9

Assessment

• potential advantages
– can be much more responsive (cf Google maps)
– can offload work from server to client

• potential negatives
– Javascript has to be enabled
– Javascript is not a great language
– asynchronous code can be hard to write
– DOM is very awkward
– mechanism not yet fully standardized
– Javascript code is exposed to client

• what next?
– better libraries for XML, DOM ?
– better tools and languages for programming ?
– better standardization ?

