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Lecture 18:  Theory of Computation
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Introduction to Theoretical CS

Two fundamental questions.

! What can a computer do?

! What can a computer do with limited resources?

General approach.

! Don't talk about specific machines or problems.

! Consider minimal abstract machines.

! Consider general classes of problems.

Pentium IV running Linux kernel 2.4.22
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Why Learn Theory

In theory . . .

! Deeper understanding of what is a computer and computing.

! Foundation of all modern computers.

! Pure science.

! Philosophical implications.

In practice . . .

! Web search:  theory of pattern matching.

! Sequential circuits:  theory of finite state automata.

! Compilers:  theory of context free grammars.

! Cryptography:  theory of computational complexity.

! Data compression:  theory of information.

"In theory there is no difference between theory and
practice. In practice there is."  -Yogi Berra
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Regular Expressions and DFAs

a* | (a*ba*ba*ba*)*

0 21
b b

 a  a a

 b
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Pattern Matching Applications

Test if a string matches some pattern.

! Process natural language.

! Scan for virus signatures.

! Search for information using Google.

! Access information in digital libraries.

! Retrieve information from Lexis/Nexis.

! Search-and-replace in a word processors.

! Filter text (spam, NetNanny, Carnivore, malware).

! Validate data-entry fields (dates, email, URL, credit card).

! Search for markers in human genome using PROSITE patterns.

Parse text files.

! Compile a Java program.

! Crawl and index the Web.

! Read in data stored in TOY input file format.

! Automatically create Java documentation from Javadoc comments.
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Regular Expressions:  Basic Operations

Regular expression.  Notation to specify a set of strings.

every other stringaabaabaabaabConcatenation

every other string
aaaab

abaab
a(a|b)aab

Parentheses

(ab)*a

ab*a

aa | baab

.u.u.u.

Regular Expression

!

abbbaa

a

ababababa

ab

ababa

aa

abbba
Closure

Union

Wildcard

Operation

every other string
aa

baab

succubus

tumultuous

cumulus

jugulum

NoYes
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Regular Expressions:  Examples

Regular expression.  Notation is surprisingly expressive.

b

bb

baabbbaa

bbb

aaa

bbbaababbaa

a* | (a*ba*ba*ba*)*

multiple of three b’s

111111111

403982772

10000

98701234

.*0....

fifth to last digit is 0

subspace

subspecies

raspberry

crispbread

.* spb .*

contains the trigraph spb

gcgcgg
cggcggcggctg

gcgcaggctg

gcgctg
gcgcggctg

gcgcggaggctg

gcg (cgg|agg)* ctg

fragile X syndrome indicator

Regular Expression NoYes
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Generalized Regular Expressions

Regular expressions are a standard programmer's tool.

! Built in to Java, Perl, Unix, Python, . . . .

! Additional operations typically added for convenience.

! Ex:  [a-e]+ is shorthand for (a|b|c|d|e)(a|b|c|d|e)*.

111111111

166-54-111

08540-1321

19072-5541
[0-9]{5}-[0-9]{4}Exactly k

decaderhythm[^aeiou]{6}Negations

camelCase
4illegal

capitalized
Word

[A-Za-z][a-z]*Character classes

ade

bcde

abcde

abcbcde
a(bc)+deOne or more

Regular ExpressionOperation NoYes
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Regular Expressions in Java

Validity checking.  Is input in the set described by the re?

public class Validate {
   public static void main(String[] args) {
      String re    = args[0];
      String input = args[1];
      System.out.println(input.matches(re));
   }
}

% java Validate "..oo..oo." bloodroot
true

% java Validate "[$_A-Za-z][$_A-Za-z0-9]*" ident123
true

% java Validate "[a-z]+@([a-z]+\\.)+(edu|com)" doug@cs.princeton.edu
true

legal Java identifier

valid email address (simplified)

need quotes to "escape" the shell

need help solving crosswords?

powerful string library method
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Solving the Pattern Match Problem

Regular expressions are a concise way to describe patterns.

! How would you implement String.matches ?

! Hardware:  build a deterministic finite state automaton (DFA).

! Software:  simulate a DFA.

DFA:  simple machine that solves the pattern match problem.

! Different machine for each pattern.

! Accepts or rejects string specified on input tape.

! Focus on true or false questions for simplicity.
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Deterministic Finite State Automaton (DFA)

Simple machine with N states.

! Begin in start state.

! Read first input symbol.

! Move to new state, depending on current state and input symbol.

! Repeat until last input symbol read.

! Accept or reject  string depending on last state.

Y NN
b b

 a  a a

 b

b b a a b b a b bb b a a b b a b bInput

DFA
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Theory of DFAs and REs

RE.  Concise way to describe a set of strings.

DFA.  Machine to recognize whether a given string is in a given set.

Duality:  for any DFA, there exists a regular expression to describe

the same set of strings; for any regular expression, there exists a

DFA that recognizes the same set.

Practical consequence of duality proof:  to match regular expression

patterns,  (i) build DFA and (ii) simulate DFA on input string.

a* | (a*ba*ba*ba*)*

multiple of 3 b's

Y NN
b b

 a  a a

 b

multiple of 3 b's
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Implementing a Pattern Matcher

Problem:  given a regular expression, create program that tests

whether given input is in set of strings described.

Step 1:  build the DFA.

! A compiler!

! See COS 226 or COS 320.

Step 2:  simulate it with given input.  Easy.

State state = start;
while (!CharStdIn.isEmpty()) {
   char c = CharStdIn.readChar();
   state = state.next(c);
}
System.out.println(state.accept());
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Application:  Harvester

Harvest information from input stream.

! Harvest patterns from DNA.

! Harvest email addresses from web for spam campaign.

% java Harvester "[a-z]+@([a-z]+\\.)+(edu|com|net|tv)"

       http://www.princeton.edu/~cos126

doug@cs.princeton.edu

dgabai@cs.princeton.edu

mona@cs.princeton.edu

% java Harvester "gcg(cgg|agg)*ctg" chromosomeX.txt

gcgcggcggcggcggcggctg

gcgctg

gcgctg

gcgcggcggcggaggcggaggcggctg

email validator (simplified)
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Application:  Harvester

Harvest information from input stream.

! Use Pattern data type to compile regular expression to NFA.

! Use Matcher data type to simulate NFA.

! (NFA is fancy but equivalent variety of DFA)

import java.util.regex.Pattern;
import java.util.regex.Matcher;
public class Harvester {
   public static void main(String[] args) {
      String re = args[0];
      In in = new In(args[1]);
      String input = in.readAll();
      Pattern pattern = Pattern.compile(re);
      Matcher matcher = pattern.matcher(input);
      while (matcher.find()) {
         System.out.println(matcher.group());
      }
   }
}
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Application:  Parsing a Data File

Ex:  parsing an NCBI genome data file.

String re = "[ ]*[0-9]+([actg ]*).*";
Pattern pattern = Pattern.compile(re);
In in = new In(filename);
String line;
while ((line = in.readLine()) != null) {
   Matcher matcher = pattern.matcher(line);
   if (matcher.find()) {
      String s = matcher.group(1).replaceAll(" ", "");
      // do something with s

   }
}

LOCUS AC146846 128142 bp DNA linear HTG 13-NOV-2003
DEFINITION Ornithorhynchus anatinus clone CLM1-393H9,
ACCESSION AC146846
VERSION AC146846.2 GI:38304214
KEYWORDS HTG; HTGS_PHASE2; HTGS_DRAFT.
SOURCE Ornithorhynchus anatinus (platypus)
ORIGIN
     1 tgtatttcat ttgaccgtgc tgttttttcc cggtttttca gtacggtgtt agggagccac
    61 gtgattctgt ttgttttatg ctgccgaata gctgctcgat gaatctctgc atagacagct  // a comment
   121 gccgcaggga gaaatgacca gtttgtgatg acaaaatgta ggaaagctgt ttcttcataa
   ...
128101 ggaaatgcga cccccacgct aatgtacagc ttctttagat tg
//

replace this RE with this string

extract the RE part in parentheses
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Limitations of DFA

No DFA can recognize the language of all bit strings with an equal
number of 0's and 1's.

! Suppose an N-state DFA can recognize this language.

! Consider following input: 0000000011111111

! DFA must accept this string.

! Some state x is revisited during first N+1 0's since only N states.
0000000011111111
  x   x

! Machine would accept same string without intervening 0's.
000011111111

! This string doesn't have an equal number of 0's and 1's.

N+1   0's N+1   1's
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Fundamental Questions

Which languages CANNOT be described by any RE?

! Bit strings with equal number of 0s and 1s.

! Decimal strings that represent prime numbers.

! Genomic strings that are Watson-Crick complemented palindromes.

! Many more. . . .

How can we extend REs to describe richer sets of strings?

! Context free grammar (e.g., Java).

Q.  How can we make simple machines more powerful?

Q.  Are there any limits on what kinds of problems machines can solve?

Reference:  http://java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html
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Summary

Programmer.

! Regular expressions are a powerful pattern matching tool.

! Implement regular expressions with finite state machines.

Theoretician.

! Regular expression is a compact description of a set of strings.

! DFA is an abstract machine that solves pattern match problem for

regular expressions.

! DFAs and regular expressions have limitations.

Variations

! Yes (accept) and No (reject) states sometimes drawn differently

! Terminology: Deterministic Finite State Automaton (DFA), Finite

State Machine (FSM), Finite State Automaton (FSA) are the same

! DFA’s can have output, specified on the arcs or in the states

– These may not have explicit Yes and No states
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Turing Machines

Alan Turing (1912-1954)

Challenge:  Design simplest machine that is

"as powerful" as conventional computers.
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Turing Machine:  Components

Alan Turing sought the most primitive model of a computing device.

Tape.

! Stores input, output, and intermediate results.

! One arbitrarily long strip, divided into cells.

! Finite alphabet of symbols.

Tape head.

! Points to one cell of tape.

! Reads a symbol from active cell.

! Writes a symbol to active cell.

! Moves left or right one cell at a time.

tape head

tape
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Turing Machine:  Fetch, Execute

States.

! Finite number of possible machine configurations.

! Determines what machine does and which way tape head moves.

State transition diagram.

! Ex.  if in state 2 and input symbol is 1 then: overwrite the 1 with x,

move to state 0, move tape head to left.

0:x

1:x

#:##:#

#:#

#:#

1:x

0:x
0 1

2

4

3 5

L

R

R

R NY

… # # x x x 1 1 0 # # …Before
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1

Turing Machine:  Fetch, Execute

States.

! Finite number of possible machine configurations.

! Determines what machine does and which way tape head moves.

State transition diagram.

! Ex.  if in state 2 and input symbol is 1 then: overwrite the 1 with x,

move to state 0, move tape head to left.

0:x

1:x

#:##:#

#:#

#:#

1:x

0:x
0 1

2

4

3 5

L

R

R

R NY

… # # x x x 1x 0 # # …xAfter

L

R
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Turing Machine:  Initialization and Termination

Initialization.

! Set input on some portion of tape.

! Set tape head.

! Set initial state.

Termination.

! Stop if enter  yes, no, or halt state.

! Infinite loop possible.

… # # 0 0 1 1 1 0 # # …

0:x

1:x

#:##:#

#:#

#:#

1:x

0:x
0 1

2

4

3 5

L

R

R

R NY

… # # x x x x x x # # …



26

Example:  Equal Number of 0's and 1's

… # # 0 0 1 1 1 0 # # …

0:x

1:x

#:##:#

#:#

#:#

1:x

0:x

find left end

skip x

find 1

find 0

accept reject

L

R

R

R NY
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Turing Machine Summary

Goal:  simplest machine that is "as powerful" as conventional computers.

Surprising Fact 1.  Such machines are very simple: TM is enough!

Surprising Fact 2.  Some  problems cannot be solved by ANY computer.

Consequences.

! Precursor to general purpose programmable machines.

! Exposes fundamental limitations of all computers.

! Enables us to study the physics and universality of computation.

! No need to seek more powerful machines!

Variations

! Instead of just recognizing strings, TM’s can produce output: the

contents of the tape

! Instead of Y and N states, TM’s can have a plain Halt state

next lecture


