
COS126: General Computer Science • http://www.cs.Princeton.EDU/~cos126

Lecture 17: Small World Phenomenon

2

Small World Phenomenon

Small world phenomenon.

! Six handshakes away from anyone else in the world.

! Long a matter of folklore.

! "It's a small world after all."

Stanley Milgram experiment (1960s) quantified effect.

! You are given personal info of another person in US, e.g., occupation.

! Goal: deliver message.

! Restriction: can only forward to someone you know by first name.

! Outcome: message delivered with average of 5 intermediaries.

Application demands new ADT.

! Graph = data type that represents pairwise connections.

! Vertex = element.

! Edge = connection between two vertices.

3

Applications of Small World Phenomenon

Sociology applications.

! Looking for a job.

! Marketing products or ideas.

! Formation and spread of fame and fads.

! Train of thought followed in a conversation.

! Defining representative-ness of political bodies.

! Kevin Bacon game (movies, rock groups, baseball teams, ICQ buddies, etc.).

Other applications.

! Electronic circuits.

! Synchronization of neurons.

! Analysis of World Wide Web.

! Design of electrical power grids.

! Modeling of protein interaction networks.

! Phase transitions in coupled Kuramoto oscillators.

! Spread of infectious diseases and computer viruses.

! Evolution of cooperation in multi-player iterated Prisoner's Dilemma.

Reference. Duncan J. Watts, Small Worlds

The Dynamics of Networks between Order and Randomness
 Princeton University Press, 1999.

4

Applications of Graphs

communication

Graph

telephones, computers

Vertices Edges

fiber optic cables

circuits gates, registers, processors wires

mechanical joints rods, beams, springs

hydraulic reservoirs, pumping stations pipelines

financial stocks, currency transactions

transportation street intersections, airports highways, airway routes

scheduling tasks precedence constraints

software systems functions function calls

internet web pages hyperlinks

games board positions legal moves

social relationship people, actors friendships, movie casts

neural networks neurons synapses

protein networks proteins protein-protein interactions

chemical compounds molecules bonds

7

Internet Movie Database

Queries about actors and movies.

! Given an actor, find all movies that they appeared in.

! Given a movie, find all actors.

Input format. Movie followed by list of actors, separated by slashes.

How to represent the actor-movie relationships.

! Vertices: actors, movies.

! Edges: connect actor with any movie in which they appear.

! Use a graph.

Reference: http://www.imdb.com/interfaces

Wild Things (1998)/Bacon, Kevin/Campbell, Neve/Dillon, Matt/Murray, Bill/Richards, Denise

JFK (1991)/Asner, Edward/Bacon, Kevin/Costner, Kevin/Jones, Tommy Lee/Grubbs, Gary

Braveheart (1995)/Gibson, Mel//Marceau, Sophie/McGoohan, Patrick/Hanly, Peter

. . .

8

Actor-Movie Graph (Partial)

Sleepless

in Seattle

French

Kiss

Kevin

Kline

Apollo

13

Meg

Ryan

Kevin

Bacon

Animal

House

Matt

Dillon

In &

Out

Wild

Things

JFK

Karen

Allen

Raiders of

Lost Ark

Harrison

Ford

Tom

Hanks

Ed

Harris

9

Graph Representation

Graph representation: symbol table of lists.

! Key = name of vertex (e.g., movie or actor).

! Value = adjacency list of neighbors.

Graph operations.

! Add connection v-w : addEdge(v, w).

! Return neighbors of v as array: neighbors(v).

A B

F

I

E H

DC

G

A

B

C

D

E

F

G

H

I

B I

A F

D G H

C

I F

E B G

C F H

C G

A E F

Key Value

Symbol Table

String AdjList

10

public class AdjList {

 private Node first;

 private static class Node {

 String name;

 Node next;

 Node(String name, Node next) {

 this.name = name;

 this.next = next;

 }

 }

 public void insert(String s) {

 first = new Node(s, first);

 }

 public String[] toArray() { }

}

Adjacency List Implementation

Adjacency list implementation. No surprises.

11

Graph Implementation

public class Graph {

 private SymbolTable st = new SymbolTable();

 public void addEdge(String v, String w) {

 if (st.get(v) == null) addVertex(v);

 if (st.get(w) == null) addVertex(w);

 AdjList vlist = (AdjList) st.get(v);

 AdjList wlist = (AdjList) st.get(w);

 vlist.insert(w);

 wlist.insert(v);

 }

 public void addVertex(String v) {

 st.put(v, new AdjList());

 }

 public String[] neighbors(String v) {

 AdjList adjlist = (AdjList) st.get(v);

 return adjlist.toArray();

 }

}

add new vertex v

with no neighbors

add w to v's list

add v to w's list

12

Graph Client Warmup: Movie Finder

Movie finder. Given actor, find all movies in which they appeared.

public class MovieFinder {

 public static void main(String[] args) {

 Graph G = new Graph();

 In data = new In(args[0]);

 String line;

 while ((line = data.readLine()) != null) {

 String[] names = line.split("/");

 String movie = names[0];

 for (int i = 1; i < names.length; i++)

 G.addEdge(movie, names[i]);

 }

 In queries = new In();

 String actor;

 while ((actor = queries.readLine()) != null) {

 String[] neighbors = G.neighbors(actor);

 for (int i = 0; i < neighbors.length; i++)

 System.out.println(neighbors[i]);

 }
 }
}

build graph

print all of actor's movies

tokenize input line

movie-actor edge

file input

13

Graph Client Warmup: Movie Finder

% java MovieFinder top-grossing.txt

Bacon, Kevin

Animal House (1978)

Apollo 13 (1995)

Few Good Men, A (1992)

Roberts, Julia

Hook (1991)

Notting Hill (1999)

Pelican Brief, The (1993)

Pretty Woman (1990)

Runaway Bride (1999)

Tilghman, Shirley

% java MovieFinder mpaa.txt

Bacon, Kevin

Air Up There, The (1994)

Animal House (1978)

Apollo 13 (1995)

Few Good Men, A (1992)

Flatliners (1990)

Footloose (1984)

Hero at Large (1980)

Hollow Man (2000)

JFK (1991)

My Dog Skip (2000)

Novocaine (2001)

Only When I Laugh (1981)

Picture Perfect (1997)

Planes, Trains & Automobiles (1987)

Sleepers (1996)

Tremors (1990)

White Water Summer (1987)

Wild Things (1998)

. . .

14

Dianne WestBullets Over BroadwayJohn Cusack

Kevin BaconFootlooseDianne West

The Road to Wellville

Ferris Beuller's Day Off

Dirty Dancing

Ghost

Was in

John Cusack

Matthew Broderick

Jennifer Gray

Patrick Swayze

 With

Kevin Bacon

Jennifer Gray

Matthew Broderick

Patrick Swayze

Whoopi Goldberg

Actor

Kevin Bacon Game

Game. Given an actor or actress, find chain of

movies connecting them to Kevin Bacon.

15

Bacon Numbers

Bacon number: length of shortest such chain to Kevin Bacon.

How to compute: find shortest path in graph, and divide length by 2.

Sleepless

in Seattle

French

Kiss

Kevin

Kline

Apollo

13

Meg

Ryan

Kevin

Bacon

Animal

House

Matt

Dillon

In &

Out

Wild

Things

JFK

Karen

Allen

Raiders of

Lost Ark

Harrison

Ford

Tom

Hanks

Ed

Harris

0 1

2

34

1

2

1

2

5

2 1

4

3

4

3

16

Solving the Kevin Bacon Problem: Java Implementation

public class Bacon {

 public static void main(String[] args) {

 Graph G = new Graph();

 In data = new In(args[0]);

 String line;

 while ((line = data.readLine()) != null) {

 String[] names = line.split("/");

 String movie = names[0];

 for (int i = 1; i < names.length; i++)

 G.addEdge(movie, names[i]);

 }

 BFSearcher bfs = new BFSearcher(G);

 bfs.search("Bacon, Kevin");

 In queries = new In();

 String actor;

 while ((actor = queries.readLine()) != null)

 bfs.showPath(actor);

 }

}

build graph (identical to warmup)

preprocess graph

process queries

17

Kevin Bacon: Sample Output

% java Bacon top-grossing.txt

Goldberg, Whoopi

Sister Act (1992)

Grodénchik, Max

Apollo 13 (1995)

Bacon, Kevin

Stallone, Sylvester

Rocky III (1982)

Tamburro, Charles A.

Terminator 2: Judgment Day (1991)

Berkeley, Xander

Apollo 13 (1995)

Bacon, Kevin

Tilghman, Shirley

18

Breadth First Searcher ADT

Goal: given one vertex s find shortest path to every other vertex v.

BFS from source s: search(s).

! Put s onto a FIFO queue.

! Repeat until the queue is empty:

– remove the least recently added vertex v

– if v has not yet been visited add all of its neighbors w

to the queue and set visited[w]= v

Key observation: vertices visited in increasing order of distance from

s because we use FIFO queue.

implement using symbol table

19

public void search(String s) {

 Queue q = new Queue();

 q.enqueue(s);

 visited.put(s, "");

 while (!q.isEmpty()) {

 String v = (String) q.dequeue();

 String[] neighbors = G.neighbors(v);

 for (int i = 0; i < neighbors.length; i++) {

 String w = neighbors[i];

 if (visited.get(w) == null) {

 q.enqueue(w);

 visited.put(w, v);
 }
 }
}

Breadth First Searcher: Preprocessing

Goal: given one vertex s find shortest path to every other vertex v.

20

Breadth First Searcher: Printing the Path

Print the shortest path from v to s.

! Follow visited path from v back to s.

! Print v, visited[v], visited[visited[v]], . . ., s.

! Ex: shortest path from C to A: C – G - F - B - A

A

Key

B

C

D

E

F

G

H

I

-

Visited

A

G

C

I

B

F

G

A

Symbol Table

source

A B

F

I

E H

DC

G

public void showPath(String v) {

 while (visited.get(v) != null) {

 System.out.println(v);

 v = (String) visited.get(v);
 }
}

G

FB

null A

21

Breadth First Searcher ADT

Isolate algorithm from graph data type.

! Keep modules independent.

! Avoid feature creep.

public class BFSearcher {

 private Graph G;

 private SymbolTable visited;

 BFSearcher(Graph G) {

 this.G = G;

 this.visited = new SymbolTable();

 }

 public void search (String s) { }

 public void showPath(String v) { }

 public int distance(String v) { }

}

22

Running Time Analysis

Analysis. BFS runs in linear time and scales to solve huge problems.

Perspective: Google indexes 8 billion web pages (50TB), and executes

250 million searches per day!

418,468

170,539

43,940

13,850

8,265

Actors

9.4 sec

1.4 sec

0.30 sec

0.13 sec

0.10 sec

BFS

2.8 sec

0.87 sec

0.29 sec

0.16 sec

0.10 sec

Read input

14.9 sec

3.4 sec

0.56 sec

0.24 sec

0.10 sec

Build graph

122,812

14,192

4,754

967

187

Movies

1.5M

383K

57K

18K

10K

Edges

0 secall.txt

0 secy2k.txt

0 secmpaa.txt

mpaa-g.txt

top.txt

Data File

0 sec

0 sec

Show

26MB

23

Data Analysis

Exercise: compute histogram of Kevin Bacon numbers.

Input: 122,812 movies, 418,468 actors.

1510

211

9,692!

2,9635

2756

397

478

36,4554

127,7782

239,6083

9

1

0

Bacon #

99

1,494

1

 Frequency

Akbar Abdi, star of

Iranaian film Honarpisheh
Fred Ott, solo actor in Fred

Ott Holding a Bird (1894)

24

Applications of Breadth First Search

More BFS applications.

! Word ladder: green - greet - great - groat - groan - grown - brown

! Shortest number of hops for Internet packet.

! Particle tracking.

! Image processing.

! Crawling the Web.

! . . .

Extensions.

! GPS map directions.

! Google.

25

Conclusions

Linked list: ordering of elements.

Binary tree: hierarchical structure of elements.

Graph: pairwise connections between elements.

Layers of abstraction.

! Adjacency list: linked list.

! Queue: linked list.

! Symbol table: array of linked lists.

! Graph: symbol table of adjacency lists.

! Breadth first searcher: graph + queue + symbol table.

Importance of ADTs.

! Enables us to build and debug large programs.

! Enables us to solve large problems efficiently.

