Where are we?

- Analysis
 - Control Flow/Predicate
 - Treat basic blocks as a black box
 - Only look at branches
 - Dataflow
 - Look inside basic blocks
 - What is computed where?
- Transformations
 - Register Allocation
 - Optimization
 - Scheduling

Dataflow Analysis Motivation (Optimization)

Constant Propagation and Dead Code Elimination:

```
  r1 = 4
    \--------
   /  \     \  
  r2 = r1 + 5  \rightarrow  r2 = 9

  r1 = 4
    \--------
   /  \     \  
  r2 = r1 + 5
```

Needs dominator, liveness, and reaching definition information.
Dataflow Analysis Motivation (Register Allocation)

Register Allocation:

- Infinite number of registers (virtual registers) must be mapped to a limited number of real registers.
- Pseudo-assembly must be examined by live variable analysis to determine which virtual registers contain values which may be used later.
- Virtual registers which are not simultaneously live may be mapped onto the same real register.

1. \(r_2 = r_1 + 1 \)
2. \(r_3 = M[r_2] \)
3. \(r_4 = r_3 + 4 \)
4. LOAD \(r_5 = M[r_2 + r_4] \)

Dataflow Analysis Introduction

Dataflow analysis – Collection of information that summarizes the creation/destruction of values in a program. Used to identify legal optimization opportunities.

Pick an arbitrary point in the program

- Which VRs contain useful data values? (liveness or upward exposed uses)
- Which definitions may reach this point? (reaching definitions)
- Which definitions are guaranteed to reach this point? (available definitions)
- Which uses below are exposed? (downward exposed uses)

Iterative Dataflow Analysis Framework

- These dataflow analyses are all very similar → define a framework.
- Specify:
 - Two set definitions - \(A[n] \) and \(B[n] \)
 - A transfer function - \(f(A, B, IN/OUT) \)
 - A confluence operator - \(\vee \).
 - A direction - FORWARD or REVERSE.
- For forward analyses:
 \[
 IN[n] = \vee_{p \in PRED[n]} OUT[p] \\
 OUT[n] = f(A, B, IN)
 \]
- For reverse analyses:
 \[
 OUT[n] = \vee_{s \in SUCCESSOR[n]} IN[s] \\
 IN[n] = f(A, B, OUT)
 \]
Iterative Dataflow Analysis Framework

- Iterative dataflow analysis equations are applied in an iterative fashion until \(IN \) and \(OUT \) sets do not change.
- Typically done in (FORWARD or REVERSE) topological sort order of CFG for efficiency.
- \(IN \) and \(OUT \) sets initialized to 0.

For each node \(n \) {
 \[
 \text{IN}[n] = \text{OUT}[n] = \{\};
 \]

Repeat {
 For each node \(n \) in forward/reverse topological order {
 \[
 \text{IN}'[n] = \text{IN}[n];
 \text{OUT}'[n] = \text{OUT}[n];
 \text{IN}[n], \text{OUT}[n] = \text{(Equations)};
 \]
 } until \(\text{IN}'[n] = \text{IN}[n] \) and \(\text{OUT}'[n] = \text{OUT}[n] \) for all \(n \).

Live Variable Analysis

Liveness Definitions:

- A source (RHS) register \(t \) is a use of \(t \).
- A destination (LHS) register \(t \) is a definition of \(t \).
- A register \(t \) is live on edge \(e \) if there exists a path from \(e \) to a use of \(t \) that does not go through a definition of \(t \).
- Register \(t \) is live-in at CFG node \(n \) if \(t \) is live on any in-edge of \(n \).
- Register \(t \) is live-out at CFG node \(n \) if \(t \) is live on any out-edge of \(n \).

Live Variable Analysis Equation:

- Set definition \(\text{DEF}[n] \): \(\text{USE}[n] \) - the set of registers that \(n \) uses.
- Set definition \(\text{DEF}[n] \): \(\text{DEF}[n] \) - the set of registers that \(n \) defines.
- Transfer function \(f(A, B, OUT) \): \(\text{USE}[n] \cup (\text{OUT}[n] - \text{DEF}[n]) \)
- Confluence operator \((\lor) \): \(\lor \)
- Direction: REVERSE

\[
\text{OUT}[n] = \cup_{s \in \text{Succ}[n]} \text{IN}[s]
\]
\[
\text{IN}[n] = \text{USE}[n] \cup (\text{OUT}[n] - \text{DEF}[n])
\]
Live Variable Analysis Example

Live Variable Analysis Application 1:
Register Allocation

- In compiler, we assume unbounded number of registers.
- Virtual Registers - no limits
- Physical Registers exist in the target machine

Register allocation maps virtual to physical registers

Steps:
1. Perform live variable analysis.
2. Build interference graph.
3. Color interference graph with real registers.

Interference Graph

- Node \(t \) corresponds to virtual register \(t \).
- Edge \((t_i, t_j) \) exists if registers \(t_i, t_j \) have overlapping live ranges.
- For some node \(n \), if \(DEF[n] = \{a\} \) and \(OUT[n] = \{b_1, b_2, ... b_k\} \), then add interference edges: \((a, b_1), (a, b_2), (a, b_k) \)

Interference Graph For Example:

<table>
<thead>
<tr>
<th>Node</th>
<th>DEF</th>
<th>OUT</th>
<th>IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r1</td>
<td>r1,r3</td>
<td>r3</td>
</tr>
<tr>
<td>2</td>
<td>r2</td>
<td>r2,r3</td>
<td>r1,r3</td>
</tr>
<tr>
<td>3</td>
<td>r3</td>
<td>r2,r3</td>
<td>r2,r3</td>
</tr>
<tr>
<td>4</td>
<td>r1</td>
<td>r1,r3</td>
<td>r2,r3</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>r1,r3</td>
<td>r1,r3</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td></td>
<td>r3</td>
</tr>
</tbody>
</table>

Virtual registers r1 and r2 may be mapped to same real registers.
Live Variable Analysis Application 2:

Dead Code Elimination

- Given statement s with a definition and no side-effects:

 \[
 r_1 = r_2 + r_3, \quad r_1 = M[r_2], \quad \text{or} \quad r_1 = r_2
 \]

 If r_1 is not live at the end of s, then the s is dead.

- Dead statements can be deleted.

- Given statement s without a definition or side-effects:

 \[
 r_1 = \text{call FUN_NAME,} \quad M[r_1] = r_2
 \]

 Even if r_1 is not live at the end of s, it is not dead.

Example:

\[
\begin{align*}
 r_1 &= r_2 + 1 \\
r_2 &= r_2 + 2 \\
r_3 &= r_2 + 3 \\
M[r_1] &= r_2
\end{align*}
\]

Class Problem

\[
\begin{array}{l}
 r_1 = 3 \\
r_2 = r_3 \\
r_3 = r_4 \\
\end{array}
\]

\[
\begin{array}{l}
 \text{Compute liveness} \\
 \text{Calculate USE/DEF for each BB} \\
 \text{Calculate IN/OUT for each BB} \\
\end{array}
\]

Reaching Definition Analysis (rdefs)

Determines whether definition of register t directly affects use of t at some point in program.

Reaching Definition Definitions:

- *unambiguous* - instruction explicitly defines register t.

- *ambiguous* - instruction may or may not define register t.

 - Global variables in a function call.
 - No ambiguous definitions in tiger since all globals are stored in memory.

- Definition of d (of t) *reaches* statement u if a path of CFG edges exists from d to u that does not pass through an unambiguous definition of t.

- One unambiguous and many ambiguous definitions of t may reach u on a single path.
Reaching Definition Analysis

Reaching Definition Analysis Equation:
- Set definition \((A[n])\): \(GEN[n]\) - the set of definition id’s that \(n\) creates.
- Set definition \((B[n])\): \(KILL[n]\) - the set of definition id’s that \(n\) kills.
- \(\text{def}_t(s)\) - set of all definition id’s of register \(t\).
- Transfer function \((f(A, B, IN))\): \(GEN[n] \cup (IN[n] - KILL[n])\)
- Confluence operator \((\lor)\): \(\cup\)
- Direction: FORWARD

\[
IN[n] = \bigcup_{p \in \text{PRED}_n} OUT[p] \\
OUT[n] = GEN[n] \cup (IN[n] - KILL[n])
\]

Reaching Definitions Example

1: \(r_1 = r_2 + r_3\)
2: \(r_6 = r_4 - r_5\)
3: \(r_4 = 4\)
4: \(r_6 = 8\)
5: \(r_6 = r_2 + r_3\)
6: \(r_7 = r_4 - r_5\)

defs 1 and 2 reach this point

defs 1, 3, reach this point

def 2 is killed by 4

defs 1, 3, 5, 6 reach this point
defs 2, 4 are killed by 5
Reaching Definitions Application 1:
Constant Propagation

- Given Statement d: $a = c$ where a is constant
- Given Statement u: $t = a \ op \ b$
- If statement d reach u and no other definition of a reaches u, then replace u by $t = a \ op \ b$.

![Code example]

An Aside of Sorts:
Constant Folding

- Given Statement d: $t = a \ op \ b$
- If a and b are constant, compute c as $a \ op \ b$, replace d by $t = c$

![Code example]

Class Problem

- Given definitions
- Calculate GEN/KILL for each BB
- Calculate IN/OUT for each BB
Some Things to Think About

- Liveness and reaching defs are basically the same thing
 - Dataflow analysis framework
 - Upward exposed uses
 - Downward exposed uses
 - Upward exposed definitions
 - Downward exposed definitions

- Dataflow can be slow
 - How to implement it efficiently?
 - How to represent the info?

- Predicates
 - Throw a monkey wrench into this stuff
 - So, how are predicates handled?

Beyond Liveness or Upward Exposed Uses

- Upward exposed definitions
 - $IN = GEN + (OUT - KILL)$
 - $OUT = \text{Union}(IN(\text{successors}))$
 - Walk ops reverse order
 - $GEN += \text{dest}; KILL += \text{dest}$

- Downward exposed uses
 - $IN = \text{Union}(OUT(\text{predecessors}))$
 - $OUT = GEN + (IN-KILL)$
 - Walk ops forward order
 - $GEN += \text{src}; KILL -= \text{src};$
 - $GEN -= \text{dest}; KILL += \text{dest};$

- Downward exposed definitions
 - $IN = \text{Union}(OUT(\text{predecessors}))$
 - $OUT = GEN + (IN-KILL)$
 - Walk ops forward order
 - $GEN += \text{dest}; KILL += \text{dest};$

Example – Upward Exposed Definitions

```
BB1: r1 = MEM[r2+0]
     r2 = r2 + 1
     r3 = r1 + r4

BB2: r1 = r1 + 5
     r3 = r5 - r1
     r7 = r3 + 2

BB3: r2 = 0
     r7 = 23
     r1 = 4

BB4: r3 = r3 + r7
     r1 = r3 – r8
     r3 = r1 * 2
```
DU/UD Chains

- Convenient way to access/use reaching definitions info
- Def-Use chains
 - Given a def, what are all the possible consumers of the operand produced
 - Maybe consumer
- Use-Def chains
 - Given a use, what are all the possible producers of the operand consumed
 - Maybe producer

Class Problem – Find the DU/UD Chains

```
r1 = 3
r2 = r3
r3 = r4
```

```
r2 = r2 + 1
```

```
r4 = r2 + r1
```

```
r9 = r4 + r8
```

```
r1 = r1 + 1
r7 = r1 * r2
```

```
r2 = r1 + 1
r7 = r1 * r2
```

```
r2 = r2 + 1
```

```
r4 = r2 + r1
```

```
r9 = r4 + r8
```