Lecture 20: Analysis of Algorithms

Overview

Analysis of algorithms: framework for comparing algorithms and predicting performance.

Scientific method

- Observe some feature of the universe.
- Hypothesize a model that is consistent with observation.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate the theory by repeating the previous steps until the hypothesis agrees with the observations.

Algorithmic Successes

N -body Simulation.

- Simulate gravitational interactions among N bodies.
- Brute force: N^{2} steps.
- Barnes-Hut: $N \log N$ steps, enables new research.

Discrete Fourier transform.

- Break down waveform of N samples into periodic components. Applications: DVD players, JPEG, analysis of astronomical data, medical imaging, nonlinear Schrödinger equation,
- Brute force: N2 steps.
- FFT algorithm: $\mathrm{N} \log \mathrm{N}$ steps, enables new technology.

Sorting.

- Rearrange N items in ascending order.
- Fundamental information processing abstraction.

Andrew Appel
PU ' 81

Freidrich Gauss 1805

Case Study: Sorting

Sorting problem:

- Given N items, rearrange them in ascending order.
- Applications: statistics, databases, data compression, computational biology, computer graphics, scientific computing, ...

Insertion sort.

- Brute-force sorting solution.
- Move left-to-right through array.
- Exchange next element with larger elements to its left, one-by-one.

```
public static void insertionSort(double[] a) {
    int N = a.length;
    for (int i = 0; i < N; i++)
        for (int j = i; j > 0; j--) {
            if (less(a[j], a[j-1]))
                exch(a, j, j-1);
            else break;
        }
    }
}
```


Insertion Sort: Observation

Observe and tabulate running time for various values of N .

- Data source: N random numbers between 0 and 1 .
- Machine: Apple G5 1.8GHz with 1.5GB memory running OS X.
- Timing: Skagen wristwatch.

N	Comparisons	Time
5,000	6.2 million	0.13 seconds
10,000	25 million	0.43 seconds
20,000	99 million	1.5 seconds
40,000	400 million	5.6 seconds
80,000	16 million	23 seconds

Sorting helper functions.

- Is real number x strictly less than y ?

```
public static boolean less(double x, double y) {
    return (x < y);
}
```

- Swap real numbers stored in a[i] and a[j].

```
public static void exch(double[] a, int i, int j) {
    double swap = a[i];
    a[i] = a[j];
    a[j] = swap;
}
```

Insertion Sort: Experimental Hypothesis

Data analysis. Plot \# comparisons vs. input size on log-log scale.

Regression. Fit line through data points $\approx a N^{b}$.
Hypothesis. \# comparisons grows quadratically with input size $\approx \mathrm{N}^{2} / 4$.

Insertion Sort: Prediction and Verification

Experimental hypothesis. \# comparisons $\approx \mathrm{N}^{2} / 4$.

Prediction. 400 million comparisons for $N=40,000$

Observations.

N	Comparisons	Time
40,000	401.3 million	5.595 sec
40,000	399.7 million	5.573 sec
40,000	401.6 million	5.648 sec
40,000	400.0 million	5.632 sec

Agrees.

Prediction. 10 billion comparisons for $\mathrm{N}=200,000$.

Observation. N Comparisons Time

N	Comparisons	Time
200,000	9.997 billion	145 seconds

Insertion Sort: Validation

Number of comparisons depends on input family

- Ascending: N.
- Random: N2/4
- Descending: N2/2.

Insertion Sort: Theoretical Hypothesis

Worst case. (descending)

- Iteration i requires i comparisons.
. Total $=0+1+2+\ldots+\mathrm{N}-2+\mathrm{N}-1=\mathrm{N}(\mathrm{N}-1) / 2$.

Average case. (random)

- Iteration i requires $\mathrm{i} / 2$ comparisons on average.
- Total $=0+1 / 2+2 / 2+\ldots+(N-1) / 2=N(N-1) / 4$.

Difference. Theoretical model can apply to machines not yet built.
Experimental hypothesis.

- Measure running times, plot, and fit curve
- Model useful for predicting, but not for explaining.

Theoretical hypothesis.

- Analyze algorithm to estimate \# comparisons as a function of: - number of elements N to sort
- average or worst case input
- Model useful for predicting and explaining
- Model is independent of a particular machine or compiler

Insertion Sort: Theoretical Hypothesis

Theoretical hypothesis.

Analysis	Comparisons	Stddev
Worst	$\mathrm{N}^{2} / 2$	NA
Average	$\mathrm{N}^{2} / 4$	$1 / 6 \mathrm{~N}^{3 / 2}$
Best	N	NA

Validation. Theory agrees with observations.
Remark. Supercomputer can' \dagger rescue a bad algorithm.

Quicksort

Quicksort.
\Rightarrow. Partition array so that:

- some partitioning element a [m] is in its final position
- no larger element to the left of m
- no smaller element to the right of m

partitioned array

Computer	Comparisons Per Second	Thousand	Million	Billion
laptop	10^{7}	instant	1 day	3 centuries
super	10^{12}	instant	1 second	2 weeks

Quicksort.
\Rightarrow. Partition array so that:

- some partitioning element a [m] is in its final position
- no larger element to the left of m
- no smaller element to the right of m

Q	U	I	C	K	S	O	R	T	I	S	C	O	O	L

Quicksort

Hoare, 1960 0 L

Quicksort

Quicksort.

- Partition array so that:
- some partitioning element a [m] is in its final position
- no larger element to the left of m
- no smaller element to the right of m
\Rightarrow. Sort each "half" recursively.

C	C	I	I	K	L	O	O	O	Q	R	S	S	T	U

sort each piece

Quicksort.

- Partition array so that:
- some partitioning element a $[\mathrm{m}]$ is in its final position
- no larger element to the left of m
- no smaller element to the right of m
. Sort each "half" recursively.
public static void quicksort(double[] a, int left, int right) if (right <= left) return;
int $i=$ partition(a, left, right) ;
quicksort(a, left, i-1);
quicksort(a, i+1, right);
\}

Quicksort : Implementing Partition
Q. How to partition in-place efficiently?

public static int partition(double[] a, int left, int right) int $i=1$ left - 1
int $j=r i g h t ;$
while(true) \{
while (less (a[++i], a[right]))
while (less (a[right], a[--j])) if ($j==$ left) break;
find item on left to swap
find item on right to swap
if (i $>=\mathbf{j}$) break; check if pointers cross
$\operatorname{exch}(\mathbf{a}, \mathbf{i}, \mathbf{j})$; swap
\}
exch (a, i, right) ; swap with partitioning element
$\begin{array}{ll}\text { exch (a, i, right); } & \text { swap with partitioning element } \\ \text { return } \mathbf{i} ; & \text { return index where crossing occurs }\end{array}$
\}

Observe and tabulate running time for various values of N .

- Data source: first N words of Charles Dicken's life work.
- Machine: Apple G5 1.8 GHz with 1.5 GB memory running OS X.

N	Comparisons	Time
200,000	4.5 million	0.10 sec
400,000	9.5 million	0.23 sec
1 million	26 million	0.47 sec
2 million	55 million	0.96 sec
4 million	120 million	2.0 sec
8 million	240 million	4.2 sec

Remark. Takes 1.8 seconds to generate input of size 8 million!

Quicksort: Preliminary Hypothesis

Experimental hypothesis. Number of comparisons $\approx 30 \mathrm{~N}$.

Quicksort: Prediction and Verification

Experimental hypothesis. Number of comparisons $\approx 30 \mathrm{~N}$.
Prediction. 120 million comparisons for $\mathrm{N}=4$ million.
Observations.

N	Comparisons	Time
4 million	112.9 million	2.04 sec
4 million	116.7 million	2.07 sec
4 million	116.8 million	2.02 sec

Agrees.

Prediction. 600 million comparisons for $N=20$ million.

Observations.	N	Comparisons	Time	Not quite.
	20 million	638 million	11.1 sec	
	100 million	3.6 billion	60.6 sec	

Order of Growth

Asymptotic running time.

- Estimate time as a function of input size N.
- Ignore lower order terms and leading coefficients.
- when N is large, terms are negligible
- when N is small, we don' \dagger care
- Ex: $6 \mathrm{~N}^{3}+17 \mathrm{~N}^{2}+56$ is asymptotically proportional to N^{3}.

Complexity	Description	When N doubles, running time
1	Constant algorithm is independent of input size.	does not change increases by a
$\log \mathrm{N}$	Logarithmic algorithm gets slightly slower as N grows.	constant
N	Linear algorithm is optimal if you need to process N inputs.	doubles
$\mathrm{N} \log \mathrm{N}$	Linearithmic algorithm scales to huge problems.	slightly more than doubles
N^{2}	Quadratic algorithm practical for use only on relatively small problems.	quadruples
2^{N}	Exponential algorithm is not usually practical.	squares!

Computational Complexity of Problems

Computational complexity. Framework to study efficiency of algorithms for solving a particular problem X.

Upper bound. Cost guarantee provided by some algorithm for X
Lower bound. Proven limit on cost guarantee of any algorithm for X.
Optimal algorithm. Algorithm with best cost guarantee for X. §
lower bound \sim upper bound
Example 1: $X=$ sorting.

- Measure costs in terms of comparisons.
- Upper bound $=\mathrm{N} \log _{2} \mathrm{~N}$ with mergesort.
- Lower bound $=\mathrm{N} \log _{2} \mathrm{~N}-\mathrm{N} \log _{2} e$.
- Optimal algorithm = mergesort. algorithm (see COS 226)

Mergesort.

- Divide array into two halves.

Jon von Neumann, 1945

$$
\begin{array}{l|l|l|l|l}
\mathbf{A} & \mathrm{L} & \mathrm{G} & \mathrm{O} & \mathrm{R} \\
\hline
\end{array}
$$

Sorting Case Study: mergesort

Mergesort.

- Divide array into two halves.
- Recursively sort each half separately.
- Merge two halves to make sorted whole.
Q. How to merge efficiently?

Computational Complexity of Problems

Computational complexity. Framework to study efficiency of algorithms for solving a particular problem X .

Upper bound. Cost guarantee provided by some algorithm for X
Lower bound. Proven limit on cost guarantee of any algorithm for X.
Optimal algorithm. Algorithm with best cost guarantee for X .

Example 2: $\mathrm{X}=$ Euclidean TSP.

- Measure cost in terms of arithmetic operations.
- Upper bound = 2^{N} by dynamic programming. N! by brute force

Lower bound = N.

- Optimal algorithm = ask again in 50 years.

Essence of computational complexity: closing the gap.

Summary

Sobering philosophical thoughts.

- In theory, most problems are undecidable.
- In practice, most remaining problems are intractable.
- Analysis of algorithms helps us improve the ones we use.

Summary

How can I evaluate the performance of my algorithm?

- Computational experiments.
- Theoretical analysis.

What if it's not fast enough?

- Understand why.
- Buy a faster computer.
- Find a better algorithm in a textbook.
- Discover a new algorithm.

Attribute	Better Machine	Better Algorithm
Cost	$\$ \$ \$$ or more.	\$ or less.

Announcements

Your Very Last Exam

- Wed April 27, 7:30 PM, right here
- Closed book, but
- You can bring one cheatsheet
- both sides of one (8.5 by 11) sheet, handwritten by you
- P.S. No calculators, laptops, Palm Pilots, talking watches, etc.

Helpful review session

- Tuesday April 26, 7:30 PM, COS 105
- Not a canned presentation
- Driven by your questions

