
1

Microsoft .NET

• what is .NET?

• "framework" for supporting web-based services
– single run-time environment for programs written in a

variety of languages
– web forms for interfaces on web pages
– XML, SOAP, WSDL, UDDI, etc., for web services

• development platform
– single intermediate language as target for all

languages
– common type system

all languages produce interoperable objects and types
– common language runtime environment

base class libraries accessible to all languages
just in time compilation

– control of deployment and versioning
the end of DLL hell?

– IDE for writing programs
– significant new language, C#
– evolution of Visual Basic and other languages

Why bother / who cares?

• primary focus of Microsoft software development
– next stage after COM
– likely to have major impact on how computing is done

certainly in Microsoft world

• interesting comparisons and contrasts with Java
and J2EE

• ties in with other topics of 333
– evolution of C, C++, Java -> C#
– object-oriented programming
– component-based software development
– Visual Basic, user interfaces
– web services
– politics and economics of software

2

Java model

• Java language
– derivative of C and C++
– strictly object-oriented
– garbage collection

• compiled into intermediate language ("byte code")
– result stored in .class files
– packages and JAR files for larger collections

• interpreted by Java Virtual Machine on host
– local services provided by host system
– enormous set of libraries in JRE
– can be compiled into native instructions either ahead

of time or "just in time"
• largely portable

– types completely specified
– main problems come from making use of services of

host environment
– "write once, run anywhere" is partially true

• applets for running code in web pages
• Java Server Pages (JSP) for server-based web
transactions

.NET model

• multiple languages: C#, VB, C++, Jscript, …
– C# is a derivative of C, C++ and Java
– VB.net is a significantly different version of VB
– "managed extensions" for C++ that permit safe

computation, garbage collection, etc.
• all are object-oriented

• all languages compile into same intermediate
language ("MSIL")
– types completely specified by Common Type System

(CTS)
– objects can interoperate if they conform to Common

Language Specification (CLS) [a subset of CTS]

• IL compiled into native machine instructions
– just in time compilation: no interpretation
– local services provided by host system (Win 2K/XP)
– enormous set of libraries

• not portable
– tightly integrated into Windows environment

• web forms for GUI components on web pages
• ASP.NET for server-based web transactions

3

Common Language Runtime (CLR)

• all languages compile into IL that uses CLR
• common services:

– memory management / garbage collection
– exceptions
– security
– debugging, profiling

• access to underlying operating system

VB

managed code

common language
runtime, JIT

wrappers for existing
OS features

new features like
garbage collection

Windows operating system

C# C++J#

C# programming language

• based on C, C++ and Java
– Microsoft does not stress the Java contribution
– "An evolution of Microsoft C and Microsoft C++"

(Visual Studio.NET documentation)

• "C# has a high degree of fidelity to C and C++"
– everything is a class object (Java)

no global functions, variables, constants
– garbage collection; destructors called implicitly (Java)
– arrays are managed types (Java)
– updated primitive types (Java)

char is Unicode character; string is a basic type
– single inheritance and interfaces (Java)
– ref, out parameter modifiers
– try-catch-finally (Java)
– delegate type (roughly, function pointers)
– unsafe mode (pointers permitted)
– some syntax changes:

‘.’ instead of -> and :: (Java), switches don’t fall through
foreach statement

– no need for forward declarations (Java)
– no headers or #include (Java)
– /// documentation comments (Java)

4

Visual J#

• "Visual J# is a development tool that
developers who are familiar with the Java-
language syntax can use to build applications
and services on the .NET Framework. It
integrates the Java-language syntax into the
Visual Studio .NET integrated development
environment (IDE). Visual J# also supports
most of the functionality found in Visual J++
6.0, including Microsoft Extensions. Visual J#
is not a tool for developing applications
intended to run on a Java Virtual Machine.
Applications and services built with Visual J#
will run only in the .NET Framework. Visual J#
has been independently developed by
Microsoft. It is not endorsed or approved by
Sun Microsystems, Inc. For more information,
see Introducing Visual J#."

– from Microsoft's introduction to .NET

Separated at birth?

public class hello {
public static void main(String[] args)
{

System.out.println("hello, world");
}

}

using System;
public class hello {
public static void Main(string[] args)
{

System.Console.WriteLine("hello, world");
}

}

5

“echo” in Java and C#

public class echo {
public static void main(String[] args) {

for (int i = 0; i < args.length; i++)
System.out.println(

"Arg[" + i + "] = ["
+ args[i] + "]");

}
}

using System;
public class echo {

public static void Main(string[] args) {
for (int i = 0; i < args.Length; i++)

Console.WriteLine(
"Arg[{0}] = [{1}]", i, args[i]);

}
}

fmt in Java
import java.io.*;
import java.util.*;

public class f {
String line = "";
String space = "";
int maxlen = 60;

public static void main(String args[]) {
f t = new f();
t.runf();

}
public void runf() {
String s;
try {

BufferedReader in = new BufferedReader(
new InputStreamReader((System.in)));

while ((s = in.readLine()) != null) {
String wds[] = s.split("[]+");
for (int i = 0; i < wds.length; i++)

addword(wds[i]);
}

} catch (Exception e) {
System.err.println(e); //eof

}
printline();

}
public void addword(String w) {
if (line.length() + w.length() > maxlen)

printline();
line += space + w;
space = " ";

}
public void printline() {
if (line.length() > 0)

System.out.println(line);
line = "";
space = "";

}

6

fmt in C#
using System;
using System.IO;

namespace fmtcs
{
class fmt {

int maxlen = 60;
string line = "";

static void Main(string[] args) {
new fmt(args[0]);

}
fmt(string f) {

string inline;
Stream fin = File.OpenRead(f);
StreamReader sr = new StreamReader(fin);
for (inline = sr.ReadLine(); inline != null;

inline = sr.ReadLine()) {
string[] inwords = inline.Split(null);
for (int i = 0; i < inwords.Length; i++)

addword(inwords[i]);
}
printline();

}
void addword(string w) {

if (line.Length + w.Length > maxlen)
printline();
if (line.Length > 0)

line += " ";
line += w;

}
void printline() {

if (line.Length > 0) {
Console.WriteLine(line);
line = "";

}
}

}
}

Accessors (get/set members)

• syntax looks like public class variables
• semantics defined by calling get and set methods

class Thing {
static bool fldstate;

public static bool fldok {
get { return fldstate; }
set { fldstate = value; }

}
}

Thing v;

if (v.fldok)
v.fldok = false;

7

Indexers (get/set [] members

• syntax looks like array access (v[i])
• semantics defined by calling get and set
members with a subscript

public class Awkarray {
public Hashtable ht = new Hashtable();
public Awk this[string name] {
get {
if (!ht.Contains(name))
ht.Add(name, new Awk());

return (Awk) ht[name];
}
set { ht.Add(name, value); }

}

Awkarray aa = new Awkarray();

if (aa["whatever"] != null)
aa["whatever"] = "a string";

Visual Studio.NET: the IDE

8

Visual Studio.NET

• handles multiple languages
• completely integrated with languages and run-
time environment
– can run compilers, etc., from command line too

• extensive online help

fmt in VB.NET
Module Module1

Dim line As String
Sub Main(ByVal args As String())

Dim inline As String, words As String()
Dim i As Integer
line = ""
FileOpen(1, args(0), OpenMode.Input)
While Not EOF(1)

inline = LineInput(1)
words = inline.Split(Nothing)
For i = 0 To words.Length - 1

addword(words(i))
Next i

End While
FileClose(1)
printline()

End Sub
Sub addword(ByVal w As String)

If line.Length + w.Length > 60 Then
printline()

End If
If line.Length > 0 Then

line = line & " "
End If
line = line & w

End Sub
Sub printline()

If line.Length > 0 Then
Console.WriteLine(line)
line = ""

End If
End Sub

End Module

9

Other languages

• VB changes
– now object-oriented
– some obsolete features finally deleted (GOSUB)
– library changes
– arrays now origin 0, not 1 (upper limit is n, not n-1)
– wizard to upgrade from previous version

• managed extensions for C++
– garbage collected classes

__gc class M { public: int i; };
int main() {

while (true)
M *m = new M;

// runs forever without exhausting heap
}

– __gc pointers point to managed items only
– __value classes for small items with short lifetimes
– System::String type: S"this is a string"
– etc.

Other worlds

• access to COM object from .NET client
– .NET client calls COM object through a wrapper

RuntimeCallableWrapper
– callable at runtime (no prearrangement needed)
– wrapper makes COM object look like it is a .NET

object
– and makes .NET client look like a COM client

• access to .NET components from COM
– less common case, probably
– COM object calls .NET object through a wrapper

COM Callable Wrapper
– makes .NET object look like a COM object

10

Assemblies

• "fundamental unit of deployment, version control,
reuse, activation scoping, and security
permissions for a .NET-based application"

VS.NET documentation

• collection of type and resource info
• (usually? always?) packaged as a .exe or .dll

– may contain other files, including .exe and .dll
– executable parts are in MSIL, not native code

• each assembly contains a "manifest" with
– name, version of the assembly
– file table: other files in the assembly
– external dependencies

• greatly reduce need for Windows registry
– program and components self-contained
– can often remove an application just by removing the

files

Deployment, versioning

• prior to .NET, installing an application requires
– copying files to multiple directories
– making entries in registry
– adding shortcuts to desktop and menus

• backing up, moving, removing an application
requires an installer program

• “DLL Hell”: shared libraries get out of sync with
apps that need them
– new installation breaks existing programs that rely on

properties of old DLL
– new installation overwrites newer DLL with older one

• assemblies provide strong internal naming/typing
– ensure that the right library is being used
– assembly can specify versions of external references

that it needs to work properly
– CLR loads proper one
– can have old and new versions working side by side

11

J2EE (Java 2 Enterprise Edition)

• Java comes in 3 editions
– J2SE standard edition (what we all use)
– J2ME embedded edition (phones, PDAs, ...)
– J2EE enterprise edition (big systems)
– same language but different libraries and

programming models

• J2EE aimed at e-commerce
– browse through offerings
– select item, gather billing & shipping info
– check inventory (maybe trigger supply chain)
– validate financial info
– arrange shipping, get tracking number
– ...

• usually complicated multi-tier structures
– need toolkit of subsystems for building system

naming & directory services
distributed objects
database access, concurrency control, transaction integrity
security

– need help in integrating and packaging components
(Java components called "beans")

J2SE/J2EE vs .NET

• technical
– trying to solve similar problems
– Java is a single language solution
– .NET supports multiple languages
– Java builds on existing environments; portable
– .NET deeply embedded in Windows, only runs there
– JSP similar to ASP

– creating web services more integrated in .NET:
every program is potentially a web service

• non-technical
– monopoly vs. benevolent dictatorship?
– Sun is concerned that Microsoft will cut the ground

out from under it as an enterprise software system
lawsuit charges anti-trust violations, unfair competition

that tries to damage Java (filed March 2002)
– April 2004: Sun & Microsoft settle all legal issues,

Microsoft pays Sun $1.6B

12

Tentative conclusions

• C# is a reasonable language
– easy to pick up basics if know Java
– easy to convert Java statements to C#
– batch mode compilation is easy

• VB.NET is too complicated
– each new release has made it more complicated
– wizard helps upgrade process but can't handle lots of

things
• C/C++ are not much changed

– some minor problems compiling old programs
• Visual Studio.NET feels smoother and easier
than Visual Studio 6
– all languages are handled in a uniform way
– good integration of visual and textual
– some remarkable omissions (layout managers!)

• likely to be too hard to adapt or upgrade most
existing programs to .NET
– they may not port to older versions of Windows

• a reasonable choice for brand new
implementations

