
COS126: General Computer Science     •     http://www.cs.Princeton.EDU/~cos126

Lecture 5:  Arrays

2

Arrays

Last lecture:  read in huge quantities of data.

This lecture:  store and manipulate huge quantities of data.

Arrays.

! Organized way to store huge quantities of data.

– 52 playing cards in a deck

– 5 thousand Princeton undergrads

– 1 million characters in a book

– 4 billion nucleotides in a strand of DNA

– 73 billion Google queries per year

– 6.02 x 1023 particles in a mole

Today's applications.

! Data analysis.  (histogram)

! Data processing. (shuffling, sorting)

! Scientific applications. (DLA simulation)

3

Arrays in Java

Arrays are built into Java.

! Essential property:  can directly access an element given its index.

! Declare and initialize using [] and {}.

! To access element i of array named a, use a[i]

vs.

int a0 = 3, a1 = 1, a2 = 4, a3 = 1, a4 = 5;

int a5 = 9, a6 = 2, a7 = 6, a8 = 5, a9 = 3;

int[] a = { 3, 1, 4, 1, 5, 9, 2, 6, 5, 3 };

4

Choosing a Random Student

Simple application:  store related data as a group, and select random item.

public class RandomStudent {

   public static void main(String[] args) {

      String[] names = { "Clelia Zacharias", "Hannah Xu",

                         "Virginia Wylly",   "Wendy Wu",

                         "Ashely Wolf",      "Eric Whitman",

                         "Will Weidman",     "Sharon Weeks",

                         "Mary Wathall",     "Sarah Wang",

                         "Michael Wang",     "Madeleine Walsh"

                       };

      int N = names.length;

      int r = (int) (Math.random() * N);

      System.out.println(names[r]);

   }

}

integer between 0 and 11

12



5

California Runoff Election '04

135 candidates on ballot for governor of California.

! Alphabetical order prejudiced against Jon Zellhoefer.

! One solution:  in each district, randomize the order in which the

candidates appear.

Peter Ueberroth

name

Gary Coleman

Arnold Schwarzenegger 

Brooke Adams

Jon Zellhoefer 

Georgy Russell

Cruz Bustamante 

Iris Adam

name

Brooke Adams

Cruz Bustamante 

Gary Coleman

Larry Flynt 

Georgy Russell

Arnold Schwarzenegger 

Iris Adam

Larry Flynt 

Peter Ueberroth 

Jon Zellhoefer 

6

Creating Arrays in Java

How to declare an "empty" array.

! Declare using [].

! Allocate memory using  new.

! All array elements are auto-initialized to:

– zero for numeric types

– null for String

vs.

double a0, a1, a2, a3, a4, a5, a6, a7, a8, a9; 

double[] a = new double[10];

7

Shuffling

public class Shuffle {

   public static void main(String[] args) {

      int N = Integer.parseInt(args[0]);

      String[] a = new String[N];

      for (int i = 0; i < N; i++)

         a[i] = StdIn.readString();

      for (int i = 0; i < N; i++) {

         int r = (int) (Math.random() * (i+1));

         String swap = a[r];

         a[r] = a[i];

         a[i] = swap;

      }

      for (int i = 0; i < N; i++)

         System.out.println(a[i]);

   }

}

SHUFFLE

print data

read in and store data

8

Shuffling

Shuffle an N-element array.

! In ith iteration:

– choose random integer r between 0 and i

– swap values in positions r and i

! Need random access to arbitrary element  !  use arrays.

Property:  after ith iteration, array positions 0 through i contain

random permutation of elements 0 through i.

for (int i = 0; i < N; i++) {

   int r = (int) (Math.random() * (i + 1));

   String swap = a[r];

   a[r] = a[i];

   a[i] = swap;

} shuffle

between 0 and i



9

Gambler's Problem Revisited

Flip a fair coin N times and plot distribution of number of heads.

! Use freq[i] to record number of times you get exactly i heads.

! Add graphic commands to plot.

public class Flip {

   public static void main(String[] args) {

      int N = Integer.parseInt(args[0]);

      int[] freq = new int[N + 1];

      for (int i = 0; i < 10000; i++) {

         int heads = 0;

         for (int j = 0; j < N; j++)

            if (Math.random() < 0.5)

               heads++;

         freq[heads]++;

      }

   }

}

flip one coin

increment counter

flip N coins

10

Gambler's Problem Revisited

What is distribution of number of heads?

! "Bell curve."

! Approximately Gaussian (stay tuned).

! Mean = N / 2, variance = N / 4.

% java Flip 64

320 64

number of heads in 64 flips

frequency

95% confidence interval: N/2 ± "N

11

Benford's Law

Examine listing of statistical data.

! Compute frequency count of leading digit.

– Ex:  leading digit of 456789 is 4.

! Print fraction of occurrences of each digit 1 - 9.

! What is distribution?  11.11% each?  Something else?

Use 10-element array count.

! count[i] counts number of times i is leading digit.

! N counts total number of items processed.

! Print ratio for each i.

count[0] is always 0

12

public class Benford {

   public static void main(String[] args) {

      int[] count = new int[10];

      int N = 0;

      while (!StdIn.isEmpty()) {

         int x = StdIn.readInt();

         while (x >= 10) x = x / 10;

         count[x]++;

         N++;

      }

      for (int i = 1; i < 10; i++)

         System.out.println(i + ": " + 1.0 * count[i] / N);

   }

}

Benford's Law

compute leading digit

increment bin x

avoid integer division

auto-initialized to 0



13

Benford's Law

Newcomb (1881).  Tables of logarithms.

Benford (1938).

! River area. Population.

Newspaper. Specific heat.

Pressure. Atomic weight.

Drainage. Reader's Digest.

Baseball. Black body.

Death rates. Addresses.

! Scale invariant!

Hill (1996).

! Distribution of distributions.

% more pu-files.txt
96796

4171208

5830

34343656

...

% java Benford < pu-files.txt 

1: 0.30788221725654147

2: 0.19250222254258872

3: 0.1302139647757034

4: 0.09865986688771955

5: 0.07445217328623946

6: 0.05945601768423076

7: 0.05162606021288354

8: 0.04417153223287441

9: 0.04103594512121867

332,952 file sizes

14

The First-Digit Phenomenon

Reference:  The First-Digit Phenomenon by T. P. Hill, in American Scientist, July-August 1998.

! 

Pd = log10 1+
1

d

" 

# 
$ 

% 

& 
' 

15

Sorting

Goal:  given N items, rearrange them in increasing order.

Applications.

! Sort a list of names.

! Find duplicates in a mailing list.

! Find the median.

! Identify statistical outliers.

! Data compression.

! Computer graphics.

! Computational biology.

Hanley

name

Haskell

Hauser

Hayes

Hong

Hornet

Hsu

Hauser

name

Hong

Hsu

Hayes

Haskell

Hanley

Hornet

16

Insertion Sort

Insertion sort an N-element array.

! In ith iteration:

– read ith value

– repeatedly swap ith value with the one to its left if smaller

Property:  after ith iteration, array positions 0 through i contain

original elements 0 through i in increasing order.

for (int i = 0; i < N; i++) {

   for (int j = i; j > 0; j--) {

      if (x[j-1] > x[j]) {

         double swap = x[j];

         x[j] = x[j-1];

         x[j-1] = swap;

      }

   }

}

swap x[j]and x[j-1]

sort array of real numbers



17

Linear System of Equations

Linear system of equations.

! N linear equations in N unknowns.

! Matrix notation:  find x such that Ax = b.

Among most fundamental problems in science and engineering.

! Linear regression.

! Kirchoff's current law.

! Polynomial and spline interpolation.

! Linear and nonlinear optimization.

! Numerical solution to differential equations.

! Fluid flow,

! Leontief model of economic equilibrium.

0 x0 + 1 x1 + 1 x2 = 4  

2 x0 + 4 x1 - 2 x2 = 2  

0 x0 + 3 x1 - 15 x2 = 36  !
!
!

"

#

$
$
$

%

&

=

!
!
!

"

#

$
$
$

%

&

'

'=

36

2

4

,

1530

242

110

bA

18

Gaussian Elimination

Gaussian elimination.

! Among oldest and most widely used solutions.

! Repeatedly apply row operations until system is upper triangular.

! Solve "trivial" upper triangular system.

Row operations.

! Exchange any two rows.

! Add a multiple of one row to another.

Key invariant.   Row operations preserve solutions.! 

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 

(

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 

! 

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 

(

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 

19

0 x0 + 1 x1 + 1 x2 = 4  

2 x0 + 4 x1 - 2 x2 = 2  

0 x0 + 3 x1 + 15 x2 = 36  

Gaussian Elimination:  Forward Elimination

2 x0 + 4 x1 - 2 x2 = 2  

0 x0 + 1 x1 + 1 x2 = 4  

0 x0 + 3 x1 + 15 x2 = 36  

2 x0 + 4 x1 - 2 x2 = 2  

0 x0 + 1 x1 + 1 x2 = 4  

0 x0 + 0 x1 + 12 x2 = 24  

Interchange row 0 and 1.

Subtract 3x row 1 from row 2.

20

Gaussian Elimination:  Back Substitution

Back substitution.  Upper triangular systems are easy to solve.

! Equation 2:  x2 = 24/12 = 2.

! Equation 1:  x1 = 4 - x2 = 2.

! Equation 0:  x0 = 2 - 4x1  + 2x2 = -1.

for (int i = N-1; i >= 0; i--) {

   double sum = 0.0;

   for (int k = i+1; k < N; k++)

      sum += A[i][k] * x[k];

   x[i] = (b[i] - sum) / A[i][i];

}

! 

xi =
1

Aii

bi " Aik xk

i+1

N"1

#
$ 

% 
& 
& 

' 

( 
) 
) 

2 x0 + 4 x1 - 2 x2 = 2  

0 x0 + 1 x1 + 1 x2 = 4  

0 x0 + 0 x1 + 12 x2 = 24  



21

for (int i = 0; i < N; i++) {

   for (int j = i + 1; j < N; j++)

      b[j] -= (A[j][i] / A[i][i]) * b[i];

   for (int j = i + 1; j < N; j++)

      for (int k = N - 1; k >= i; k--)

         A[j][k] -= (A[j][i] / A[i][i]) * A[i][k];

}

! 

Ajk = Ajk "
Aji

A ii
Aik

bj = bj "
Aji

A ii
bi

Gaussian Elimination:  Forward Elimination

Forward elimination.  Apply row operations to make upper triangular.

Pivot.  Zero out entries below pivot Aii.

! 

* * * * * *

0 * * * * *

0 0 * * * *

0 0 * * * *

0 0 * * * *

0 0 * * * *

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 

(

* * * * * *

0 * * * * *

0 0 * * * *

0 0 0 * * *

0 0 0 * * *

0 0 0 * * *

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 

i

i

22

Gaussian Elimination:  Partial Pivoting

Observation.  Previous code fails spectacularly if pivot Aii = 0.

Partial pivoting. Swap row i with the row that has

biggest entry in column i among unreduced rows j > i.

// find pivot row

int max = i;

for (int j = i + 1; j < N; j++)

   if (Math.abs(A[j][i]) > Math.abs(A[max][i]))

      max = j;

// swap rows i and max of A and b

double[] T = A[i]; A[i] = A[max]; A[max] = T;

double   t = b[i]; b[i] = b[max]; b[max] = t;

! 

* * * * * *

0 * * * * *

0 0 0 * * *

0 0 3 * * *

0 0 9 * * *

0 0 2 * * *

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 

i

i

max

23

Gaussian Elimination:  Pathologies

Degeneracy.  Partial pivot on a value close to zero.

! System is overdetermined:  no solutions.

! System is underdetermined:  many solutions.

Numerical stability.  Floating point roundoff error swamps computation.

! Partial pivoting helps control roundoff error.

! Pathological instances exist that blow up partial pivoting.

Ill-conditioning.  Some problems are inherently unsuitable for floating

point solution techniques.

Scientific computing.  Much of hard work in designing numerical

algorithms is addressing such pathologies.

24

Diffusion Limited Aggregation

Diffusion limited aggregation (DLA).

! Models formation of an aggregate on a surface.

– growth of lichen on rocks

– growth of coral reef

– generation of polymers out of solutions

– path of electrical discharge

– urban settlement

– carbon deposits on walls of a cylinder of Diesel engine

Monte Carlo simulation.

! Launch particle from launch site.

! Particle randomly wanders through 2-D grid until

– it comes in contact with another particle !

sticks to aggregate

– it enters kill zone

! Repeat.
aggregate

launch

(0, 0)



25

Two Dimensional Arrays in Java

Two dimensional arrays.

! To access element (i, j) of array named a, use a[i][j].

public class DLA {

   public static void main(String[] args) {

      int N = Integer.parseInt(args[0]);

      StdDraw.create(N, N);

      int launch = N - 10;

      boolean[][] dla = new boolean[N][N];

      for (int x = 0; x < N; x++)

         dla[x][0] = true;

double a00, a01, a02, a03, a10, a11, a12, a13;

double[][] a = new double[2][4];

vs.

N-by-N grid

is site i-j occupied?

launch near top row

initialize aggregate at row 0

26

Diffusion Limited Aggregation

while (!done) {

   int x = (int) (N * Math.random());

   int y = launch;

   while (x < N - 2 && x > 1 && y < N - 2 && y > 1) {

      double r = Math.random();

      if      (r < 0.25) x--;

      else if (r < 0.50) x++;

      else if (r < 0.65) y++;

      else               y--;

      if (dla[x-1][y] || dla[x+1][y] || dla[x][y-1] || dla[x][y+1]) {

         dla[x][y] = true;

         StdDraw.go(x, y);

         StdDraw.spot();

         StdDraw.pause(10);

         if (y > launch) done = true;

         break;

      }

   }

}

particle not in kill zone

breaks out of innermost while loop

launch from random column near top row

random step

check for contact with

a neighboring particle

aggregate reaches top

27

Diffusion Limited Aggregation

Refinements.

! Use diagonals as neighbors, instead of just horizontal and vertical.

! Color particles in launch order, according to rainbow.

% java DLA 500

28

Summary

Arrays.

! Organized way to store huge quantities of data.

! Almost as easy to use as primitive types.

! Can directly access an element given its index.

Caveats:

! Need to fix size of array ahead of time.

! Don't forget to allocate memory with new.

! Indices start at 0 not 1.

! Out-of-bounds to access a[-1] or a[N] of N element array.

– in Java:  ArrayIndexOutOfBoundsException

– in C:  "ghastly error"

"You’re always off by 1 in this business."   - J. Morris


