
1

Where do we go from here?

• C++
– classes and objects again, with all the moving parts

visible
– operator overloading
– templates, STL

• Visual Basic, C#, .NET
– user interfaces
– component-based software
– viruses ?

• XML and friends
– XSLT, XPath, XQuery, ...
– web services; SOAP, WSDL, ...

• ???

• Guest lectures
April 14: Peter Ullman '91, Woodcock Washburn

software intellectual property
April 19: Mary Fernandez *96, AT&T Research

XML etc.

Complicated data types in C

• representation is visible, can't be protected
– opaque types are sort of an exception

• creation and copying must be done very carefully
– and you don't get any help with them

• no initialization
– you have to remember to do it

• no help with deletion
– you have to recover the memory when not in use

• weak argument checking between declaration and
call
– easy to get inconsistencies

• the real problem: no abstraction mechanisms
– complicated data structures can be built,

but access to the representation can't be controlled
– you can't change your mind once the first

implementation has been done

• abstraction and information hiding are
nice for small programs
absolutely necessary for big programs

2

C++

• designed & implemented by Bjarne Stroustrup
Bell Labs (1979-95) -> AT&T Labs (1995-) -> TAMU (2003)

– began ~ 1980; ISO standard 1998

• a better C
– more checking of interfaces (ANSI C)
– other features for easier programming

• data abstraction
– you can hide HOW something is done in a program,
– reveal only WHAT is done
– HOW can be safely changed as program evolves

• object-oriented programming
– inheritance -- new types can be defined that inherit

properties from previous types
– polymorphism or dynamic binding -- function to be

called is determined by data type of specific object
at run time

• parameterized types
– define families of related types, where the type is a

parameter
– templates or "generic" programming

C++ classes

• data abstraction and protection mechanism
derived from Simula 67 (Kristen Nygaard, Norway)

class thing {
public:

methods -- functions that define what operations can
be done on this kind of object

private:
variables and functions that implement the operations

};

• defines a data type 'thing'
– can declare variables and arrays of this type, create

pointers to them, pass them to functions, return
them, etc.

• object: an instance of a class variable
• method: a function defined within the class

• private variables and functions are not accessible
from outside the class

• it is not possible to determine HOW the
operations are implemented, only WHAT they do.

3

C++ synopsis

• data abstraction with classes
– a class defines a type that can be used to

declare variables of that type,
control access to representation

• operator and function name overloading
– all C operators (including assignment, (), [], ->,

argument passing and function return) can be
overloaded so they apply to user-defined types

• control of creation and destruction of objects
– initialization of class objects
– recovery of resources on destruction

• inheritance: derived classes built on base classes
– virtual functions override base functions
– multiple inheritance: inherit from more than one class

• exception handling
• namespaces for separate libraries
• templates (generic types)
• Standard Template Library

– generic algorithms on generic containers

• compatible (almost) with C
– except for new keywords

Stack class in C++

// stk1.c: simple-minded stack class

class stack {
private: // default visibility

int stk[100];
int *sp;

public:
int push(int);
int pop();
stack(); // constructor

};

int stack::push(int n)
{

return *sp++ = n;
}
int stack::pop()
{

return *--sp;
}
stack::stack() { // constructor implementation

sp = stk;
}

4

Inline definitions

• member function body can be written inside the
class definition

• this normally causes it to be implemented inline
– no function call overhead

// stk2.c: inline member functions

class stack {
int stk[100];
int *sp;

public:
int push(int n) { return *sp++ = n; }
int pop() { return *--sp; }
stack() { sp = stk; }

};

Memory allocation: new and delete

• new is a type-safe alternative to malloc
– delete is the matching alternative to free

• new T allocates an object of type T, returns
pointer to it

stack *sp = new stack;

• new T[n] allocates array of T's, returns pointer
to first

int *stk = new int[100];

– by default, throws exception if no memory
• delete p frees the single item pointed to by p

delete sp;

• delete [] p frees the array beginning at p
delete [] stk;

• new uses T's constructor for objects of type T
– need a default constructor for array allocation

• delete uses T's destructor ~T()

• use new/delete instead of malloc/free
– malloc/free provide raw memory but no semantics
– this is inadequate for objects with state
– never mix new/delete and malloc/free

5

Dynamic stack with new, delete

// stk3.c: new, destructors, delete; explicit size

class stack {
private:

int *stk; // allocated dynamically
int *sp; // next free place

public:
int push(int);
int pop();
stack(); // constructor
stack(int n); // constructor
~stack(); // destructor

};

stack::stack()
{

stk = new int[100]; sp = stk;
}

stack::stack(int n)
{

stk = new int[n]; sp = stk;
}

stack::~stack() { delete [] stk; }

Constructors and destructors

• constructor:
creating a new object (including initialization)
– implicitly, by entering the scope where it is declared
– explicitly, by calling new

• destructor:
destroying an existing object (including cleanup)
– implicitly, by leaving the scope where it is declared
– explicitly, by calling delete on an object created by
new

• construction includes initialization, so it may be
parameterized
– by multiple constructor functions with different args
– an example of function overloading

• new can be used to create an array of objects
– in which case delete can delete the entire array

6

Implicit and explicit

• implicit:

f() {
int i;
stack s;

// calls constructor stack::stack()
…
// calls s.~stack() implicitly

}

• explicit:

f() {
int *ip = new int;
stack *sp = new stack;

// calls stack::stack()
…
delete sp; // calls sp->~stack()
delete ip;
…

}

Constructors; overloaded functions

• two or more functions can have the same name if
the number and/or types of arguments are
different

abs(int); abs(double); abs(complex)
atan(double x); atan(double y, double x);

int abs(int x) { return x >= 0 ? x : -x; }
double abs(double x) { return x >= 0 ? x : -x; }
…

• multiple constructors for a class are a common
instance

stack::stack();
stack::stack(int stacksize);

stack s; // default stack::stack()
stack s1(); // same
stack s2(100); // stack::stack(100)
stack s3 = 100; // also stack::stack(100)

7

Overloaded functions; default args

• default arguments: syntactic sugar for a single
function
stack::stack(int n = 100);

• declaration can be repeated if the same

• explicit size in call
stack s(500);

• omitted size uses default value
stack s;

• overloaded functions: different functions,
distinguished by argument types

• these are two different functions:
stack::stack(int n);

stack::stack();

Aside on implementation

• a class is just a struct
– no overhead
– no "class Object" that everything derives from
– member functions are just names
– definition is such that C++ can be translated into C
– original C++ compiler was a C++ program ("cfront")

that generated C

struct stack { /* sizeof stack == 8 */
int *stk__5stack ;
int *sp__5stack ;
};
...
struct stack __1s1 ;
struct stack __1s2 ;
int __1i ;
...

8

Where are we?

• hiding representation with private
• can change representation

– as long as the public part doesn't change
• member functions for public interface

– classname :: member()
• constructors to make new instances and initialize
them

• destructors to delete them cleanly
• nothing magic about implementation

What we have ignored (besides error checking):

• implications of assignment and initialization
– declarations, function arguments, function return

values
– if we don't do anything, will get memberwise

assignment and initialization

The meaning of explicit and implicit copying MUST
be part of the representation

Operator overloading

• almost all C operators can be overloaded
– new meaning can be defined when one operand is a

user-defined (class) type
– define operator + for object of type T

T T::operator+(int n) { ... }
– define regular + for object(s) of type T

T operator +(T f, int n) { ... }
– can't redefine operators for built-in types

int operator +(int n, int m) { ... } is ILLEGAL

• 3 examples
– complex numbers
– IO streams (very briefly)
– subscripting

9

Complex numbers

• a complex number is a pair of doubles
(real part, imaginary part)

• supports arithmetic operations like +, -, *

• a basically arithmetic type for which operator
overloading makes sense
– complex added as explicit type in 1999 C standard
– in C++, can create it as needed

• also illustrates
– friend declarations
– implicit coercions
– default constructors

Class complex, version 1

class complex {
double re, im;

public:
complex(double r, double i) { re = r; im = i; }
complex(double r) { re = r; im = 0; }
complex() { re = im = 0; }

complex add(complex c);
complex mul(complex c);

};

complex complex::add(complex c)
{

complex temp(re, im); // or complex temp = c;

temp.re += c.re;
temp.im += c.im;
return temp;

}

• multiple constructors for different initializations
• no such thing as an uninitialized complex

– C runtime error is a C++ compile time error

• awkward notation: for c = a + b * c:
c = a.add(b.mul(c));

10

Version 2: operator overloading

class complex {
double re, im;

public:
complex(double r, double i) { re = r; im = i; }
complex(double r) { re = r; im = 0; }
complex() { re = im = 0; }

complex operator+(complex c);
complex operator*(complex c);

};

complex complex::operator+(complex c)
{

complex temp(re, im);

temp.re += c.re;
temp.im += c.im;
return temp;

}

• much better notation:
c = a + b * c;

• only works if left operand is a complex

Version 3: friend functions, coercions

class complex {
double re, im;

public:
complex(double r = 0, double i = 0)

{ re = r; im = i; }

friend complex operator +(complex, complex);
friend complex operator *(complex, complex);

};

complex a(1.1, 2.2), b(3.3), c(4), d;

c = 2 * a + b * c;

• coercion of 2 -> 2.0 -> complex(2.0)

• default arguments achieve same results as
overloaded function definitions

• normally write initializers as
complex(double r = 0, double i = 0) : re(r), im(i) { }

11

Notes on operator overloading

• applies to all operators except . and ?:
– operator () left-side function calls
– operator , simulates lists
– operator -> smart pointers

• works well for algebraic and arithmetic domains
– complex, bignums, vectors & matrices, ...

• BUT DON'T GET CARRIED AWAY:
• you can't change precedence or associativity of
existing operators
– e.g., if use ^ for exponentiation, precedence is still

low
• you can't define new operators
• meanings should make sense in terms of existing
operators
– e.g., don't overload - to mean + and vice versa

Simple vector class (v0.c)

• based on overloading operator []

class ivec {
int *v; // pointer to an array
int size; // number of elements

public:
ivec(int n) { v = new int[size = n]; }

int operator [](int n) { // checked access
assert(n >= 0 && n < size);
return v[n];

}
int elem(int n) { return v[n]; } // unchecked

};

main()
{

ivec iv(10); // declaration
int i;

i = iv.elem(10); // unchecked access
i = iv[10]; // checked access

}

12

What about lvalue access?

• vector element as target of assignment

main()
{

ivec iv(10); // declaration

iv[10] = 1; // checked access
iv.elem(10) = 2; // unchecked access

}

$ g++ v1.c
v1.c:22: non-lvalue in assignment
v1.c:23: non-lvalue in assignment
$ CC v1.c
"v1.c", line 22: Error: The left operand cannot be

assigned to.
"v1.c", line 23: Error: The left operand cannot be

assigned to.

• need a way to access object, not a copy of it
• in C, use pointers
• in C++, use references

References (swap.c)

• attaching a name to an object
• a way to get "call by reference" (var)
parameters without using pointers

void swap(int &x, int &y)
{

int temp;
temp = x;
x = y;
y = temp;

}

• a way to access an object without copying it

stack s;
stack t = s; // may not want to copy

f(s); // ...
return s; // ...

stack s, t;
t = s; // want to control the assignment

13

Lvalue access (v2.c)

class ivec {
int *v; // pointer to an array
int size; // number of elements

public:
ivec(int n) { v = new int[size = n]; }

int& operator [](int n) {
assert(n >= 0 && n < size);
return v[n]; }

int& elem(int n) { return v[n]; } // unchecked
};

ivec iv(10); // declaration
iv.elem(10) = 2; // unchecked access
iv[10] = 1; // checked access

• reference gives access to object so it can be
changed

Iostream library (very quick sketch only)

• how can we do I/O of user-defined types with
non-function syntax

• C printf can be used in C++
– no type checking
– no mechanism for I/O of user-defined types

• Java System.out.print(arg) or equivalent
– type checking only in trivial sense:

calls toString method for object
– bulky, notationally clumsy

one call per item

• can we do better?

• Iostream library
– overloads << for output, >> for input
– permits I/O of sequence of expressions
– type safety for built-in and user-defined types
– natural integration of I/O for user-defined types

same syntax and semantics as for built-in types

14

Basic use

• overload operator << for output, >> for input
– very low precedence
– left-associative, so

cout << e1 << e2 << e3

– is parsed as
(((cout << e1) << e2) << e3)

• take an [io]stream& and a data item
• return the reference

#include <iostream>
ostream&
operator<<(ostream& o, const complex& c)
{

o << "(" << c.real() << ", "
<< c.imag() << ")";

return o;
}

• iostreams cin, cout, cerr already open
– correspond to stdin, stdout, stderr

Input with iostreams

#include <iostream>

main()
{

char name[100];
double val;

while (cin >> name >> val) {
cout << name << " = " << val << "\n";

}
}

