
COS126: General Computer Science • http://www.cs.Princeton.EDU/~cos126

Lecture 21: Intractability

Princeton CS Building West Wall, Circa 2001

2

Overview

What is an algorithm? Turing machine.

Which problems can be solved on a computer? Computability.

Which ALGORITHMS will be useful in practice? Analysis of algorithms.

Which PROBLEMS can be solved in practice? Intractability.

3

Q. Which ALGORITHMS are useful in practice?

A working definition: (Cobham 1960, Edmonds, 1962)

! Measure running time as a function of input size N.

! Efficient = polynomial time for all inputs.

! Inefficient = "exponential time" for some inputs.

Ex: Dynamic programming algorithm for edit distance takes N2 steps.

Ex: brute force algorithm for TSP takes N! steps.

Theory: definition is broad and robust; huge gulf between polynomial

and exponential algorithms.

Practice: exponents and constants of polynomials that arise are small !

scales to huge problems.

Properties of Algorithms

4

Exponential Growth

Exponential growth dwarfs technological change.

! Suppose each electron in the universe had power of today's

supercomputers . . .

! And each works for the life of the universe in an effort to solve

TSP problem via brute force.

! Will not help solve 1,000 city TSP problem with brute force.

1000! >> 101000 >> 1079 " 1017 " 1013

Quantity

Supercomputer instructions per second

Age of universe in seconds †

Number

1013

1017

Electrons in universe † 1079 † Estimated

5

P

Definition of P: Set of all yes-no problems solvable in polynomial time

on a deterministic Turing machine.

Remark. Algorithm typically also solves the related search problem.

Akbar

Abdi

Julia

Roberts

Breadth First

Search

Is the Kevin Bacon number of

actor x less than 5?
BACON

34, 5134, 39Euclid (300 BCE)Are x and y relatively prime?RELPRIME

5351
Agarwal-Kayal-

Saxena (2002)

Does x have a factor other

than 1 and itself?
COMPOSITE

acgggt

ttttta

niether

neither

Dynamic

Programming

Is the edit distance between

strings x and y less than 5?

EDIT-

DISTANCE

Is there a vector x that

satisfies Ax = b?

Description

Gauss-Edmonds

elimination

Algorithm

LSOLVE

Problem NoYes

!
!
!

"

#

$
$
$

%

&

!
!
!

"

#

$
$
$

%

&

'

36

2

4

,

1530

242

110

!
!
!

"

#

$
$
$

%

&

!
!
!

"

#

$
$
$

%

&

1

1

1

,

110

111

001

6

Extended Church-Turing Thesis

Extended Church-Turing thesis:

! P = yes-no problems solvable in poly-time time on real computers.

! If computable by a piece of hardware in time T(N) for input of size

N, then computable by TM in time (T(N))k for some constant k.

Evidence supporting thesis:

! True for all physical computers.

! k = 2 for random access machines.

Implication: to make future computers more efficient, only need to

focus on improving implementation of existing designs.

Possible counterexample: quantum computers.

! Shor's factoring algorithm is poly-time on quantum computer.

! No poly-time algorithm known for classical computers.

7

Properties of Problems

Which PROBLEMS won't we be able to solve in practice?

! No easy answers, but theory helps.

Two hard problems.

! Factorization: Given an integer, find its prime factorization.

! CIRCUIT-SAT: Is there a way to assign inputs to a given

combinational circuit that makes its output true?

yes no Reference: CLRS

 4901 = 132 " 29

8

More Hard Computational Problems

Aerospace engineering: optimal mesh partitioning for finite elements.

Biology: protein folding.

Chemical engineering: heat exchanger network synthesis.

Civil engineering: equilibrium of urban traffic flow.

Economics: computation of arbitrage in financial markets with friction.

Environmental engineering: optimal placement of contaminant sensors.

Financial engineering: find minimum risk portfolio of given return.

Genomics: phylogeny reconstruction.

Electrical engineering: VLSI layout.

Mechanical engineering: structure of turbulence in sheared flows.

Medicine: reconstructing 3-D shape from biplane angiocardiogram.

Operations research: optimal resource allocation.

Physics: partition function of 3-D Ising model in statistical mechanics.

Politics: Shapley-Shubik voting power.

Pop culture: Minesweeper consistency, playing optimal Tetris.

Statistics: optimal experimental design.

Q. Why do we believe these problems intrinsically hard to solve in practice?

9

Reduction

Reduction. Problem X reduces to problem Y if given an efficient

subroutine for Y, you can devise an efficient algorithm for X.

! Cost of solving X # cost of solving Y + cost of reduction.

! May call subroutine for Y more than once.

Consequences:

! Classify problems: establish relative difficulty between two problems.

! Design algorithms: given algorithm for Y, can also solve X.

! Establish intractability: if X is hard, then so is Y.

Example.

! X = COMPOSITE.

! Y = Factorization.

static boolean isComposite(int x) {

 int[] factors = factorize(x);

 return (factors.length > 1);

}

10

More Reductions

CIRCUIT-SAT

3SAT

3DM VERTEX COVER

HAMILTONIAN
CIRCUIT

CLIQUE

INDEPENDENT SET

GRAPH
3-COLOR

PLANAR 3-COLOREXACT COVER

TSP

SUBSET-SUM

PARTITION INTEGER
PROGRAMMING

KNAPSACK

Dick Karp (1972)

CIRCUIT-SAT

reduces to 3SAT

11

Some Hard Problems

TSP. What is the shortest tour that visits all N cities?

12

Some Hard Problems

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors

so that no adjacent regions have the same color?

YES instance.

13

Some Hard Problems

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors

so that no adjacent regions have the same color?

NO instance.

14

Minesweeper Consistency Problem

Minesweeper.

! Start: Blank grid of squares, some conceal mines.

! Goal: Find location of all mines without detonating any.

! Repeatedly choose a square.

– if mine underneath, it detonates and you lose

– otherwise, computer tells you # neighboring mines

MINESWEEPER. Given a state of what purports to be a N-by-N

Minesweeper game, is it logically consistent?

yes no

15

Reduction

Reduction. Problem X reduces to problem Y if given an efficient subroutine

for Y, you can devise an efficient algorithm for X.

Consequences:

! Classify problems: establish relative difficulty between two problems.

! Design algorithms: given algorithm for Y, can also solve X.

! Establish intractability: if X is hard, then so is Y.

Example.

! X = CIRCUIT-SAT.

! Y = MINESWEEPER.

16

Minesweeper Consistency Problem

SAT reduces to MINESWEEPER.

! Build circuit by laying out appropriate minesweeper configurations.

! Minesweeper game is consistent if and only if circuit is satisfiable.

A Minesweeper Wire

A Minesweeper NOT Gate

Exactly one of x
and x' is a bomb.

17

Minesweeper Consistency Problem

SAT reduces to MINESWEEPER.

! Build circuit by laying out appropriate minesweeper configurations.

! Minesweeper game is consistent if and only if circuit is satisfiable.

A Minesweeper AND Gate

18

One More Hard Problem

MINESWEEPER

CIRCUIT-SAT

3SAT

3DM VERTEX COVER

HAMILTONIAN
CIRCUIT

CLIQUE

INDEPENDENT SET

GRAPH
3-COLOR

PLANAR 3-COLOREXACT COVER

TSP

SUBSET-SUM

PARTITION INTEGER
PROGRAMMING

KNAPSACK

CIRCUIT-SAT

reduces to 3SAT

19

Nondeterminism

Nondeterministic machine. One that guesses the right answer, and

only needs to check that the guessed answer is correct.

Ex 1: COMPOSITE.

! Guess a divisor d of x.

! Check that d divides x.

Ex 2: MINESWEEPER.

! Guess an assignment of mines to squares.

! Check that each square adjacent to the

required number of mines.

Observation. Checking seems much easier than solving from scratch.

Q. Is it really?

running time = # steps to check

Input: x = 437,669
Guess: d = 809

Input Guess

20

Complexity Classes

P. Set of yes-no problems solvable in poly-time on a deterministic TM.

EXP. Same as P, but in exponential-time.

NP. Same as P, but on non-deterministic Turing machine.

Cook-Levin Theorem (1960s). ALL NP problems reduce to SAT.

NP-complete. All NP problems to which SAT reduces.

Implications.

! If efficient algorithm for SAT, then P = NP.

! If efficient algorithm for any NP-complete problem, then P = NP.

! If no efficient algorithm for some NP problem, then none for SAT.

if we can solve SAT,

we can solve any of them

if we can solve any of
them, we can solve SAT

21

CIRCUIT-SAT

3SAT

3DM VERTEX COVER

HAMILTONIAN
CIRCUIT

CLIQUE

INDEPENDENT SET

GRAPH
3-COLOR

PLANAR 3-COLOREXACT COVER

TSP

SUBSET-SUM

PARTITION INTEGER
PROGRAMMING

KNAPSACK

CIRCUIT-SAT

reduces to 3SAT

Cook's Theorem: Implications

All of these problems reduce
to each other and are NP-complete.

22

The Main Question

Does P = NP?

! Is there a poly-time algorithm for SAT?

! Does nondeterminism help you solve problems faster?

! Clay $1 million prize.

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, . . .

If no: No efficient algorithms possible for 3-COLOR, TSP, . . .

Consensus opinion on P = NP? Probably no.

would break modern cryptography
and collapse economy

EXP NP

P

If P $ NP If P = NP

NP-
complete

EXP

P = NP

Jack Edmonds, 1962

23

Implications of NP-Completeness

Classify problems according to their computational requirements.

! NP-complete: SAT, all Karp problems, thousands more.

! P: RELPRIME, COMPOSITE, LSOLVE.

! Unclassified: FACTOR is in NP, but unknown if NP-complete or in P.

Computational universality.

! All known algorithms for NP-complete problems are exponential.

! If any NP-complete problem proved exponential, so are rest.

! If any NP-complete problem proved polynomial, so are rest.

Proving a problem is NP-complete can guide scientific inquiry.

! 1926: Ising introduces simple model for phase transitions.

! 1944: Onsager solves 2D case in tour de force.

! 19xx: Feynman and other top minds seek 3D solution.

! 2000: Istrail proves 3D problem NP-complete.

24

Coping With Intractability

Relax one of desired features.

! Solve the problem in polynomial time.

! Solve the problem to optimality.

! Solve arbitrary instances of the problem.

Complexity theory deals with worst case behavior.

! Instance(s) you want to solve may be "easy."

! Concorde algorithm solved 13,509 US city TSP problem.

(Cook et. al., 1998)

25

Coping With Intractability

Relax one of desired features.

! Solve the problem in polynomial time.

! Solve the problem to optimality.

! Solve arbitrary instances of the problem.

Develop a heuristic, and hope it produces a good solution.

! No guarantees on quality of solution.

! Ex: TSP assignment heuristics.

! Ex: Metropolis algorithm, simulating annealing, genetic algorithms.

Design an approximation algorithm.

! Guarantees to find a nearly-optimal solution.

! Ex: Euclidean TSP tour guaranteed to be within 1% of optimal.

! Active area of research, but not always possible!

Sanjeev Arora (1997)

26

Coping With Intractability

Relax one of desired features.

! Solve the problem in polynomial time.

! Solve the problem to optimality.

! Solve arbitrary instances of the problem.

Exploit intractability.

! Cryptography. (see next lecture)

Keep trying to prove P = NP.

can do any 2 of 3

27

Summary

Many fundamental problems are NP-complete.

! TSP, CIRCUIT-SAT, 3-COLOR.

Theory says we probably won't be able to design efficient algorithms

for NP-complete problems.

! You will run into these problems in your scientific life.

! If you know about NP-completeness, you can identify them and

avoid wasting time and energy.

