Lec’rur'e 21 In’rmc‘rablll’ry

Pr‘mce'ron CS Building West Wall Circa 2001

COS126: General Computer Science * http://www.cs.Princeton. EDU/~cos126

Overview

What is an algorithm? Turing machine.
Which problems can be solved on a computer? Computability.
Which ALGORITHMS will be useful in practice? Analysis of algorithms.

Which PROBLEMS can be solved in practice? Intractability.

Properties of Algorithms

Q. Which ALGORITHMS are useful in practice?

A working definition: (Cobham 1960, Edmonds, 1962)
= Measure running time as a function of input size N.
. Efficient = polynomial time for all inputs.

« Inefficient = "exponential time" for some inputs.

Ex: Dynamic programming algorithm for edit distance takes N? steps.
Ex: brute force algorithm for TSP takes N! steps.
Theory: definition is broad and robust; huge gulf between polynomial

and exponential algorithms.

Practice: exponents and constants of polynomials that arise are small =
scales to huge problems.

Exponential Growth

Exponential growth dwarfs technological change.
« Suppose each electron in the universe had power of today's
supercomputers . . .
« And each works for the life of the universe in an effort to solve
TSP problem via brute force.

Supercomputer instructions per second 1013
Age of universe in seconds t 1017

Electrons in universe * 1079 t Estimated

= Will not help solve 1,000 city TSP problem with brute force.
1000! >» 10100 5 1079 x 1017 x 1013

Definition of P: Set of all yes-no problems solvable in polynomial time
on a deterministic Turing machine.

RELPRIME Are x and y relatively prime? Euclid (300 BCE) 34, 39 34, 51
COMPOSLTE Does x hav? a factor other Agarwal-Kayal- o s
than 1 and itself? Saxena (2002)

EDIT- Is the edit distance between Dynamic niether acgggt

DISTANCE strings x and y less than 5?2 Programming neither ttttta
BACON Is the Kevin Bacon number of Breadth First Julia Akbar
actor x less than 5? Search Roberts Abdi

Is there a vector x that Gauss-Edmonds 0 1 1) 14 109 ¢

LSOLVE 24 -2|, |2 111 |t

satisfies Ax = b? elimination 03 15 36| |01 1t

Remark. Algorithm typically also solves the related search problem.

Extended Church-Turing Thesis

Extended Church-Turing thesis:
« P =yes-no problems solvable in poly-time time on real computers.

« If computable by a piece of hardware in time T(N) for input of size

N, then computable by TM in time (T(N))k for some constant k.

Evidence supporting thesis:
= True for all physical computers.
« k=2 for random access machines.

Implication: to make future computers more efficient, only need to
focus on improving implementation of existing designs.

Possible counterexample: quantum computers.
= Shor's factoring algorithm is poly-time on quantum computer.
« No poly-time algorithm known for classical computers.

Properties of Problems

Which PROBLEMS won't we be able to solve in practice?
= No easy answers, but theory helps.

Two hard problems.
« Factorization: Given an integer, find its prime factorization.

4901 =132 x 29

« CIRCUIT-SAT: Is there a way to assign inputs to a given
combinational circuit that makes its output true?

= 1
% 1 AR

T,
xyle 7:74”//7 \ 11
11 1 >O ,,/U ' ‘
5 e o

yes no

Reference: CLRS

7

More Hard Computational Problems

Aerospace engineering: optimal mesh partitioning for finite elements.
Biology: protein folding.

Chemical engineering: heat exchanger network synthesis.

Civil engineering: equilibrium of urban traffic flow.

Economics: computation of arbitrage in financial markets with friction.
Environmental engineering: optimal placement of contaminant sensors.
Financial engineering: find minimum risk portfolio of given return.
Genomics: phylogeny reconstruction.

Electrical engineering: VLST layout.

Mechanical engineering: structure of turbulence in sheared flows.
Medicine: reconstructing 3-D shape from biplane angiocardiogram.
Operations research: optimal resource allocation.

Physics: partition function of 3-D Ising model in statistical mechanics.
Politics: Shapley-Shubik voting power.

Pop culture: Minesweeper consistency, playing optimal Tetris.
Statistics: optimal experimental design.

Q. Why do we believe these problems intrinsically hard to solve in practice?

Reduction

Reduction. Problem X reduces to problem Y if given an efficient
subroutine for Y, you can devise an efficient algorithm for X.

« Cost of solving X = cost of solving ¥ + cost of reduction.

« May call subroutine for Y more than once.

Consequences:
. Classify problems: establish relative difficulty between two problems.
« Design algorithms: given algorithm for Y, can also solve X.
« Establish intractability: if X is hard, thenso isY.

Example. . ; S
static boolean isComposite(int x) {

« X = COMPOSITE. int[] factors = factorize (x);

« Y = Factorization. return (factors.length > 1);

More Reductions

CIRCUIT-SAT

5KY
cﬂc\ﬂ xi'ﬁﬂ
e
el i A
3SAT GRAPH Dick Karp (1972)
/\ 3-COLOR
3DM VERTEX COVER EXACT COVER PLANAR 3-COLOR
HAMILTONIAN CLIQUE SUBSET-SUM
CIRCUIT l I\A
l INDEPENDENT SET PARTITION INTEGER
Tsp l PROGRAMMING
KNAPSACK

Some Hard Problems

TSP. What is the shortest tour that visits all N cities?

Some Hard Problems

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors
so that no adjacent regions have the same color?

YES instance.

Some Hard Problems

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors
so that no adjacent regions have the same color?

NO instance.

Minesweeper Consistency Problem

Minesweeper.
« Start: Blank grid of squares, some conceal mines.

« Goal: Find location of all mines without detonating any.

« Repeatedly choose a square.

- if mine underneath, it detonates and you lose

- otherwise, computer tells you # neighboring mines

MINESWEEPER. Given a state of what purports to be a N-by-N
Minesweeper game, is it logically consistent?

* *
1i2i1 1i2i1
1 i1 1) i1
#|1 1ia 1 i1
2121212 [1]2i2:2

|| |=
yes no

Reduction

Reduction. Problem X reduces to problem Y if given an efficient subroutine
for ¥, you can devise an efficient algorithm for X.

Consequences:
« Classify problems: establish relative difficulty between two problems.
« Design algorithms: given algorithm for Y, can also solve X.
« Establish intractability: if X is hard, thensois V.

Example.
« X = CIRCUIT-SAT.
« Y = MINESWEEPER.

Minesweeper Consistency Problem

SAT reduces Yo MINESWEEPER.
« Build circuit by laying out appropriate minesweeper configurations.
= Minesweeper game is consistent if and only if circuit is satisfiable.

3 B

1 x| 1 x| 1 x| 1 x| 1 x| 1|x|x|1]|x]|x|1

T e e e e e e e e L e R L R R B R B L R R

A Minesweeper Wire
Exactly one of x 1i1:1:1:1:1:1:1:2:92:1:1:1:1:1:1:1:1
and ' is a bomb. x x| 1|x x| 1|x|x|3[x]|3|xx]|1[x]|x]|1|x'|x
1:1:1:1:1:1:1:2:9:2:1:1:1:1:1:1:1:1
1:1:1

A Minesweeper NOT Gate

Minesweeper Consistency Problem

SAT reduces to MINESWEEPER.
« Build circuit by laying out appropriate minesweeper configurations.
« Minesweeper game is consistent if and only if circuit is satisfiable.

I:::

l.|"111 1(z|z]a] |alafa] [af1i1

1fu|1 2[1]1]3]2[3:1]2]1[2]1]|3][2i1
1u1]1]2[u]1]s [a|alae]5] e]5]1]1: 2
1[z]z[a1]1[1]4]1[3]2]3][1[2]1]1]2]£]2:2
z[1lwlz]z[4]s[3][1[1]o[1]2]1]o]o[1]2|2]1] [W—
ARREAREAAAAERARRAEEAERARAE
2lu|s[a[ua[u]ele]a|elela]ele]a|el2]e[2]e]e]1]-
ARREEAEAARRRERRRAEARARAE
21|zl z[u]~[3]1]1]o1]1]1]0]0[1]2][2]1
NEAEAARRAEREARERERAARRRNE
1lv(a|1]2[4]a]r |ba|be|bs| £ 3| £ £]3]1]2]2
T1v'1 2|1|a(3]2[3]1]2|1]2]a[3]2]1
\"1;1- 1lzlz{a] [a]1]1 i111

A Minesweeper AND Gate

One More Hard Problem

CIRCUIT-SAT

35AT GRAPH
/\ 3-COLOR
VERTEX COVER EXACT COVER PLANAR 3-COLOR
HAMILTONIAN CLIQUE SUBSET-SUM
CIRCUIT l I\A
l INDEPENDENT SET PARTITION INTEGER
Tsp l PROGRAMMING
KNAPSACK

Nondeterminism

Nondeterministic machine. One that guesses the right answer, and
only needs to check that the guessed answer is correct.

Ex 1: COMPOSITE.

. Guess a divisor d of x. Input: x = 437,669

. Check that d divides x. Guess: d =809
Ex 2: MINESWEEPER. I
. . 1z 1i2i1
« Guess an assignment of mines o squares. i T
« Check that each square adjacent to the T #1 1.
required number of mines. 52|52 2z ?Zlf 2 i
Input Guess

running time = # steps to check

Observation. Checking seems much easier than solving from scratch.
Q. Is it really?

Complexity Classes

P. Set of yes-no problems solvable in poly-time on a deterministic TM.
EXP. Same as P, but in exponential-time.
NP. Same as P, but on non-deterministic Turing machine.

Cook-Levin Theorem (1960s). ALL NP problems reduce to SAT.
\
if we can solve SAT,
we can solve any of them

NP-complete. All NP problems to which SAT reduces.
\
if we can solve any of
them, we can solve SAT

Implications.
« If efficient algorithm for SAT, then P = NP.
« If efficient algorithm for any NP-complete problem, then P = NP.
« If no efficient algorithm for some NP problem, then none for SAT.

20

Cook's Theorem: Implications

CIRCUIT-SAT All of these problems reduce
to each other and are NP-complete.

3DM VERTEX/COVER EXACT COVER PLANAR 3-COLOR

SUBSET-SUM

HAMILTONI CLIQUE

INDEPENDENT SET PARTITION INTEGER

The Main Question

Does P = NP?
« Is there a poly-time algorithm for SAT?

« Does nondeterminism help you solve problems faster?
« Clay $1 million prize.

EXP @ NP‘ EXP

If P= NP If P=NP

-
;
B ‘.

Jack Edmonds, 1962

would break modern cryptography
and collapse economy

'
If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, . ..

If no: No efficient algorithms possible for 3-COLOR, TSP, . ..

Consensus opinion on P = NP? Probably no.

22

Implications of NP-Completeness

Classify problems according to their computational requirements.

« NP-complete: SAT, all Karp problems, thousands more.

« P: RELPRIME, COMPOSITE, LSOLVE.

« Unclassified: FACTOR is in NP, but unknown if NP-complete or in P.

Computational universality.

=« All known algorithms for NP-complete problems are exponential.
« If any NP-complete problem proved exponential, so are rest.

« If any NP-complete problem proved polynomial, so are rest.

Proving a problem is NP-complete can guide scientific inquiry.
« 1926: TIsing introduces simple model for phase transitions.
« 1944: Onsager solves 2D case in tour de force.

« 19xx: Feynman and other top minds seek 3D solution.
» 2000: Istrail proves 3D problem NP-complete.

23

Coping With Intractability

Relax one of desired features.

« Solve the problem in polynomial time.

= Solve the problem to optimality.

« Solve arbitrary instances of the problem.

Complexity theory deals with worst case behavior.
« Instance(s) you want to solve may be "easy."
« Concorde algorithm solved 13,509 US city TSP problem.

(Cook et. al., 1998)

24

Coping With Intractability

Relax one of desired features.
« Solve the problem in polynomial time.
« Solve the problem to optimality.
« Solve arbitrary instances of the problem.

Develop a heuristic, and hope it produces a good solution.

= No guarantees on quality of solution.

« Ex: TSP assignment heuristics.

« Ex: Metropolis algorithm, simulating annealing, genetic algorithms.

Design an approximation algorithm.

« Guarantees to find a nearly-optimal solution.

. Ex: Euclidean TSP tour guaranteed to be within 1% of optimal.
« Active area of research, but not always possiblel

Sanjeev Arora (1997)

25

Coping With Intractability

Relax one of desired features.
« Solve the problem in polynomial time.
« Solve the problem to optimality. can do any 2 of 3
» Solve arbitrary instances of the problem.

Exploit intractability.
= Cryptography. (see next lecture)

Keep frying to prove P = NP.

26

Summary

Many fundamental problems are NP-complete.
« TSP, CIRCUIT-SAT, 3-COLOR.

Theory says we probably won't be able to design efficient algorithms
for NP-complete problems.
= You will run into these problems in your scientific life.
« If you know about NP-completeness, you can identify them and
avoid wasting time and energy.

27

