
1

Scripting languages

• originally tools for quick hacks, rapid
prototyping, gluing together other programs, ...

• evolved into mainstream programming tools
• characteristics

– strings as basic (or only) data type
– regular expressions often included
– relatively free of types, declarations, etc.
– usually interpreted instead of compiled

• examples
– shell

– Awk
– Perl
– Python
– Tcl

– Javascript
– VBScript, JScript
– PHP

read http://www.tcl.tk/doc/scripting.html

Shells and shell programming

• shell: a program that helps run other programs
– intermediary between user and operating system
– basic scripting language
– programming with programs as building blocks

• an ordinary program, not part of the system
– it can be replaced by one you like better
– therefore there are lots of shells, reflecting history

and preferences
• popular shells:

– sh Bourne shell (Steve Bourne, Bell Labs -> ...)
emphasizes running programs and programmability
syntax derived from Algol 68

– csh C shell (Bill Joy, UC Berkeley -> Sun)
interaction: history, job control, command & filename
completion, aliases
more C-like syntax
not as good for programming (at least historically)

– ksh Korn shell (Dave Korn, Bell Labs -> AT&T Labs)
combines programmability and interaction
syntactically, superset of Bourne sh
provides all csh interactive features + lots more

– bash GNU shell
mostly ksh + much of csh

– tcsh
evolution of csh

2

Features common to Unix shells

• command execution
+ built-in commands, e.g., cd

• filename expansion
* ? [...]

• quoting
rm '*' Careful!!!
echo "It's now `date`"

• variables, environment
PATH=/bin:/usr/bin in ksh
setenv PATH /bin:/usr/bin in (t)csh

• input/output redirection, pipes
prog <in >out, prog >>out
who | wc
slow.1 | slow.2 & asynchronous operation

• executing commands from a file
arguments can be passed to a shell file ($0, $1, etc.)
if made executable, indistiguishable from compiled

programs

provided by the shell, not each program

Shell programming

• the shell is a programming language
– the earliest scripting language

• string-valued variables
• control flow

– if-else
if cmd; then cmds; elif cmds; else cmds; fi (sh…)
if (expr) cmds; else if (expr) cmds; else cmds; endif (csh)

– while, for
for var in list; do commands; done (sh, ksh, bash)
foreach var (list) commands; end (csh, tcsh)

– switch, case, break, continue, ...
• operators are programs

– programs return status
0 == success, non-0 == various failures

• shell programming out of favor
– graphical interfaces
– scripting languages
– e.g., system administration

setting paths, filenames, parameters, etc
often done in Perl now

3

bundle: making "shell archives"

Use:
$ bundle foo bar >bundle.out

combines text files "foo" and "bar" into a shell file
that recreates foo and bar when it is executed.

Implementation:
echo '# To unbundle, sh this file'
for i in $*
do echo "echo $i 1>&2"

echo "sed 's/-//' >$i <<'End of $i'"
sed 's/^/-/' $i
echo "End of $i"

done

Output:
To unbundle, sh this file
echo foo 1>&2
sed 's/-//' >foo <<'End of foo'
-contents of foo...
End of foo
echo bar 1>&2
sed 's/-//' >bar <<'End of bar'
-contents of bar...
End of bar

To unbundle:
$ sh bundle.out

How big should a program be?

$ wc bundle
7 29 156 bundle

$ wc shar.c
2130 6659 53377 shar.c

"Shar puts readable text files together in a package
from which they are easy to extract. The original
version was a shell script posted to the net, shown
below:

#Date: Mon Oct 18 11:08:34 1982
#From: decvax!microsof!uw-beave!jim

(James Gosling at CMU)
AR=$1
shift
for i do

echo a - $i
echo "echo x - $i" >>$AR
echo "cat >$i <<'!Funky!Stuff!'" >>$AR
cat $i >>$AR
echo "!Funky!Stuff!" >>$AR

done

I rewrote this version in C to provide better diagnostics
and to run faster. …"

4

Aside on shell implementation

• How big is "the" shell?

– obsh.c 22 lines

– ish ~1000

– Plan 9 sh 8300
– 10th ed Bourne 9500

– ksh88 30000
– ksh93 39000
– bash 40600
– tcsh 57000

Shell programming

• shell programs are good for personal tools
– tailoring environment
– abbreviating common operations

(aliases do the same)
• gluing together existing programs into new ones
• prototyping
• sometimes for production use

– e.g., configuration scripts

• But:
– shell is poor at arithmetic, editing
– macro processing is a mess
– quoting is a mess
– sometimes too slow
– can't get at some things that are really necessary

• this leads to scripting languages

