
COS126: General Computer Science • http://www.cs.Princeton.EDU/~cos126

Lecture 19: Universality and Computability

2

Fundamental Questions

Universality. What is a general purpose computer?

Computability. Are there problems that no machine can solve?

Church-Turing thesis. Are there limits on the power of machines that

we can build?

Pioneering work in the 1930's.

! (Princeton == center of universe).

! Hilbert, Gödel, Turing, Church, von Neumann.

! Automata, languages, computability, universality, complexity, logic.

4

Turing Machine: Components

Alan Turing sought the most primitive model of a computing device.

Tape.

! Stores input, output, and intermediate results.

! One arbitrarily long strip, divided into cells.

! Finite alphabet of symbols.

Tape head.

! Points to one cell of tape.

! Reads a symbol from active cell.

! Writes a symbol to active cell.

! Moves left or right one cell at a time.

tape head

tape

5

Java: As Powerful As Turing Machine

Turing machines are equivalent in power to TOY and Java.

! Can use Java to solve any problem that can be solved with a TM.

! Can use TM to solve any problem that can be solved with a TOY.

! Can use TOY to solve any problem that can be solved with Java.

Java simulator for Turing machines.

State state = start;
while (true) {
 char c = tape.readSymbol();
 tape.write(state.symbolToWrite(c));
 state = state.next(c);
 if (state.isLeft()) tape.moveLeft();
 else if (state.isRight()) tape.moveRight();
 else if (state.isHalt()) break;
}

6

Turing Machine: As Powerful As TOY Machine

Turing machines are equivalent in power to TOY and Java.

! Can use Java to solve any problem that can be solved with a TM.

! Can use TM to solve any problem that can be solved with a TOY.

! Can use TOY to solve any problem that can be solved with Java.

Turing machine simulator for TOY programs.

! Encode state of memory, registers, pc, onto Turing tape.

! Design TM states for each instruction.

! Can do because all instructions:

– examine current state

– make well-defined changes depending on current state

7

TOY: As Powerful As Java

Turing machines are equivalent in power to TOY and Java.

! Can use Java to solve any problem that can be solved with a TM.

! Can use TM to solve any problem that can be solved with a TOY.

! Can use TOY to solve any problem that can be solved with Java.

TOY simulator for Java programs.

! Variables, loops, arrays, functions, linked lists,

! In principle, can write a Java-to-TOY compiler!

8

Java, Turing Machines, and TOY

Turing machines are equivalent in power to TOY and Java.

! Can use Java to solve any problem that can be solved with a TM.

! Can use TM to solve any problem that can be solved with a TOY.

! Can use TOY to solve any problem that can be solved with Java.

Also works for:

! C, C++, Python, Perl, Excel, Outlook,

! Mac, PC, Cray, Palm pilot,

! TiVo, Xbox, Java cell phone,

Does not work:

! DFA or regular expressions.

! Gaggia espresso maker.

9

Not Enough Storage?

Implicit assumption.

! TOY machine and Java program have unbounded amount of memory.

! Otherwise Turing machine is strictly more powerful.

! Is this assumption reasonable?

10

Universal Turing Machine

Java program: solves one specific problem.

TOY program: solves one specific problem.

TM: solves one specific problem.

Java simulator in Java: Java program to simulate any Java program.

TOY simulator in TOY: TOY program to simulate any TOY program.

UTM: Turing machine that can simulate any Turing machine.

General purpose machine.

! UTM can implement any algorithm.

! Your laptop can do any computational task: word-processing,

pictures, music, movies, games, finance, science, email, Web, …

11

Representation of a Turing Machine

Special-purpose TM consists of 3 ingredients.

! TM program.

! Initial tape contents.

! Current TM state.

12

10 1 0 .1

Tape 1: encode TM tape

.

Universal Turing Machine

Universal Turing Machine (UTM),

! A specific TM that simulates operations of any TM.

How to create.

! Encode 3 ingredients of TM using 3 tapes.

! UTM simulates the TM.

– read tape 1

– read tape 3

– consult tape 2 for what to do

– write tape 1 if necessary

– move head 1

– write tape 3

U T M

...

01 L 8 .0

Tape 2: encode TM program

.8..

at t e .8

Tape 3: encode TM current state

.s..

13

Universal Turing Machine

Universal Turing Machine (UTM).

! A specific TM that simulates operations of any TM.

How to create.

! Encode 3 ingredients of TM using 3 tapes.

! UTM simulates the TM.

! Like the fetch-increment-execute cycle of TOY.

– tape 1 = data memory

– tape 2 = program memory

– tape 3 = program counter

! Can convert 3-tape TM to single tape one.

– analogous to von Neumann machine where program and data

share same storage

14

Church-Turing Thesis

Implications:

! No need to seek more powerful machines.

! If a computational problem can't be solved with a Turing machine,

then it can't be solved on any physical computing device.

Remarks.

! "Thesis" and not a mathematical theorem because it's a statement

about the physical world and not subject to proof.

Turing machine: a simple and universal model of computation.

Church Turing thesis (1936). Turing machines can do any

computation that can be done by any real computer.

15

Other Universal Models of Computation

Finitely many registers plus memory that can be accessed

with an integer address. TOY, G5, Pentium IV.
Random Access Machines

Iterative string replacement rules used by linguists to

describe natural languages.
Unrestricted Grammars

Parallel string replacement rules that model the growth

of plants.
Extended L-Systems

Boolean array of cells whose values change according only

to the state of the adjacent cells, e.g., Game of Life.
Cellular Automata

A method to define and manipulate functions. Basis of

functional programming language like Lisp and ML.
Untyped Lambda Calculus

Functions dealing with computation on natural numbers.Recursive Functions

Multiple heads, multiple tapes, 2D tape, nondeterminism.Enhanced Turing Machines

Java, C, C++, Perl, Python, PHP, Lisp, PostScript, ExcelProgramming Languages

Model of Computation Description

COS126: General Computer Science • http://www.cs.Princeton.EDU/~cos126

Computability

Take any definite unsolved problem, such as the question as

to the irrationality of the Euler-Mascheroni constant !, or

the existence of an infinite number of prime numbers of

the form 2n+1. However unapproachable these problems may

seem to us and however helpless we stand before them, we

have, nevertheless, the firm conviction that their solution

must follow by a finite number of purely logical processes.

 -David Hilbert, in his 1900 address to the International

 Congress of Mathematics

19

Halting Problem

Halting problem. Write a Java function that reads in a Java function

f and its input x, and decides whether f(x) results in an infinite loop.

Ex: is there a perfect number of the form: 1, 1+x, 1+2x, 1+3x,

! x = 1: halts when n = 28 = 1 + 2 + 4 + 7 + 14.

! x = 2: finding odd perfect number is famous open math problem.

public void f(int x) {
 for (long n = 1; true; n = n + x) {
 long sum = 0;
 for (long i = 1; i < n; i++)
 if (n % i == 0) sum = sum + i;
 if (sum == n) return;
 }
}

integer that equals the sum of its proper divisors

halt if n is perfect

20

Undecidable Problem

A yes-no problem is undecidable if no Turing machine exists to solve it.

Theorem (Turing, 1937). The halting problem is undecidable.

! No Turing machine can solve the halting problem.

! By universality, not possible to write a Java function either.

Proof intuition: lying paradox.

! Divide all statements into two categories: truths and lies.

! How do we classify the statement: I am lying.

Key element of paradox: self-reference.

21

Halting Problem Proof

Assume the existence of halt(f,x):

! Input: a function f and its input x.

! Output: true if f(x) halts, and false otherwise.

! Note: halt(f,x) does not go into infinite loop.

We prove by contradiction that halt(f,x) does not exist.

! Reductio ad absurdum : if any logical argument based on an

assumption leads to an absurd statement, then assumption is false.

public boolean halt(String f, String x) {
 if (???) return true;
 else return false;
}

encode f and x as strings

22

Halting Problem Proof

Assume the existence of halt(f,x):

! Input: a function f and its input x.

! Output: true if f(x) halts, and false otherwise.

Construct function strange(f) as follows:

! If halt(f,f) returns true, then strange(f) goes into an infinite loop.

! If halt(f,f) returns false, then strange(f) halts.

f is a string so legal (if perverse)

to use for second input

public void strange(String f) {
 if (halt(f, f)) {
 while (true)
 ;
 }
}

23

Halting Problem Proof

Assume the existence of halt(f,x):

! Input: a function f and its input x.

! Output: true if f(x) halts, and false otherwise.

Construct function strange(f) as follows:

! If halt(f,f) returns true, then strange(f) goes into an infinite loop

! If halt(f,f) returns false, then strange(f) halts.

In other words:

! If f(f) halts, then strange(f) goes into an infinite loop.

! If f(f) does not halt, then strange(f) halts.

24

Halting Problem Proof

Assume the existence of halt(f,x):

! Input: a function f and its input x.

! Output: true if f(x) halts, and false otherwise.

Construct function strange(f) as follows:

! If halt(f,f) returns true, then strange(f) goes into an infinite loop

! If halt(f,f) returns false, then strange(f) halts.

In other words:

! If f(f) halts, then strange(f) goes into an infinite loop.

! If f(f) does not halt, then strange(f) halts.

Call strange()with ITSELF as input.

! If strange(strange) halts then strange(strange) does not halt.

! If strange(strange) does not halt then strange(strange) halts.

25

Halting Problem Proof

Assume the existence of halt(f,x):

! Input: a function f and its input x.

! Output: true if f(x) halts, and false otherwise.

Construct function strange(f) as follows:

! If halt(f,f) returns true, then strange(f) goes into an infinite loop

! If halt(f,f) returns false, then strange(f) halts.

In other words:

! If f(f) halts, then strange(f) goes into an infinite loop.

! If f(f) does not halt, then strange(f) halts.

Call strange()with ITSELF as input.

! If strange(strange) halts then strange(strange) does not halt.

! If strange(strange) does not halt then strange(strange) halts.

Either way, a contradiction. Hence halt(f,x) cannot exist.

26

Consequences

Halting problem is not "artificial."

! Undecidable problem reduced to simplest form to simplify proof.

! Self-reference not essential.

! Closely related to practical problems.

No input halting problem. Give a function with no input, does it halt?

Program equivalence. Do two programs always produce the same output?

Uninitialized variables. Is variable x initialized?

Dead code elimination. Does control flow ever reach this point in a

program?

27

More Undecidable Problems

Hilbert’s 10th problem.

! “Devise a process according to which it can be determined by a finite

number of operations whether a given multivariate polynomial has an integral

root.”

Examples.

! f(x, y, z) = 6x3 y z2 + 3xy2 - x3 – 10.

! f(x, y) = x2 + y2 – 3.

! f(x, y, z) = xn + yn – zn

Andrew Wiles, 1995

yes: f(5, 3, 0) = 0

no

no if n " 3 and x, y, z > 0.

(Fermat's Last Theorem)

yes if n = 2, x = 3, y = 4, z = 5

28

More Undecidable Problems

Optimal data compression. Find the shortest program to produce a

given string or picture.

Mandelbrot Set (40 lines of code)

29

More Undecidable Problems

Polygonal tiling. Given a polygon, is it possible to tile the whole plane

with copies of that shape?

Difficulty. Tilings may exist, but be aperiodic!

Reference: http://www.uwgb.edu/dutchs/symmetry/aperiod.htm

30

More Undecidable Problems

Virus identification. Is this program a virus?

Private Sub AutoOpen()
On Error Resume Next
If System.PrivateProfileString("", CURRENT_USER\Software\Microsoft\Office\9.0\Word\Security",
 "Level") <> "" Then

CommandBars("Macro").Controls("Security...").Enabled = False
. . .
For oo = 1 To AddyBook.AddressEntries.Count
 Peep = AddyBook.AddressEntries(x)
 BreakUmOffASlice.Recipients.Add Peep
 x = x + 1
 If x > 50 Then oo = AddyBook.AddressEntries.Count
Next oo
. . .
BreakUmOffASlice.Subject = "Important Message From " & Application.UserName
BreakUmOffASlice.Body = "Here is that document you asked for ... don't show anyone else ;-)"
. . .

Melissa Virus, March 28, 1999

Can write programs in MS Word.

This statement disables security.

31

Implications of Computability

Step-by-step reasoning.

! We assume that it will solve any technical or scientific problem.

! Not quite says the halting problem.

Practical implications.

! Work with limitations.

! Recognize and avoid undecidable problems.

! Anything that is (or could be) like a computer has the same flaw.

32

Speculative Models of Computation

Rule of thumb. Any pile of junk that has state and a deterministic set

of rules is universal, and hence has intrinsic limitations!

Formal mathematics.Logic

Dynamics based computing based on chaos.Dynamical System

Time-gated Manakov spatial solitions in a homogeneous medium.Soliton Collision System

Compute using biological operations on DNA strands.DNA Computer

Colliding billiard balls with barriers and elastic collisions.Billiard Ball Computer

Compute using the superposition of quantum states.Quantum Computer

? ? ?Human Brain

DescriptionModel of Computation

33

Turing's Key Ideas

Turing's 4 key ideas.

! Computing is the same as manipulating symbols.

Encode numbers as strings.

! Computable at all = computing with a Turing machine.

Church-Turing thesis.

! Existence of Universal Turing machine.

general-purpose, programming computers

! Undecidability of the Halting problem.

computers have inherent limitations

34

Turing's Key Ideas

Turing's 4 key ideas.

! Computing is the same as manipulating symbols.

Encode numbers as strings.

! Computable at all = computing with a Turing machine.

Church-Turing thesis.

! Existence of Universal Turing machine.

general-purpose, programming computers

! Undecidability of the Halting problem.

computers have inherent limitations

Hailed as one of top 10 science papers of 20th century.
Reference: On Computable Numbers, With an Application to the Entscheidungsproblem by A. M. Turing.

In Proceedings of the London Mathematical Society, ser. 2. vol. 42 (1936-7), pp.230-265.

