
COS126: General Computer Science     •     http://www.cs.Princeton.EDU/~cos126

Lecture 16:  Encapsulation and ADTs

Bond: What's your escape route?
Saunders: Sorry old man. Section 26 paragraph 5, that information
is on a need-to-know basis only. I'm sure you'll understand.

2

Abstract Data Types

Data type:  set of values and operations on those values.

Ex:  int, String, Complex, Card, Deck, Wave, Tour, . . . .

Abstract data type.  Data type whose internal representation is hidden.

Separate implementation from design specification.

! CLASS:  provides data representation and code for operations.

! CLIENT:  uses data type as black box.

! INTERFACE:  contract between client and class.

3

Intuition

Client Interface
  - volume
  - change channel
  - adjust picture
  - decode NTSC, PAL
    signals

Implementation
  - cathode ray tube
  - electron gun
  - Sony Wega 36XBR250
  - 241 pounds, $2,699

client needs to know how to
use interface

implementation needs to know what
interface to implement

Implementation and client need to
agree on interface ahead of time.

4

Intuition

Client Interface
  - volume
  - change channel
  - adjust picture
  - decode NTSC, PAL
    signals

Implementation
  - gas plasma monitor
  - Pioneer PDP-502MX
  - wall mountable
  - 4 inches deep
  - $19,995

implementation needs to know what
interface to implement

client needs to know how to
use interface

Can substitute better implementation
without changing the client.



5

ADT Implementation in Java

Java ADTs.

! Keep data representation hidden with private access modifier.

! Define interface as operations having public access modifier.

Advantage:  can switch to polar representation without changing client.

Note:  all of the data types we have created are actually ADTs!

public class Complex {

   private double re;

   private double im;

   public Complex(double re, double im) { . . . }

   public double abs()                  { . . . }

   public String toString()             { . . . }

   public Complex conjugate()           { . . . }

   public Complex plus(Complex b)       { . . . }

   public Complex times(Complex b)      { . . . }

}

6

Y2K And Other Time Bombs

public class Date {

   int seconds;

   

   public int getSeconds()

   public int getMinutes()

   public int getHours()

   public int getDays()

   public boolean after(Date d) 

}

Time bombs.

! Two digit years:  January 1, 2000.

! 32-bit seconds since 1970:  January 19, 2038.

public class Date {

   private int seconds;

 

   public int  getSeconds()

   public void setSeconds()

   public int  getMinutes()

   public void setMinutes()

   public boolean after(Date d)

}

Date d = new Date();

d.seconds = 31334534;

Date d = new Date();

d.seconds = 31334534;

legal (but bad) Java client illegal Java client

7

Modular Programming and Encapsulation

ADTs enable modular programming.

! Split program into smaller modules.

! Separate compilation.

! Different clients can share the same ADT.

ADTs enable encapsulation.

! Keep modules independent (include main in each class for testing).

! Can substitute different classes that implement same interface.

! No need to change client.

Game Player Player

Player Player

Deck
...

... ...

...

8

Symbol Table ADT

Symbol table:  key-value pair abstraction.

! Insert value with specified key.

! Search for value given key.

! Delete value with given key.

Example:  key = URL, value = IP address.

! Insert URL with specified IP address.

! Given URL, find corresponding IP address.

key value

 www.cs.princeton.edu

Web Site IP Address

128.112.136.11

 www.princeton.edu 128.112.128.15

 www.yale.edu 130.132.143.21

 www.harvard.edu 128.103.060.55

 www.simpsons.com 209.052.165.60



9

Other Symbol Table Applications

Other applications.

! Online phone book:  look up a name to find telephone number.

! Spell checker:  look up a word to find if it's there.

! DNS:  look up name of web site to find IP address.

! Java compiler:  look up variable name to find its type and value.

! File sharer:  look up song to find host machines.

! File system:  look up file name to find location on hard drive.

! University registrar:  look up student to find grades.

! Google:  look up phrase and return most relevant web pages.

! Web cache:  cache frequently accessed pages.

! Routing table:  look up routing info for IP.

! Browser:  highlight visited links in purple.

! Bayesian spam filter:  use frequencies of spam and ham words to filter email.

! Book index:  determine pages on which each word appears.

! "Associative memory."

! Index of any kind.

! . . .
10

Symbol Table Client:  DNS Lookup

DNS lookup client program.

! st.put(key, value) inserts a key-value pair into symbol table.

! st.get(key) searches for the given key and returns the value.

public static void main(String[] args) {

   SymbolTable st = new SymbolTable();

   st.put("www.cs.princeton.edu", "128.112.136.11");

   st.put("www.princeton.edu",    "128.112.128.15");

   st.put("www.yale.edu",         "130.132.143.21");

   st.put("www.simpsons.com",     "209.052.165.60");

   System.out.println(st.get("www.cs.princeton.edu"));

   System.out.println(st.get("www.harvardsucks.com"));

   System.out.println(st.get("www.simpsons.com"));

}

128.112.136.11

null

209.052.165.60

st["www.simpsons.com"] = "209.052.165.60"

st["www.simpsons.com"]

11

Symbol Table Client:  Remove Duplicates

Remove duplicates.  (from a mailing list or voting eligibility list)

! Read in key.

! If key is not in symbol table, print out key and insert it.

public class DeDup {

   public static void main(String[] args) {

      SymbolTable st = new SymbolTable();

      while (!StdIn.isEmpty()) {

      String key = StdIn.readString();

      if (st.get(key) == null) {

          System.out.println(key);

          st.put(key, "");

      }

   }

}

insert empty string as value

12

Symbol Table:  Linked List Implementation

Maintain a linked list of key-value pairs.

! Insert new key-value pair at beginning of list.

! Key = String, value = Object.

! Use exhaustive search to search for a key.

 www.princeton.edu

128.112.128.15

 www.yale.edu

130.132.143.21

 www.harvard.edu

128.103.060.55

null

. . .

key

value

next



13

Symbol Table:  Linked List Implementation

public class SymbolTable {

   private Node first;

   private class Node {

      String key;

      Object value;

      Node next;

      Node(String key, Object value, Node next) {

         this.key   = key;

         this.value = value;

         this.next  = next;

      }

   }

   public void put(String k, Object val) {

      first = new Node(k, val, first);

   }

   public Object get(String k) {

      for (Node x = first; x != null; x = x.next)

         if (k.equals(x.key)) return x.value;

      return null;

   } 

}

a linked list of key-value pairs

insert at front of list

exhaustively search for keynot found

14

Object

Class Object.

! All objects "inherit" from the special class Object.

! All objects have certain pre-defined methods.

Consequences.

! Can have a symbol table of any type of object, e.g, String or Wave.

! Cast the return value of get to desired type.

s.hashCode()memory addressconvert to integerhashCode

are two objects
equal?

convert to string

Description

equals

toString

Method

are two memory
addresses equal?

memory address

Default

if (s.equals(t))

"hello " + s

Example

15

Linked List Implementation:  Performance

Advantages:  not much code, fast insertion.

Disadvantage:  search is hopelessly slow for large inputs.

% java DeDup < toSpamList.txt

wayne@cs.princeton.edu

chlamtac@cs.princeton.edu

dgabai@cs.princeton.edu

cdecoro@cs.princeton.edu

cbienia@cs.princeton.edu

% java Dedup < mobydick.txt

moby

dick

herman

melville

call

me

ishmael

some

years

ago

. . .
210,028 words
16,834 distinct

hours to dedup Moby Dick

16

Hashing

Hashing.

! Goal:  speed up search by a factor of M by making lists shorter.

! Array st of M chains (linked lists).

! Map from string key to integer i between 0 and M-1.

– put key-value pair in ith linked list

jocularly seriously

listen

browsing

st[0]

st[1]

st[2]

st[8190]

3untravelled

3suburban

5017ishmael

0seriously

.. . .

3480

7121

hash

me

call

key

suburban untravelledst[3] considerating

null

M = 8191



17

Choosing a Good Hash Function

Goal:  scramble the keys.

! Each table position equally likely for each key.

Ex:  Social Security numbers.

! Bad:  first three digits.

! Better:  last three digits.

Ex:  Strings.

! Bad:  first few letters (converted to int).

! Good:  do calculation involving all characters.

573 = California, 574 = Alaska

assigned in chronological order
within a given geographic region

public int hashCode() {

   int hash = 0;

   for (int i = 0; i < length(); i++)

      hash = (31 * hash) + charAt(i);

   return hash;

} String.java

s    = "call";

h    = s.hashCode();

hash = h % M;

3045982

thoroughly researched problem

7121

insert "call" into chain 7121

8191

18

Symbol Table:  Hash Table Implementation

public class SymbolTable {

   private int M = 8191;

   private Node[] st = new Node[M];
   

   private class Node { AS BEFORE }

   public static int hash(String s) {

      return Math.abs(s.hashCode() % M);

   }

   public void put(String k, Object val) {

      int i = hash(k);

      st[i] = new Node(k, val, st[i]);

   } 

   public Object get(String k) {

      int i = hash(k);

      for (Node x = st[i]; x != null; x = x.next)

         if (k.equals(x.key)) return x.value;

      return null;

   }

}

number of chains (usually a prime)

insert at front of ith chain

exhaustively search ith chain for key

between 0 and M-1

19

Hash Table Implementation:  Performance

Advantages:  fast insertion, fast search.

Disadvantage:  hash table has fixed size.  (can be corrected)

Hash tables improves ALL symbol table clients.

! Makes difference between practical solution and no solution.

! Ex:  Moby Dick now takes a few seconds instead of hours.

% java DeDup < mobydick.txt

moby

dick

herman

melville

call

me

ishmael

some

years

ago

. . .
210,028 words
16,834 distinct

20

Question

Current code searches for an IP address given a URL.

! "DNS lookup."

What if we want to search for a URL given an IP address?

! "Reverse DNS lookup."



21

Question

Current code searches for an IP address given a URL.

! "DNS lookup."

What if we want to search for a URL given an IP address?

! "Reverse DNS lookup."

! Exchange the roles of key and value.

! Maintain two symbol tables, one of each type!

22

Symbol Table Summary

Symbol table:  quintessential database lookup data type.

Different performance characteristics with different implementations.

! Linked list, hash table, binary search tree, . . .

! Java has built-in libraries for symbol tables.

– HashMap = hash table implementation.

– TreeMap = red-black tree implementation.

import java.util.HashMap;

public class HashMapDemo {

   public static void main(String[] args) {

      HashMap st = new HashMap();

      st.put("www.cs.princeton.edu", "128.112.136.11");

      st.put("www.princeton.edu",    "128.112.128.15");

      st.put("www.simpsons.com",     "209.052.165.60");

      st.remove("www.simpsons.com");

      System.out.println(st.get("www.cs.princeton.edu"));

   }

}

23

ADT Advantages

 Modular programming and encapsulation.

! Essential for many real applications.

! Crucial software engineering principle.

Issues of ADT design.

! Feature creep.

! Formal specification problem.

! Implementation obsolescence.

Ex:  building large software project.

! Software architect specifies design specifications.

! Each programmer implements one module.

Ex:  build libraries.

! Language designer extends language with ADTs.

! Programmers share extensive libraries.


