Lecture 21: Intractability

Princeton CS Building West Wall, Circa 2001 COS126: General Computer Science http://www.cs.Princeton.EDU/~cos126

Properties of Algorithms

Q. Which ALGORITHMS are useful in practice?

A working definition: (Cobham 1960, Edmonds, 1962)

- . Measure running time as a function of input size N.
- Efficient = polynomial time for all inputs.
- Inefficient = "exponential time" for some inputs.

Ex: Dynamic programming algorithm for edit distance takes N² steps.Ex: brute force algorithm for TSP takes N! steps.

Theory: definition is broad and robust; huge gulf between polynomial and exponential algorithms.

Practice: exponents and constants of polynomials that arise are small \Rightarrow scales to huge problems.

Overview

What is an algorithm? Turing machine.

Which problems can be solved on a computer? Computability.

Which ALGORITHMS will be useful in practice? Analysis of algorithms.

Which PROBLEMS can be solved in practice? Intractability.

Exponential Growth

Exponential growth dwarfs technological change.

- Suppose each electron in the universe had power of today's supercomputers . . .
- And each works for the life of the universe in an effort to solve TSP problem via brute force.

Quantity	Number
Supercomputer instructions per second	1013
Age of universe in seconds [†]	1017
Electrons in universe [†]	10 ⁷⁹

† Estimated

2

- Will not help solve 1,000 city TSP problem with brute force. 1000! >> 10^{1000} >> 10^{79} \times 10^{17} \times 10^{13}

3

Extended Church-Turing Thesis

Ρ

Definition of P: Set of all yes-no problems solvable in polynomial time on a deterministic Turing machine.

Problem	Description	Algorithm	Yes	No
RELPRIME	Are x and y relatively prime?	Euclid (300 BCE)	34, 39	34, 51
COMPOSITE	Does x have a factor other than 1 and itself?	Agarwal-Kayal- Saxena (2002)	51	53
EDIT- DISTANCE	Is the edit distance between strings x and y less than 5?	Dynamic Programming	niether neither	acgggt ttttta
BACON	Is the Kevin Bacon number of actor x less than 5?	Breadth First Search	Julia Roberts	Akbar Abdi
LSOLVE	Is there a vector x that satisfies Ax = b?	Gauss-Edmonds elimination	$\begin{bmatrix} 0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 36 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

Remark. Algorithm typically also solves the related search problem.

Properties of Problems

Which PROBLEMS won't we be able to solve in practice?

• No easy answers, but theory helps.

Two hard problems.

• Factorization: Given an integer, find its prime factorization.

4901 = 13² × 29

• CIRCUIT-SAT: Is there a way to assign inputs to a given combinational circuit that makes its output true?

Reterence: CLRS

Extended Church-Turing thesis:

- P = yes-no problems solvable in poly-time time on real computers.
- If computable by a piece of hardware in time T(N) for input of size N, then computable by TM in time $(T(N))^k$ for some constant k.

Evidence supporting thesis:

- True for all physical computers.
- k = 2 for random access machines.

Implication: to make future computers more efficient, only need to focus on improving implementation of existing designs.

Possible counterexample: quantum computers.

- Shor's factoring algorithm is poly-time on quantum computer.
- No poly-time algorithm known for classical computers.

More Hard Computational Problems

6

8

Aerospace engineering: optimal mesh partitioning for finite elements. Biology: protein folding. Chemical engineering: heat exchanger network synthesis. Civil engineering: equilibrium of urban traffic flow. Economics: computation of arbitrage in financial markets with friction. Environmental engineering: optimal placement of contaminant sensors. Financial engineering: find minimum risk portfolio of given return. Genomics: phylogeny reconstruction. Electrical engineering: VLSI layout. Mechanical engineering: structure of turbulence in sheared flows. Medicine: reconstructing 3-D shape from biplane angiocardiogram. Operations research: optimal resource allocation. Physics: partition function of 3-D Ising model in statistical mechanics. Politics: Shapley-Shubik voting power. Pop culture: Minesweeper consistency, playing optimal Tetris. Statistics: optimal experimental design. Q. Why do we believe these problems intrinsically hard to solve in practice?

Reduction

Reduction. Problem X reduces to problem Y if given an efficient subroutine for Y, you can devise an efficient algorithm for X.

- Cost of solving $X \leq \text{cost}$ of solving Y + cost of reduction.
- May call subroutine for Y more than once.

Consequences:

- Classify problems: establish relative difficulty between two problems.
- Design algorithms: given algorithm for Y, can also solve X.
- Establish intractability: if X is hard, then so is Y.

Example.

- X = COMPOSITE.
- Y = Factorization.

static boolean isComposite(int x) {
 int[] factors = factorize(x);
 return (factors.length > 1);
}

9

11

Some Hard Problems

TSP. What is the shortest tour that visits all N cities?

Some Hard Problems

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

12

Some Hard Problems

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

Reduction

Reduction. Problem X reduces to problem Y if given an efficient subroutine for Y, you can devise an efficient algorithm for X.

Consequences:

- Classify problems: establish relative difficulty between two problems.
- Design algorithms: given algorithm for Y, can also solve X.
- Establish intractability: if X is hard, then so is Y.

Example.

- X = CIRCUIT-SAT.
- Y = MINESWEEPER.

Minesweeper Consistency Problem

Minesweeper.

- Start: Blank grid of squares, some conceal mines.
- Goal: Find location of all mines without detonating any.
- Repeatedly choose a square.
 - if mine underneath, it detonates and you lose
 - otherwise, computer tells you # neighboring mines

MINESWEEPER. Given a state of what purports to be a N-by-N Minesweeper game, is it logically consistent?

Minesweeper Consistency Problem

SAT reduces to MINESWEEPER.

- Build circuit by laying out appropriate minesweeper configurations.
- Minesweeper game is consistent if and only if circuit is satisfiable.

13

14

One More Hard Problem Minesweeper Consistency Problem CIRCUIT-SAT SAT reduces to MINESWEEPER. CIRCUIT-SAT Build circuit by laying out appropriate minesweeper configurations. reduces to 35AT Minesweeper game is consistent if and only if circuit is satisfiable. GRAPH MINESWEEPER 35AT 3-COLOR 2 1 1 32 3 1 2 VERTEX COVER EXACT COVER PLANAR 3-COLOR 3DM SUBSET-SUM CLIQUE HAMILTONIAN CIRCUIT 1 2 4 1 r b1 b2 b3 t' 3 INDEPENDENT SET PARTITION INTEGER PROGRAMMING TSP A Minesweeper AND Gate KNAPSACK 17 18 Nondeterminism **Complexity Classes** Nondeterministic machine. One that guesses the right answer, and P. Set of yes-no problems solvable in poly-time on a deterministic TM. only needs to check that the guessed answer is correct. EXP. Same as P, but in exponential-time. NP. Same as P, but on non-deterministic Turing machine. Ex 1: COMPOSITE. Input: x = 437,669 Guess a divisor d of x. Cook-Levin Theorem (1960s). ALL NP problems reduce to SAT. Guess: d = 809 Check that d divides x. if we can solve SAT, we can solve any of them NP-complete. All NP problems to which SAT reduces. Ex 2: MINESWEEPER. 21 Guess an assignment of mines to squares. 1 if we can solve any of . Check that each square adjacent to the 1 * 1 them, we can solve SAT 2222 222 required number of mines. Implications. • If efficient algorithm for SAT, then P = NP. Input Guess • If efficient algorithm for any NP-complete problem, then P = NP. running time = # steps to check . If no efficient algorithm for some NP problem, then none for SAT. Observation. Checking seems much easier than solving from scratch. Q. Is it really? 19 20

<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><image><complex-block><image><image><image>

Implications of NP-Completeness

Classify problems according to their computational requirements.

- NP-complete: SAT, all Karp problems, thousands more.
- P: RELPRIME, COMPOSITE, LSOLVE.
- . Unclassified: FACTOR is in NP, but unknown if NP-complete or in P.

Computational universality.

- All known algorithms for NP-complete problems are exponential.
- If any NP-complete problem proved exponential, so are rest.
- If any NP-complete problem proved polynomial, so are rest.

Proving a problem is NP-complete can guide scientific inquiry.

- 1926: Ising introduces simple model for phase transitions.
- 1944: Onsager solves 2D case in tour de force.
- 19xx: Feynman and other top minds seek 3D solution.
- 2000: Istrail proves 3D problem NP-complete.

Coping With Intractability

Relax one of desired features.

- Solve the problem in polynomial time.
- Solve the problem to optimality.
- Solve arbitrary instances of the problem.

Complexity theory deals with worst case behavior.

- Instance(s) you want to solve may be "easy."
- Concorde algorithm solved 13,509 US city TSP problem.

(Cook et. al., 1998)

Coping With Intractability

Relax one of desired features.

- Solve the problem in polynomial time.
- Solve the problem to optimality.
- Solve arbitrary instances of the problem.

Develop a heuristic, and hope it produces a good solution.

- No guarantees on quality of solution.
- Ex: TSP assignment heuristics.
- Ex: Metropolis algorithm, simulating annealing, genetic algorithms.

Design an approximation algorithm.

- Guarantees to find a nearly-optimal solution.
- Ex: Euclidean TSP tour guaranteed to be within 1% of optimal.
- Active area of research, but not always possible!

Sanjeev Arora (1997)

25

Coping With Intractability

can do any 2 of 3

26

Relax one of desired features.

- Solve the problem in polynomial time.
- Solve the problem to optimality.
- Solve arbitrary instances of the problem.

Exploit intractability.

Cryptography. (see next lecture)

Keep trying to prove P = NP.

Summary

Many fundamental problems are NP-complete.

• TSP, CIRCUIT-SAT, 3-COLOR.

Theory says we probably won't be able to design efficient algorithms for NP-complete problems.

- . You will run into these problems in your scientific life.
- If you know about NP-completeness, you can identify them and avoid wasting time and energy.