Where are we?

- Analysis
 - Control Flow/Predicate
 - Dataflow
 - SSA
- Optimization

Optimization

- Make the code run faster on the target processor
 - My favorite topic!!
 - Anything goes
 - Look at benchmark kernels, what's the bottleneck??
 - Invent your own optimizations (easier and harder than you think)
- Classes of optimization
 - 1. Classical (machine independent)
 - Reducing operation count (redundancy elimination)
 - Simplifying operations
 - Generally good for any kind of machine
 - 2. Machine specific
 - Peephole optimizations
 - Take advantage of specialized hardware features
 - 3. ILP enhancing
 - Increasing parallelism
 - Possibly increase instructions
Classical Optimizations

- Operation-level – 1 operation in isolation
 - Constant folding, strength reduction
- Dead code elimination (global, but 1 op at a time)
- Local/Global – Pairs of operations
 - Constant propagation
 - Forward copy propagation
 - Backward copy propagation
 - CSE
 - Constant combining
 - Operation folding
- Loop – Body of a loop
 - Invariant code removal
 - Global variable migration
 - Induction variable strength reduction
 - Induction variable elimination

Caveat

- Traditional compiler class
 - Sophisticated implementations of optimizations, efficient algorithms
 - Spend entire class on 1 optimization
- For this class – Go over concepts of each optimization
 - What it is
 - When can it be applied (set of conditions that must be satisfied)

Static Single Assignment (SSA)

Static Single Assignment Advantages:

- Less space required to represent def-use chains. For each variable, space is proportional to uses + defs.
- Eliminates unnecessary relationships:

\[
\begin{align*}
 &\text{for } i = 1 \text{ to } N \text{ do } A[i] = 0 \\
 &\text{for } i = 1 \text{ to } M \text{ do } B[i] = 1
\end{align*}
\]

- No reason why both loops should be forced to use same register to hold index register.
- SSA renames second \(i \) to new register which may lead to better register allocation.
- SSA form make certain optimizations quick and easy — dominance property.
- Variables have only one definition - no ambiguity.
- Dominator information is encoded in the assignments.
Dominance property of SSA form: definitions dominate uses

- If \(x \) is the \(i \)th argument of \(\phi \)-function in node \(n \), then definition of \(x \) dominates \(i \)th predecessor of \(n \).
- If \(x \) is used in non-\(\phi \) statement in node \(n \), then definition of \(x \) dominates \(n \).

Dead Code Elimination

Given \(d: t = x \odot y \)

- \(t \) is live at end of node \(d \) if there exists path from end of \(d \) to use of \(t \) that does not go through definition of \(t \).
- if program not in SSA form, need to perform liveness analysis to determine if \(t \) live at end of \(d \).
- if program is in SSA form:
 - cannot be another definition of \(t \)
 - if there exists use of \(t \), then path from end of \(d \) to use exists, since definitions dominate uses.
 - every use has a unique definition
 - \(t \) is live at end of node \(d \) if \(t \) is used at least once

Algorithm:

WHILE (for each temporary \(t \) with no uses &\& statement defining \(t \) has no other side-effects) DO

1: \(r1 = 5 \)
2: \(r2 = 10 \)
3: \(\text{branch } r3 > r2 \)
4: \(r2' = r2 + 15 \)
5: \(r4 = r3 + X \)
6: \(r2'' = \emptyset (r2', r2) \)
7: \(M[r4] = r2'' \)
Dead Code Elimination

- Remove any operation who’s result is never consumed
- Rules
 - X can be deleted
 - no stores or branches
 - DU chain empty or dest register not live
- This misses some dead code!!
 - Especially in loops
 - Critical operation
 - store or branch operation
 - Any operation that does not directly or indirectly feed a critical operation is dead
 - Trace UD chains backwards from critical operations
 - Any op not visited is dead

\[
\begin{align*}
 r_1 &= 3 \\
 r_2 &= 10 \\
 r_4 &= r_4 + 1 \\
 r_7 &= r_1 \times r_4 \\
 r_3 &= r_3 + 1 \\
 r_5 &= r_2 + r_1 \\
 r_2 &= 0 \\
 \text{store (r1, r3)}
\end{align*}
\]

Constant Folding

- Simplify 1 operation based on values of src operands
 - Constant propagation creates opportunities for this
- All constant operands
 - Evaluate the op, replace with a move
 - \(r_1 = 3 \times 4 \rightarrow r_1 = 12 \)
 - \(r_1 = 3 / 0 \rightarrow ?? \) Don’t evaluate excepting ops !, what about floating-point?
 - Evaluate conditional branch, replace with BRU or noop
 - if (1 < 2) goto BB2 \(\rightarrow \) BRU BB2
 - if (1 > 2) goto BB2 \(\rightarrow \) convert to a noop
- Algebraic identities
 - \(r_1 = r_2 + 0, r_2 - 0, r_2 | 0, r_2 ^ 0, r_2 << 0, r_2 >> 0 \)
 - \(r_1 = r_2 \)
 - \(r_1 = 0 * r_2, 0 / r_2, 0 & r_2 \)
 - \(r_1 = 0 \)
 - \(r_1 = r_2 * 1, r_2 / 1 \)
 - \(r_1 = r_2 \)

Strength Reduction

- Replace expensive ops with cheaper ones
 - Constant propagation creates opportunities for this
- Power of 2 constants
 - Multiply by power of 2, replace with left shift
 - \(r_1 = r_2 \times 8 \rightarrow r_1 = r_2 << 3 \)
 - Divide by power of 2, replace with right shift
 - \(r_1 = r_2 / 4 \rightarrow r_1 = r_2 >> 2 \)
 - Remainder by power of 2, replace with logical and
 - \(r_1 = r_2 \text{ REM 16} \rightarrow r_1 = r_2 & 15 \)
- More exotic
 - Replace multiply by constant by sequence of shift and adds/subs
 - \(r_1 = r_2 \times 6 \)
 - \(r_100 = r_2 << 2; r_101 = r_2 << 1; r_1 = r_100 + r_101 \)
 - \(r_1 = r_2 \times 7 \)
 - \(r_100 = r_2 << 3; r_1 = r_100 - r_2 \)
Class Problem

Optimize this applying
1. constant folding
2. strength reduction
3. dead code elimination

Constant Propagation

- Forward propagation of moves of the form
 - $rx = L$ (where L is a literal)
 - Maximally propagate
 - Assume no instruction encoding restrictions
- When is it legal?
 - SRC: Literal is a hard coded constant, so never a problem
 - DEST: Must be available
 - Guaranteed to reach
 - May reach not good enough

Simple Constant Propagation

Given $d: t = c, c$ is constant Given $u: x = t \ \text{op} \ \ b$

- if program not in SSA form:
 - need to perform reaching definition analysis
 - use of t in u may be replaced by c if d reaches u and no other definition of t reaches u

- if program is in SSA form:
 - d reaches u, since definitions dominate uses, and no other definition of t exists on path from d to u
 - d is only definition of t that reaches u, since it is the only definition of t
 * any use of t can be replaced by c
 * any op-function of form $\text{op} = \phi(c_1, c_2, ..., c_n)$, where $c_i = c$, can be replaced by $\text{op} = c$
Local Constant Propagation

- Consider 2 ops, X and Y in a BB, X is before Y
 - 1. X is a move
 - 2. src1(X) is a literal
 - 3. Y consumes dest(X)
 - 4. There is no definition of dest(X) between X and Y
 - 5. No danger betw X and Y
 - When dest(X) is a Macro reg, BRL destroys the value

\[
\begin{align*}
\text{r1} &= 5 \\
\text{r2} &= _x \\
\text{r3} &= 7 \\
\text{r4} &= \text{r4 + r1} \\
\text{r5} &= \text{r1 + r2} \\
\text{r6} &= \text{r1 + 1} \\
\text{r7} &= \text{r2 + r1} \\
\text{r8} &= \text{r1 + r2} \\
\text{r9} &= \text{r3 + r5} \\
\text{r10} &= \text{r3 - r1}
\end{align*}
\]

Global Constant Propagation

- Consider 2 ops, X and Y in different BBs
 - 1. X is a move
 - 2. src1(X) is a literal
 - 3. Y consumes dest(X)
 - 4. X is in \text{a_in}(BB(Y))
 - 5. Dest(x) is not modified between the top of BB(Y) and Y
 - 6. No danger betw X and Y
 - When dest(X) is a Macro reg, BRL destroys the value

\[
\begin{align*}
r1 &= \text{r1 + r2} \\
r7 &= \text{r1 - r2} \\
r8 &= \text{r1 * r2} \\
r9 &= \text{r1 + r2}
\end{align*}
\]

Class Problem

Optimize this applying
1. constant propagation
2. constant folding
3. strength reduction
4. dead code elimination
Forward Copy Propagation

- Forward propagation of the RHS of moves
 - \(r_1 = r_2 \)
 - \(\ldots \)
 - \(r_4 = r_1 + 1 \rightarrow r_4 = r_2 + 1 \)

- Benefits
 - Reduce chain of dependences
 - Eliminate the move

- Rules (ops X and Y)
 - X is a move
 - src1(X) is a register
 - Y consumes dest(X)
 - X.dest is an available def at Y
 - X.src1 is an available expr at Y

- \(r_2 = 0 \)
- \(r_5 = r_2 + r_3 \)
- \(r_6 = r_3 + 1 \)

Backward Copy Propagation

- Backward propagation of the LHS of moves
 - \(r_1 = r_2 + r_3 \rightarrow r_4 = r_2 + r_3 \)
 - \(\ldots \)
 - \(r_5 = r_1 + r_6 \rightarrow r_5 = r_4 + r_6 \)
 - \(\ldots \)
 - \(r_4 = r_1 \rightarrow \text{noop} \)

- Rules (ops X and Y in same BB)
 - dest(X) is a register
 - dest(X) not live out of BB(X)
 - Y is a move
 - dest(Y) is a register
 - Y consumes dest(X)
 - dest(Y) not consumed in (X...Y)
 - dest(Y) not defined in (X...Y)
 - There are no uses of dest(X) after the first redefinition of dest(Y)

- \(r_1 = r_8 + r_9 \)
- \(r_2 = r_9 + r_1 \)
- \(r_4 = r_2 \)
- \(r_6 = r_2 + 1 \)
- \(r_9 = r_1 \)
- \(r_{10} = r_6 \)
- \(r_5 = r_6 + 1 \)
- \(r_4 = 0 \)
- \(r_8 = r_2 + r_7 \)

CSE – Common Subexpression Elimination

- Eliminate recomputation of an expression by reusing the previous result
 - \(r_1 = r_2 \cdot r_3 \)
 - \(\rightarrow r_{100} = r_1 \)
 - \(\ldots \)
 - \(r_4 = r_2 \cdot r_3 \rightarrow r_4 = r_{100} \)

- Benefits
 - Reduce work
 - Moves can get copy propagated

- Rules (ops X and Y)
 - X and Y have the same opcode
 - src(X) = src(Y), for all srcs
 - expr(X) is available at Y
 - if X is a load, then there is no store that may write to address(X) along any path between X and Y

- if op is a load, call it redundant
- Load elimination rather than CSE

- \(r_2 = r_2 + 1 \)
- \(r_5 = r_2 \cdot r_6 \)
- \(r_6 = r_3 \cdot 7 \)
- \(r_8 = r_4 \cdot r_7 \)
- \(r_9 = r_3 \cdot 7 \)
Optimize this applying
1. constant propagation
2. constant folding
3. strength reduction
4. dead code elimination
5. forward copy propagation
6. backward copy propagation
7. CSE

Constant Combining

- Combine 2 dependent ops into 1 by combining the literals
 - \(r1 = r2 + 4 \)
 - \(\ldots \)
 - \(r5 = r1 - 9 \rightarrow r5 = r2 - 5 \)
- First op often becomes dead
- Rules (ops X and Y in same BB)
 - X is of the form \(rx + K \)
 - dest(X) \(!=\) src1(X)
 - Y is of the form \(ry + K \)
 (comparison also ok)
 - Y consumes dest(X)
 - src1(X) not modified in (X...Y)

Operation Folding

- Combine 2 dependent ops into 1 complex op
 - Classic example is MPYADD
 - \(r1 = r2 \times r3 \)
 - \(\ldots \)
 - \(r5 = r1 + r4 \rightarrow r5 = r2 \times r3 + r4 \)
- First op often becomes dead
- Borders on machine dependent opti (often it is \(!!\))
- Rules (ops X and Y in same BB)
 - X is an arithmetic operation
 - dest(X) \(!=\) any src(X)
 - Y is an arithmetic operation
 - Y consumes dest(X)
 - X and Y can be merged
 - src(X) not modified in (X...Y)
Constant Combining

- Combine 2 dependent ops into 1 by combining the literals
 - \(r_1 = r_2 + 4 \)
 - ...
 - \(r_5 = r_1 - 9 \rightarrow r_5 = r_2 - 5 \)
- First op often becomes dead
- Rules (ops X and Y in same BB)
 - X is of the form \(\text{rx} \rightarrow \text{K} \)
 - dest(X) != src1(X)
 - Y is of the form \(\text{ry} \rightarrow \text{K} \) (comparison also ok)
 - Y consumes dest(X)
 - src1(X) not modified in (X...Y)

\[
\begin{align*}
\text{r}_1 & = \text{r}_2 + 4 \\
\text{r}_3 & = \text{r}_1 < 0 \\
\text{r}_2 & = \text{r}_3 + 6 \\
\text{r}_7 & = \text{r}_1 - 3 \\
\text{r}_8 & = \text{r}_7 + 5 \\
\end{align*}
\]

Operation Folding

- Combine 2 dependent ops into 1 complex op
 - Classic example is MPYADD
 - \(r_1 = r_2 \times r_3 \)
 - ...
 - \(r_5 = r_1 + r_4 \rightarrow r_5 = r_2 \times r_3 + r_4 \)
- First op often becomes dead
- Borders on machine dependent opti (often it is !!)
- Rules (ops X and Y in same BB)
 - X is an arithmetic operation
 - dest(X) != any src(X)
 - Y is an arithmetic operation
 - Y consumes dest(X)
 - X and Y can be merged
 - src(X) not modified in (X...Y)

\[
\begin{align*}
\text{r}_1 & = \text{r}_2 \& 4 \\
\text{r}_3 & = \text{r}_1 ^ -1 \\
\text{r}_2 & = \text{r}_3 < 6 \\
\text{r}_4 & = \text{r}_2 = = 0 \\
\text{r}_5 & = \text{r}_6 < < 1 \\
\text{r}_7 & = \text{r}_5 + r_8 \\
\end{align*}
\]

Loop Optimizations

- The most important set of optimizations
 - Because programs spend so much time in loops
- Optis
 - Invariant code removal
 - Global variable migration
 - Induction variable strength reduction
 - Induction variable elimination
Recall Loop Terminology

- \(r_1, r_4 \) are basic induction variables
- \(r_7 \) is a derived induction variable

\[
\begin{align*}
 r_1 &= 3 \\
 r_2 &= 10 \\
 r_4 &= r_4 + 1 \\
 r_7 &= r_4 \times 3 \\
 r_2 &= 0 \\
 r_3 &= r_2 + 1 \\
 r_1 &= r_1 + 2 \\
 &\text{store (}r_1, r_3\text{)}
\end{align*}
\]

临港 BB

exit BB

\hspace{1cm}

Global Variable Migration

- Assign a global variable temporarily to a register for the duration of the loop
 - Load in preheader
 - Store at exit points
- Rules
 - \(X \) is a load or store
 - address\((X)\) not modified in the loop
 - if \(X \) not executed on every iteration, then \(X \) must provably not cause an exception
 - All memory ops in loop whose address can equal address\((X)\) must always have the same address as \(X \)
Induction Variable Strength Reduction

- Create basic induction variables from derived induction variables

- Rules
 - X is a *, <<, + or operation
 - src1(X) is a basic ind var
 - src2(X) is invariant
 - No other ops modify dest(X)
 - dest(X) != src(X) for all srcs
 - dest(X) is a register

Induction Variable Elimination

- Remove unnecessary basic induction variables from the loop by substituting uses with another BIV
- Rules (same init val, same inc)
 - Find 2 basic induction vars x, y
 - x, y in same family
 - incremented in same places
 - increments equal
 - initial values equal
 - x not live when you exit loop
 - for each BB where x is defined, there are no uses of x between first/last defn of x and last/first defn of y

Optimize this applying
1. loop invariant removal
2. global variable migration
+ other optis
Induction Variable Elimination (2)

- 5 variants discussed in Mahlke thesis
 - 1. Trivial – induction variable that is never used except by the increments themselves, not live at loop exit
 - 2. Same increment, same initial value
 - 3. Same increment, initial values are a known constant offset from one another
 - 4. Same increment, know nothing about relation of initial values
 - 5. Different increments, know nothing about initial values

- The higher the number, the more complex the elimination
 - Also, the more expensive it is
 - 1,2 are basically free, so always should be done
 - 3-5 require preheader operations

Class Problem

Optimize this applying
Induction var strength red
Induction variable elim

ILP Optimization

- Traditional optimizations
 - Redundancy elimination
 - Reducing operation count

- ILP (instruction-level parallelism) optimizations
 - Increase the amount of parallelism and the ability to overlap operations
 - Operation count is secondary, often trade parallelism for extra instructions (avoid code explosion)

- ILP increased by breaking dependences
 - True or flow = read after write dependence
 - False or (anti/output) = write after read, write after write
Register Renaming

- Remove dependences caused by variable re-use
 - Re-use of source variables
 - Re-use of temporaries
 - Anti, output dependences
- Create a new variable to hold each unique life time
- Very simple transformation with straight-line code
 - Make each def a unique register
 - Substitute new name into subsequent uses

\[
\begin{align*}
 a: & \quad r_1 = r_2 + r_3 \\
 b: & \quad r_3 = r_4 + r_5 \\
 c: & \quad r_1 = r_7 * r_8 \\
 d: & \quad r_7 = r_1 + r_5 \\
 e: & \quad r_1 = r_3 + 4 \\
 f: & \quad r_4 = r_7 + 4
\end{align*}
\]

Global Register Renaming

- Straight-line code strategy does not work
 - A single use may have multiple reaching defs
- Web = Collection of defs/uses which have possible value flow between them
 - Identify webs
 - Take a def, add all uses
 - Take all uses, add all reaching defs
 - Take all defs, add all uses
 - repeat until stable soln
 - Each web renamed if name is the same as another web

Rename with Copy

- Renaming within a web
 - The worst case is a web spans all defs/uses
 - Want to enable some of the defs within the web to be reordered or executed in parallel
- Xform
 - Rename def
 - Rename uses for which def is the only reaching def
 - Insert copy
 - \texttt{orig_dest = new_dest}
Predicate Promotion

- Predicate promotion or predicate speculation
 - Remove dependence between
 CMPP and predicated operation
 - Modify predicate of an operation to
 an ancestor predicate
 - Operation executes more often
 than it should, "speculated"
- \(x = \ldots \) if \(p_1 \to \) if \(p_2 \)
- Where \(p_2 \) is an ancestor of \(p_1 \)
- Legal if \(x \) not live on \(p_2 \to p_1 \)
- And, \(op \) will not cause a spurious exception

\[
\begin{align*}
r_1 &= r_2 + r_3 \\
r_7 &= 0 \\
p_1, p_2 &= \text{CMPP} . \text{UN} . \text{UC}(r_1 < r_5) \\
r_4 &= r_5 \times r_6 \text{ if } p_1 \\
r_7 &= r_8 + r_9 \text{ if } p_2 \\
r_{10} &= r_4 + 4 \text{ if } p_1 \\
r_{11} &= r_7 + 1 \text{ if } T
\end{align*}
\]

Promote with Copy

- Similar to rename with copy
 - Promotion alone not legal
 because a live value destroyed
 - Rename destination, can
 promote to any ancestor
 - Might as well choose True
 - Substitute uses for which def is
 the only reaching def
 - Insert copy of old_dest =
 new_dest if original_ped
 - Again, must ensure operation
 will not cause a spurious exception

\[
\begin{align*}
r_7 &= 0 \\
p_1, p_2 &= \text{CMPP} . \text{UN} . \text{UC}(r_1 < r_5) \\
r_7 &= \text{load}(r_8) \text{ if } p_2 \\
r_{12} &= r_7 + 1 \text{ if } p_2 \\
r_1 &= r_7 + 1 \text{ if } T
\end{align*}
\]

Class Problem

1. Promote everything to its highest predicate w/o renaming
2. Promote any defs of \(r_1 \), \(r_2 \) that remain predicated to True
 using promotion with renaming

\[
\begin{align*}
r_1 &= 0 \text{ if } T \\
p_1 &= \text{CMPP} . \text{UN}(r_3 < r_4) \text{ if } T \\
r_2 &= r_6 + 3 \text{ if } p_1 \\
p_2, p_3 &= \text{CMPP} . \text{UN} . \text{UC}(r_5 < r_6) \text{ if } p_1 \\
r_1 &= r_5 + 1 \text{ if } p_2 \\
r_{10} &= r_2 + r_3 \text{ if } p_2 \\
r_1 &= r_3 \times 3 \text{ if } p_3 \\
r_{11} &= \text{load}(r_1) \text{ if } p_3 \\
\text{store} (r_1, r_{10}) &= \text{if } T \\
\text{store} (r_3, r_{11}) &= \text{if } T
\end{align*}
\]
Back Substitution

- Generation of expressions by compiler frontends is very sequential
 - Account for operator precedence
 - Apply left-to-right within same precedence
- Back substitution
 - Create larger expressions
 - Iteratively substitute RHS expression for LHS variable
 - Note – may correspond to multiple source statements
 - Enable subsequent optis
- Optimization
 - Re-compute expression in a more favorable manner

$y = a + b + c - d + e - f$;

$r9 = r1 + r2$
$r10 = r9 + r3$
$r11 = r10 - r4$
$r12 = r11 + r5$
$r13 = r12 - r6$

Subs r12:
$r13 = r11 + r5 - r6$

Subs r11:
$r13 = r10 - r4 + r5 - r6$

Subs r10:
$r13 = r9 + r3 - r4 + r5 - r6$

Subs r9:
$r13 = r1 + r2 + r3 - r4 + r5 - r6$

Tree Height Reduction

- Re-compute expression as a balanced binary tree
 - Obey precedence rules
 - Essentially re-parenthesize
- Effects
 - Height reduced (n terms)
 - n-1 (assuming unit latency)
 - ceil(log2(n))
 - Number of operations remains constant
- Cost
 - Temporary registers “live” longer
- Watch out for
 - Always ok for integer arithmetic
 - Floating-point – may not be!

Fancier Tree Height Reduction

- Take advantage of literals
 - Reassociate to maximize opportunities for combining literals at compile time
 - Reduces amount of computation

original:
$r9 = r1 + r2$
$r10 = r9 + r3$
$r11 = r10 - r4$
$r12 = r11 + r5$
$r13 = r12 - r6$

after back subs:
$r13 = r1 + r2 + r3 - r4 + r5 - r6$

final code:
$t1 = r1 + r2$
$t2 = r3 - r4$
$t3 = r5 - r6$
$t4 = t1 + t2$
$r13 = t4 + t3$

r1 + r2

+

r3 - r4

+

r13

after back subs:
$r13 = r1 + 4 + r2 - 3 + r3 - 6$

reassociate:
$r13 = r1 + r2 + r3 + (4 - 3 - 6)$

simplify:
$r13 = r1 + r2 + r3 - 5$

balance:
$r1 + r2$

+

r3 - 5

+

r13
Class Problem

Assume: + = 1, * = 3

<table>
<thead>
<tr>
<th>operand</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrival times</td>
<td>r1</td>
<td>r2</td>
<td>r3</td>
<td>r4</td>
<td>r5</td>
<td>r6</td>
</tr>
</tbody>
</table>

- r10 = r1 * r2
- r11 = r10 + r3
- r12 = r11 + r4
- r13 = r12 - r5
- r14 = r13 + r6

Back substitute
Re-express in tree-height reduced form
Account for latency and arrival times

Optimizing Unrolled Loops

Unroll = replicate loop body n-1 times.

Hope to enable overlap of operation execution from different iterations

Not possible!
Register Renaming on Unrolled Loop

```
loop:  r1 = load(r2)
       r3 = load(r4)
       r5 = r1 + r3
       r6 = r5 + r5
       r2 = r2 + 4
       r4 = 4 + 4
       r1 = load(r2)
       r3 = load(r4)
       r5 = r1 + r3
       r6 = r6 + r5
       r2 = r2 + 4
       r4 = r4 + 4
       if (r4 < 400) goto loop

iter1
r1 = r1 + 4
r2 = r2 + 4
r3 = r3 + 4
r4 = r4 + 4
r5 = r5 + 4
r6 = r6 + r5

iter2
r1 = r1 + r2
r3 = r3 + 4
r4 = r4 + 4
r5 = r5 + 4
r6 = r6 + r15
r2 = r2 + 4
r4 = r4 + 4
r5 = r5 + 4
if (r4 < 400) goto loop

iter3
r1 = r1 + 4
r2 = r2 + 4
r3 = r3 + 4
r4 = r4 + 4
r5 = r5 + 4
r6 = r6 + r15

```

Register Renaming is Not Enough!

- Still not much overlap possible
- Problems
 - r2, r4, r6 sequentialize the iterations
 - Need to rename these
- 2 specialized renaming opts
 - Accumulator variable expansion (r6)
 - Induction variable expansion (r2, r4)

Accumulator Variable Expansion

```
loop:  r1 = load(r2)
       r3 = load(r4)
       r5 = r1 + r3
       r6 = r6 + r5
       r2 = r2 + 4
       r4 = r4 + 4
       r1 = load(r2)
       r3 = load(r4)
       r5 = r1 + r3
       r6 = r6 + r5
       r2 = r2 + 4
       r4 = r4 + 4
       if (r4 < 400) goto loop

iter1
r1 = r1 + 4
r2 = r2 + 4
r3 = r3 + 4
r4 = r4 + 4
r5 = r5 + 4
r6 = r6 + r5

iter2
r1 = r1 + r2
r3 = r3 + 4
r4 = r4 + 4
r5 = r5 + 4
r6 = r6 + r15
r2 = r2 + 4
r4 = r4 + 4
r5 = r5 + 4
if (r4 < 400) goto loop

iter3
r1 = r1 + 4
r2 = r2 + 4
r3 = r3 + 4
r4 = r4 + 4
r5 = r5 + 4
r6 = r6 + r15

```

- Accumulator variable
 - x = x + y or x = x − y
 - where y is loop variant!!
- Create n-1 temporary accumulators
- Each iteration targets a different accumulator
- Sum up the accumulator variables at the end
- May not be safe for floating-point values
Induction Variable Expansion

- Induction variable
 - $x = x + y$ or $x = x - y$
 - where y is loop invariant!
- Create n-1 additional induction variables
- Each iteration uses and modifies a different induction variable
- Initialize induction variables to init, init+step, init+2*step, etc.
- Step increased to n*original step
- Now iterations are completely independent!!

Better Induction Variable Expansion

With base+displacement addressing, often don’t need additional induction variables
- Just change offsets in each iterations to reflect step
- Change final increments to n * original step

Class Problem

loop:
- $r_{16} = r_{26} = 0$
- loop:
- $r_1 = \text{load}(r2)$
- $r_3 = \text{load}(r4)$
- $r_5 = r_1 + r_3$
- $r_6 = r_6 + r_5$
- $r_2 = r_2 + 12$
- $r_4 = r_4 + 12$
- $r_{11} = \text{load}(r12)$
- $r_{13} = r_{11} + r_{13}$
- $r_{15} = r_{16} + r_{15}$
- $r_{12} = r_{12} + 12$
- $r_{14} = r_{14} + 12$
- $r_{21} = \text{load}(r22)$
- $r_{23} = \text{load}(r24)$
- $r_{25} = r_{21} * r_{23}$
- $r_{26} = r_{26} + r_{25}$
- $r_{22} = r_{22} + 12$
- $r_{24} = r_{24} + 12$
- if $(r_4 < 400)$ goto loop
- $r_6 = r_6 + r_{16} + r_{26}$