
COS126: General Computer Science • http://www.cs.Princeton.EDU/~cos126

Lecture 18: Theory of Computation

2

Introduction to Theoretical CS

Two fundamental questions.

! What can a computer do?

! What can a computer do with limited resources?

General approach.

! Don't talk about specific machines or problems.

! Consider minimal abstract machines.

! Consider general classes of problems.

Pentium IV running Linux kernel 2.4.22

3

Why Learn Theory

In theory . . .

! Deeper understanding of what is a computer and computing.

! Foundation of all modern computers.

! Pure science.

! Philosophical implications.

In practice . . .

! Web search: theory of pattern matching.

! Sequential circuits: theory of finite state automata.

! Compilers: theory of context free grammars.

! Cryptography: theory of computational complexity.

! Data compression: theory of information.

"In theory there is no difference between theory and
practice. In practice there is." -Yogi Berra

4

Regular Expressions and DFAs

a* | (a*ba*ba*ba*)*

0 21
b b

 a a a

 b

5

Pattern Matching Applications

Test if a string matches some pattern.

! Process natural language.

! Scan for virus signatures.

! Search for information using Google.

! Access information in digital libraries.

! Retrieve information from Lexis/Nexis.

! Search-and-replace in a word processors.

! Filter text (spam, NetNanny, Carnivore, malware).

! Validate data-entry fields (dates, email, URL, credit card).

! Search for markers in human genome using PROSITE patterns.

Parse text files.

! Compile a Java program.

! Crawl and index the Web.

! Read in data stored in TOY input file format.

! Automatically create Java documentation from Javadoc comments.

6

Regular Expressions: Basic Operations

Regular expression. Notation to specify a set of strings.

every other stringaabaabaabaabConcatenation

every other string
aaaab

abaab
a(a|b)aab

Parentheses

(ab)*a

ab*a

aa | baab

.u.u.u.

Regular Expression

!

abbbaa

a

ababababa

ab

ababa

aa

abbba
Closure

Union

Wildcard

Operation

every other string
aa

baab

succubus

tumultuous

cumulus

jugulum

NoYes

7

Regular Expressions: Examples

Regular expression. Notation is surprisingly expressive.

b

bb

baabbbaa

bbb

aaa

bbbaababbaa

a* | (a*ba*ba*ba*)*

multiple of three b’s

111111111

403982772

10000

98701234

.*0....

fifth to last digit is 0

subspace

subspecies

raspberry

crispbread

.* spb .*

contains the trigraph spb

gcgcgg
cggcggcggctg

gcgcaggctg

gcgctg
gcgcggctg

gcgcggaggctg

gcg (cgg|agg)* ctg

fragile X syndrome indicator

Regular Expression NoYes

8

Generalized Regular Expressions

Regular expressions are a standard programmer's tool.

! Built in to Java, Perl, Unix, Python,

! Additional operations typically added for convenience.

! Ex: [a-e]+ is shorthand for (a|b|c|d|e)(a|b|c|d|e)*.

111111111

166-54-111

08540-1321

19072-5541
[0-9]{5}-[0-9]{4}Exactly k

decaderhythm[^aeiou]{6}Negations

camelCase
4illegal

capitalized
Word

[A-Za-z][a-z]*Character classes

ade

bcde

abcde

abcbcde
a(bc)+deOne or more

Regular ExpressionOperation NoYes

9

Regular Expressions in Java

Validity checking. Is input in the set described by the re?

public class Validate {
 public static void main(String[] args) {
 String re = args[0];
 String input = args[1];
 System.out.println(input.matches(re));
 }
}

% java Validate "..oo..oo." bloodroot
true

% java Validate "[$_A-Za-z][$_A-Za-z0-9]*" ident123
true

% java Validate "[a-z]+@([a-z]+\\.)+(edu|com)" doug@cs.princeton.edu
true

legal Java identifier

valid email address (simplified)

need quotes to "escape" the shell

need help solving crosswords?

powerful string library method

10

Solving the Pattern Match Problem

Regular expressions are a concise way to describe patterns.

! How would you implement String.matches ?

! Hardware: build a deterministic finite state automaton (DFA).

! Software: simulate a DFA.

DFA: simple machine that solves the pattern match problem.

! Different machine for each pattern.

! Accepts or rejects string specified on input tape.

! Focus on true or false questions for simplicity.

11

Deterministic Finite State Automaton (DFA)

Simple machine with N states.

! Begin in start state.

! Read first input symbol.

! Move to new state, depending on current state and input symbol.

! Repeat until last input symbol read.

! Accept or reject string depending on last state.

Y NN
b b

 a a a

 b

b b a a b b a b bb b a a b b a b bInput

DFA

12

Theory of DFAs and REs

RE. Concise way to describe a set of strings.

DFA. Machine to recognize whether a given string is in a given set.

Duality: for any DFA, there exists a regular expression to describe

the same set of strings; for any regular expression, there exists a

DFA that recognizes the same set.

Practical consequence of duality proof: to match regular expression

patterns, (i) build DFA and (ii) simulate DFA on input string.

a* | (a*ba*ba*ba*)*

multiple of 3 b's

Y NN
b b

 a a a

 b

multiple of 3 b's

13

Implementing a Pattern Matcher

Problem: given a regular expression, create program that tests

whether given input is in set of strings described.

Step 1: build the DFA.

! A compiler!

! See COS 226 or COS 320.

Step 2: simulate it with given input. Easy.

State state = start;
while (!CharStdIn.isEmpty()) {
 char c = CharStdIn.readChar();
 state = state.next(c);
}
System.out.println(state.accept());

14

Application: Harvester

Harvest information from input stream.

! Harvest patterns from DNA.

! Harvest email addresses from web for spam campaign.

% java Harvester "[a-z]+@([a-z]+\\.)+(edu|com|net|tv)"

 http://www.princeton.edu/~cos126

doug@cs.princeton.edu

dgabai@cs.princeton.edu

mona@cs.princeton.edu

% java Harvester "gcg(cgg|agg)*ctg" chromosomeX.txt

gcgcggcggcggcggcggctg

gcgctg

gcgctg

gcgcggcggcggaggcggaggcggctg

email validator (simplified)

15

Application: Harvester

Harvest information from input stream.

! Use Pattern data type to compile regular expression to NFA.

! Use Matcher data type to simulate NFA.

! (NFA is fancy but equivalent variety of DFA)

import java.util.regex.Pattern;
import java.util.regex.Matcher;
public class Harvester {
 public static void main(String[] args) {
 String re = args[0];
 In in = new In(args[1]);
 String input = in.readAll();
 Pattern pattern = Pattern.compile(re);
 Matcher matcher = pattern.matcher(input);
 while (matcher.find()) {
 System.out.println(matcher.group());
 }
 }
}

16

Application: Parsing a Data File

Ex: parsing an NCBI genome data file.

String re = "[]*[0-9]+([actg]*).*";
Pattern pattern = Pattern.compile(re);
In in = new In(filename);
String line;
while ((line = in.readLine()) != null) {
 Matcher matcher = pattern.matcher(line);
 if (matcher.find()) {
 String s = matcher.group(1).replaceAll(" ", "");
 // do something with s

 }
}

LOCUS AC146846 128142 bp DNA linear HTG 13-NOV-2003
DEFINITION Ornithorhynchus anatinus clone CLM1-393H9,
ACCESSION AC146846
VERSION AC146846.2 GI:38304214
KEYWORDS HTG; HTGS_PHASE2; HTGS_DRAFT.
SOURCE Ornithorhynchus anatinus (platypus)
ORIGIN
 1 tgtatttcat ttgaccgtgc tgttttttcc cggtttttca gtacggtgtt agggagccac
 61 gtgattctgt ttgttttatg ctgccgaata gctgctcgat gaatctctgc atagacagct // a comment
 121 gccgcaggga gaaatgacca gtttgtgatg acaaaatgta ggaaagctgt ttcttcataa
 ...
128101 ggaaatgcga cccccacgct aatgtacagc ttctttagat tg
//

replace this RE with this string

extract the RE part in parentheses

17

Limitations of DFA

No DFA can recognize the language of all bit strings with an equal
number of 0's and 1's.

! Suppose an N-state DFA can recognize this language.

! Consider following input: 0000000011111111

! DFA must accept this string.

! Some state x is revisited during first N+1 0's since only N states.
0000000011111111
 x x

! Machine would accept same string without intervening 0's.
000011111111

! This string doesn't have an equal number of 0's and 1's.

N+1 0's N+1 1's

18

Fundamental Questions

Which languages CANNOT be described by any RE?

! Bit strings with equal number of 0s and 1s.

! Decimal strings that represent prime numbers.

! Genomic strings that are Watson-Crick complemented palindromes.

! Many more. . . .

How can we extend REs to describe richer sets of strings?

! Context free grammar (e.g., Java).

Q. How can we make simple machines more powerful?

Q. Are there any limits on what kinds of problems machines can solve?

Reference: http://java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html

19

Summary

Programmer.

! Regular expressions are a powerful pattern matching tool.

! Implement regular expressions with finite state machines.

Theoretician.

! Regular expression is a compact description of a set of strings.

! DFA is an abstract machine that solves pattern match problem for

regular expressions.

! DFAs and regular expressions have limitations.

Variations

! Yes (accept) and No (reject) states sometimes drawn differently

! Terminology: Deterministic Finite State Automaton (DFA), Finite

State Machine (FSM), Finite State Automaton (FSA) are the same

! DFA’s can have output, specified on the arcs or in the states

– These may not have explicit Yes and No states

20

Turing Machines

Alan Turing (1912-1954)

Challenge: Design simplest machine that is

"as powerful" as conventional computers.

22

Turing Machine: Components

Alan Turing sought the most primitive model of a computing device.

Tape.

! Stores input, output, and intermediate results.

! One arbitrarily long strip, divided into cells.

! Finite alphabet of symbols.

Tape head.

! Points to one cell of tape.

! Reads a symbol from active cell.

! Writes a symbol to active cell.

! Moves left or right one cell at a time.

tape head

tape

23

Turing Machine: Fetch, Execute

States.

! Finite number of possible machine configurations.

! Determines what machine does and which way tape head moves.

State transition diagram.

! Ex. if in state 2 and input symbol is 1 then: overwrite the 1 with x,

move to state 0, move tape head to left.

0:x

1:x

#:##:#

#:#

#:#

1:x

0:x
0 1

2

4

3 5

L

R

R

R NY

… # # x x x 1 1 0 # # …Before

24

1

Turing Machine: Fetch, Execute

States.

! Finite number of possible machine configurations.

! Determines what machine does and which way tape head moves.

State transition diagram.

! Ex. if in state 2 and input symbol is 1 then: overwrite the 1 with x,

move to state 0, move tape head to left.

0:x

1:x

#:##:#

#:#

#:#

1:x

0:x
0 1

2

4

3 5

L

R

R

R NY

… # # x x x 1x 0 # # …xAfter

L

R

25

Turing Machine: Initialization and Termination

Initialization.

! Set input on some portion of tape.

! Set tape head.

! Set initial state.

Termination.

! Stop if enter yes, no, or halt state.

! Infinite loop possible.

… # # 0 0 1 1 1 0 # # …

0:x

1:x

#:##:#

#:#

#:#

1:x

0:x
0 1

2

4

3 5

L

R

R

R NY

… # # x x x x x x # # …

26

Example: Equal Number of 0's and 1's

… # # 0 0 1 1 1 0 # # …

0:x

1:x

#:##:#

#:#

#:#

1:x

0:x

find left end

skip x

find 1

find 0

accept reject

L

R

R

R NY

27

Turing Machine Summary

Goal: simplest machine that is "as powerful" as conventional computers.

Surprising Fact 1. Such machines are very simple: TM is enough!

Surprising Fact 2. Some problems cannot be solved by ANY computer.

Consequences.

! Precursor to general purpose programmable machines.

! Exposes fundamental limitations of all computers.

! Enables us to study the physics and universality of computation.

! No need to seek more powerful machines!

Variations

! Instead of just recognizing strings, TM’s can produce output: the

contents of the tape

! Instead of Y and N states, TM’s can have a plain Halt state

next lecture

