
Small World Phenomenon

Lecture 17: Small World Phenomenon

COS126: General Computer Science . http://www.cs.Princeton.EDU/~cos126

Applications of Small World Phenomenon

Sociology applications.

- Looking for a job.
- Marketing products or ideas.
- Formation and spread of fame and fads.
- Train of thought followed in a conversation.
- Defining representative-ness of political bodies.
- ➡ Kevin Bacon game (movies, rock groups, baseball teams, ICQ buddies, etc.).

Other applications.

- Electronic circuits.
- Synchronization of neurons.

Reference. Duncan J. Watts, *Small Worlds The Dynamics of Networks between Order and Randomness* Princeton University Press, 1999.

- Analysis of World Wide Web.
- Design of electrical power grids.
- Modeling of protein interaction networks.
- Phase transitions in coupled Kuramoto oscillators.
- Spread of infectious diseases and computer viruses.
- . Evolution of cooperation in multi-player iterated Prisoner's Dilemma.

Small world phenomenon.

- Six handshakes away from anyone else in the world.
- Long a matter of folklore.
- "It's a small world after all."

Stanley Milgram experiment (1960s) quantified effect.

- You are given personal info of another person in US, e.g., occupation.
- Goal: deliver message.
- Restriction: can only forward to someone you know by first name.
- Outcome: message delivered with average of 5 intermediaries.

Application demands new ADT.

- Graph = data type that represents pairwise connections.
- Vertex = element.
- Edge = connection between two vertices.

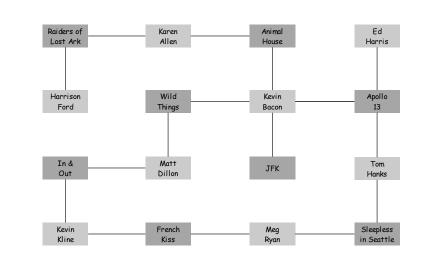
Applications of Graphs

Graph	Vertices	Edges
communication	telephones, computers	fiber optic cables
circuits	gates, registers, processors	wires
mechanical	joints	rods, beams, springs
hydraulic	reservoirs, pumping stations	pipelines
financial	stocks, currency	transactions
transportation	street intersections, airports	highways, airway routes
scheduling	tasks	precedence constraints
software systems	functions	function calls
internet	web pages	hyperlinks
games	board positions	legal moves
social relationship	people, actors	friendships, movie casts
neural networks	neurons	synapses
protein networks	proteins	protein-protein interactions
chemical compounds	molecules	bonds

Internet Movie Database

Queries about actors and movies.

- Given an actor, find all movies that they appeared in.
- Given a movie, find all actors.

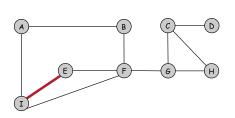


JFK (1991)/Asner, Edward/Bacon, Kevin/Costner, Kevin/Jones, Tommy Lee/Grubbs, Gary Braveheart (1995)/Gibson, Mel//Marceau, Sophie/McGoohan, Patrick/Hanly, Peter . . .

How to represent the actor-movie relationships.

- Vertices: actors, movies.
- Edges: connect actor with any movie in which they appear.
- Use a graph.

Reference: http://www.imdb.com/interfaces


Graph Representation

Graph representation: symbol table of lists.

- Key = name of vertex (e.g., movie or actor).
- Value = adjacency list of neighbors.

Graph operations.

- Add connection v-w: addEdge(v, w).
- Return neighbors of v as array: neighbors (v).

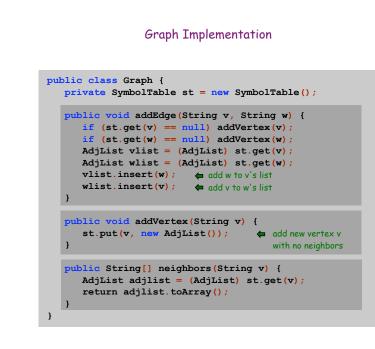
Symbol Table			
Key	Value		
А	BI		
В	AF		
С	DGH		
D	С		
E	IF		
F	EBG		
G	CFH		
н	CG		
I	A E F		
String	AdjList		

7

9

Adjacency List Implementation

Adjacency list implementation. No surprises.


```
public class AdjList {
    private Node first;

    private static class Node {
        String name;
        Node next;
        Node (String name, Node next) {
            this.name = name;
            this.next = next;
        }
    }

    public void insert(String s) {
        first = new Node(s, first);
    }
    public String[] toArray() { }
}
```


8

Actor-Movie Graph (Partial)

Graph Client Warmup: Movie Finder

Movie finder. Given actor, find all movies in which they appeared.

Graph Client Warmup: Movie Finder

% java MovieFinder top-grossing.txt

Bacon, Kevin Animal House (1978) Apollo 13 (1995) Few Good Men, A (1992)

Roberts, Julia

Hook (1991) Notting Hill (1999) Pelican Brief, The (1993) Pretty Woman (1990) Runaway Bride (1999)

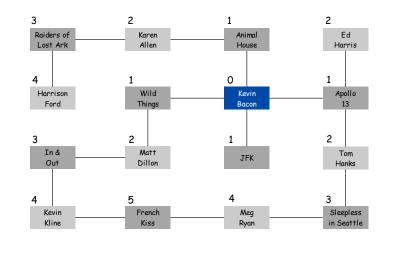
Tilghman, Shirley

% java MovieFinder mpaa.txt

Bacon, Kevin Air Up There, The (1994) Animal House (1978) Apollo 13 (1995) Few Good Men, A (1992) Flatliners (1990) Footloose (1984) Hero at Large (1980) Hollow Man (2000) JFK (1991) My Dog Skip (2000) Novocaine (2001) Only When I Laugh (1981) Picture Perfect (1997) Planes, Trains & Automobiles (1987) Sleepers (1996) Tremors (1990) White Water Summer (1987) Wild Things (1998) . . .

Kevin Bacon Game

12


Game. Given an actor or actress, find chain of movies connecting them to Kevin Bacon.

Actor	Was in	With	
Whoopi Goldberg	Ghost	Patrick Swayze	
Patrick Swayze	Dirty Dancing	Jennifer Gray	
Jennifer Gray	Ferris Beuller's Day Off	Matthew Broderick	
Matthew Broderick	The Road to Wellville	John Cusack	
John Cusack	Bullets Over Broadway	Dianne West	
Dianne West	Footloose	Kevin Bacon	
Kevin Bacon			

Bacon Numbers

Bacon number: length of shortest such chain to Kevin Bacon. How to compute: find shortest path in graph, and divide length by 2.

Solving the Kevin Bacon Problem: Java Implementation

public class Bacon { public static void main(String[] args) { Graph G = new Graph(); build graph (identical to warmup) In data = new In(args[0]); while ((line = data.readLine()) != null) { String[] names = line.split("/"); G.addEdge(movie, names[i]); preprocess graph BFSearcher bfs = new BFSearcher(G); bfs.search("Bacon, Kevin"); In queries = new In(); process queries String actor; while ((actor = queries.readLine()) != null) bfs.showPath(actor); } }

Kevin Bacon: Sample Output

% java Bacon top-grossing.txt Goldberg, Whoopi Sister Act (1992) Grodénchik, Max Apollo 13 (1995) Bacon, Kevin

Stallone, Sylvester

Rocky III (1982) Tamburro, Charles A. Terminator 2: Judgment Day (1991) Berkeley, Xander Apollo 13 (1995) Bacon, Kevin

Tilghman, Shirley

Breadth First Searcher ADT

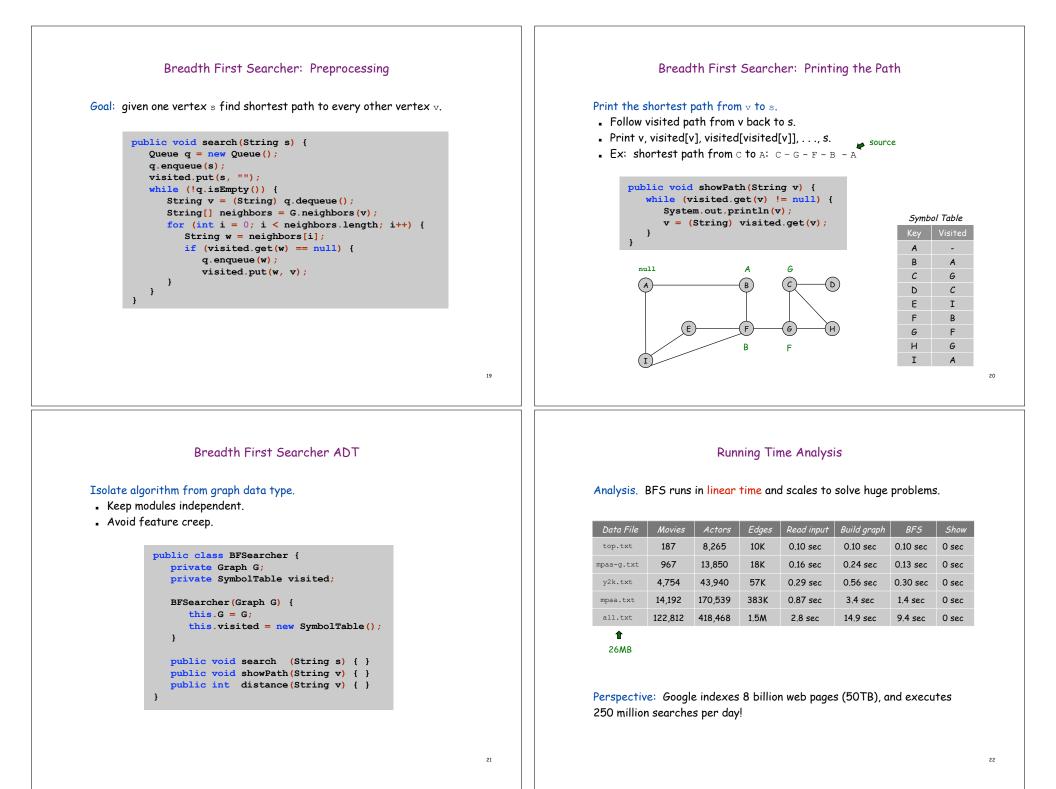
Goal: given one vertex s find shortest path to every other vertex v.

BFS from source s: search(s).

• Put s onto a FIFO queue.

• Repeat until the queue is empty:

- remove the least recently added vertex ${\rm v}$
- if ${\tt v}$ has not yet been visited add all of its neighbors ${\tt w}$
- to the queue and set visited[w] = v


implement using symbol table

Key observation: vertices visited in increasing order of distance from ${}_{\rm S}$ because we use FIFO queue.

17

15

16

Data Analysis

Exercise: compute histogram of Kevin Bacon numbers. Input: 122,812 movies, 418,468 actors.

	Bacon #	Frequency	
	0	1	
	1	1,494	
	2	127,778	
	3	239,608	
	4	36,455	
	5	2,963	
	6	275	
	7	39	
	8	47	
	9	99	
	10	15	
Fred Ott, solo actor in Fred	11	2	🗲 Akbar Abdi, star of
Ott Holding a Bird (1894) 🔿	œ	9,692	Iranaian film <i>Honarpisheh</i>

Applications of Breadth First Search

More BFS applications.

- Word ladder: green greet great groat groan grown brown
- Shortest number of hops for Internet packet.
- Particle tracking.
- Image processing.
- . Crawling the Web.
- . . .

Extensions.

- GPS map directions.
- Google.

24

Conclusions

Linked list: ordering of elements. Binary tree: hierarchical structure of elements. Graph: pairwise connections between elements.

Layers of abstraction.

- Adjacency list: linked list.
- Queue: linked list.
- Symbol table: array of linked lists.
- Graph: symbol table of adjacency lists.
- Breadth first searcher: graph + queue + symbol table.

Importance of ADTs.

- Enables us to build and debug large programs.
- Enables us to solve large problems efficiently.