
COS126: General Computer Science • http://www.cs.Princeton.EDU/~cos126

Lecture 3: Loops

Copyright 2004, FoxTrot by Bi ll Amend, http://www.ucomics.com/foxtrot/2003/10/03/

2

While Loops

The while loop is a common repetition structure.

! Check loop-continuation condition.

! Execute a sequence of statements.

! Repeat.

while (boolean expression)

 statement;

boolean
expression

statement
true

false

while loop syntax
bodyloop-continuation

condition

while loop flow chart

3

While Loops: Powers of Two

While loop example: print powers of 2.

! Increment i from 1 to 6 by 1.

! Double N each time.

int i = 0;

int N = 1;

while (i <= 6) {

 System.out.println(N);

 i = i + 1;

 N = 2 * N;

}

Click for demo

% java Powers

1

2

4

8

16

32

64

a block statement

0 1

i N

1 2

2 4

3 8

true

i <= 6

true

true

true

4 16

5 32

6 64

7 128

true

true

true

true

4

While Loops: Newton-Raphson Method

How might we implement Math.sqrt ?

! Goal: compute the square root of c.

! Initialize t = c.

! Replace t with the average of t and c / t.

! Repeat until t = c / t, up to desired precision.

public class Sqrt {

 public static void main(String[] args) {

 double EPSILON = 1E-15;

 double c = Double.parseDouble(args[0]);

 double t = c;

 while (Math.abs(t - c/t) > t*EPSILON) {

 t = (c/t + t) / 2.0;

 }

 System.out.println(t);

 }

}

% java Sqrt 2.0

1.414213562373095

error tolerance

Copyright 2004, Sidney Harris
http://www.sciencecartoonsplus.com

15 decimal digits of accuracy in 5 iterations

5

While Loops: Newton-Raphson Method

Newton-Raphson method explained.

! Goal: find root of function f(x).

– Ex: f(x) = x2 - c

! Start with estimate t0.

! Draw line tangent to curve at x= ti.

! Set ti+1 to be x-coordinate where line hits x-axis.

! Repeat until desired precision.

Applications and extensions.

! Find the roots of a differentiable function of one variable.

! Find the roots of a function of several variables.

! Optimize a twice differentiable function: find where derivative = 0.

! Optimize a function subject to constraints.

6

For Loops

The for loop is another common repetition structure.

! Initialize variable.

! Check loop-continuation condition.

! Execute sequence of statements.

! Increment variable.

! Repeat.

initialization

update

statement
boolean

expression

true

false
bodyloop-continuation

condition

for (init; boolean; update)

 statement;

for loop syntax

for loop flow chart

7

String ruler = " ";

for (int i = 1; i <= N; i++) {

 ruler = ruler + i + ruler;

}

System.out.println(ruler);

For Loops: Subdivisions of a Ruler

Create subdivision of a ruler.

! Initialize ruler to the empty string.

! For each value i = 1 to N.

! Sandwich two copies of the ruler on either side of i.

Java code

1 1

i ruler

2 1 2 1

3 1 2 1 3 1 2 1

4 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

8

% java Ruler 1

1

% java Ruler 2

1 2 1

% java Ruler 3

1 2 1 3 1 2 1

% java Ruler 4

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

% java Ruler 100

Exception in thread "main"

java.lang.OutOfMemoryError

For Loops: Subdivisions of a Ruler

Observation.

! Program produces 2N – 1 integers.

! Loops can produce a huge amount of output!

9

Nesting Conditionals and Loops

Conditionals enable you to do one

of 2N sequences of operations with

N lines of code.

More sophisticated programs.

! Nest conditionals within conditionals.

! Nest loops within loops.

! Nest conditionals within loops within loops.

if (a0 > 0) System.out.print(0);

if (a1 > 0) System.out.print(1);

if (a2 > 0) System.out.print(2);

if (a3 > 0) System.out.print(3);

if (a4 > 0) System.out.print(4);

if (a5 > 0) System.out.print(5);

if (a6 > 0) System.out.print(6);

if (a7 > 0) System.out.print(7);

if (a8 > 0) System.out.print(8);

if (a9 > 0) System.out.print(9);

Loops enable you to do something N
times using only 2 lines of code.

double sum = 0.0;

for (int i = 1; i <= 1024; i++)

 sum = sum + 1.0 / i;

1024 possible results, depending on input

computes 1/1 + 1/2 + ... + 1/1024

10

Nested If-Else

Nesting conditionals within conditionals.

! Ex: Pay a certain tax rate depending on income level.

double rate;

if (income < 47450) rate = 0.22;

else if (income < 114650) rate = 0.25;

else if (income < 174700) rate = 0.28;

else if (income < 311950) rate = 0.33;

else rate = 0.35;

graduated income tax calculation

0 - 47,450 22%

Income Rate

47,450 – 114,650 25%

114,650 – 174,700 28%

174,700 – 311,950 33%

311,950 - 35%

11

Gambler's Ruin

Gambler starts with $stake and places $1 even bets until going broke

or reaching $goal.

! What are the chances of winning?

! How many bets will it take?

One approach: numerical simulation.

! Flip digital coins and see what happens.

! Repeat and compute statistics.

stake = 7

$0
Time !

C
as

h
 !

goal = 16

One simulation of the gambler's ruin problem.

12

Library Functions: Math.random

Math.random generates number between 0 and 1.

How is Math.random implemented?

! Linear feedback shift register? Cosmic rays?

! User doesn't need to know details.

! User doesn't want to know details.

Caveats.

! "Random" numbers are not really random.

! Don't use for crypto or Internet gambling!

! Check assumptions about library function before using.

13

public class Gambler {

 public static void main(String[] args) {

 int stake = Integer.parseInt(args[0]);

 int goal = Integer.parseInt(args[1]);

 int N = Integer.parseInt(args[2]);

 int wins = 0;

 // repeat simulation N times

 for (int i = 0; i < N; i++) {

 // do gambler's ruin simulation

 int t = stake;

 while (t > 0 && t < goal) {

 // flip coin and update

 if (Math.random() < 0.5) t++;

 else t--;

 }

 if (t == goal) wins++;

 }

 System.out.println(wins + " wins of " + N);

 }

}

Gambler's Ruin

14

Simulation and Analysis

Fact: Probability of winning = stake ÷ goal.

Fact: Expected number of bets = stake ! desired gain.

Ex: 20% chance of turning $500 into $2500, but expect to make one

million $1 bets.

These two facts can be proved mathematically; for more complex

scenarios, computer simulation is often the best plan of attack.

% java Gambler 10 20 1000

513 wins of 1000

% java Gambler 10 20 1000

492 wins of 1000

% java Gambler 500 2500 100

24 wins of 100

stake goal N

takes a few minutes

15

Debugging a Program: Syntax Errors

Given an integer N, compute its prime factorization.

! Application: break RSA cryptosystem.

Syntax error: illegal Java program.

! Compiler error messages help locate problem.

! Eventually, a file named Factors.class.

public class Factors1 {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0])

 for (i = 0; i < N; i++) {

 while (N % i == 0)

 System.out.print(i + " ")

 N = N / i

 }

 }

}

As long as i is a
factor, divide it out.

Check if i is a factor.

168 = 23 ! 3 ! 7

Does not compile

16

Debugging a Program: Semantic Errors

Semantic error: legal but wrong Java program.

! Use "System.out.println" method to identify problem.

Check if i is a factor.

public class Factors2 {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (long i = 2; i < N; i++) {

 while (N % i == 0)

 System.out.print(i + " ");

 N = N / i;

 }

 }

}

As long as i is a
factor, divide it out.

No output (17) or infinite loop (49)

17

Debugging a Program: Performance Errors

Performance error: correct program but too slow.

! Use profiling to discover bottleneck.

! Devise better algorithm.

Check if i is a factor.

public class Factors3 {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (long i = 2; i <= N; i++) {

 while (N % i == 0) {

 System.out.print(i + " ");

 N = N / i;

 }

 }

 }

}

As long as i is a
factor, divide it out.

Too slow for large N (999,999,937)

18

public class Factors {

 public static void main(String[] args) {

 long N = Long.parseLong(args[0]);

 for (long i = 2; i <= N / i; i++) {

 while (N % i == 0) {

 System.out.print(i + " ");

 N = N / i;

 }

 }

 if (N > 1) System.out.println(N);

 else System.out.println();

 }

}

Debugging a Program: Success

If N has a factor, it has one less than or equal to its square root.

! Many fewer iterations of for loop.

Check if i
is a factor.

Special case: biggest
factor occurs once.

As long as i is a
factor, divide it out.

19

How big an integer can I factor?

% java Factors 168

2 2 2 3 7

% java Factors 6065102027

1009 2003 3001

% java Factors 9201111169755555703

9201111169755555703

Debugging a Program: Analysis

3 minutes

† estimated

 largest factor

3 instant

Digits i <= N

6 0.15 seconds

9 77 seconds

12 21 hours †

instant

i <= N / i

instant

instant

0.21 seconds

instant

i * i <= N

instant

instant

0.16 seconds

15 2.4 years †

18 2.4 millennia †

4.5 seconds

157 seconds

2.7 seconds

92 seconds

20

Debugging a Program

Debug: cyclic process of editing, compiling, and fixing errors.

! Always a logical explanation.

! What would the machine do?

! Explain it to the teddy bear.

You will make many mistakes as you write programs. It's normal.

"As soon as we started programming, we found out to our
surprise that it wasn't as easy to get programs right as we had
thought. I can remember the exact instant when I realized that
a large part of my life from then on was going to be spent in
finding mistakes in my own programs." - Maurice Wilkes

"If I had 8 hours to chop down a tree, I would spend 6 hours
sharpening an axe." - Anonymous

21

Etymology and Entomology of Computer "Bug"

Grace Hopper
Admiral, US Navy

Reference: http://www.history.navy.mi l/photos/images/h96000/h96566kc.htm

22

Flow Of Control Summary

Flow of control.

! Sequence of statements that are actually executed in a program.

Conditionals and loops.

! Simple, but powerful tools.

! Enables us to harness power of the computer.

Straight-line
programs

All statements are
executed in the order given.

Conditionals
Certain statements are
executed depending on the
values of certain variables.

if

if-else

Loops
Certain statements are
executed repeatedly until
certain conditions are met.

while

for

do-while

Flow-Of-Control Description Examples

