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Abstract

We study the average-case performance of algorithms for the
binary knapsack problem. Our focus lies on the analysis
of so-called core algorithms, the predominant algorithmic
concept used in practice. These algorithms start with the
computation of an optimal fractional solution that has only
one fractional item and then they exchange items until an
optimal integral solution is found. The idea is that in
many cases the optimal integral solution should be close
to the fractional one such that only a few items need to
be exchanged. Despite the well known hardness of the
knapsack problem on worst-case instances, practical studies
show that knapsack core algorithms can solve large scale
instances very efficiently. For example, they exhibit almost
linear running time on purely random inputs.

In this paper, we present the first theoretical result on
the running time of core algorithms that comes close to
the results observed in practical experiments. We prove an
upper bound of O

�
npolylog

�
n ��� on the expected running

time of a core algorithm on instances with n items whose
profits and weights are drawn independently, uniformly at
random. A previous analysis on the average-case complexity
of the knapsack problem proves a running time of O

�
n4 � ,

but for a different kind of algorithms. The previously best
known upper bound on the running time of core algorithms is
polynomial as well. The degree of this polynomial, however,
is at least a large three digit number. In addition to uniformly
random instances, we investigate harder instances in which
profits and weights are pairwise correlated. For this kind of
instances, we can prove a tradeoff describing how the degree
of correlation influences the running time.

1 Introduction

This paper is concerned with a probabilistic analysis of the
0/1 knapsack problem. A subset of n given items has to be
packed in a knapsack of capacity b. Each item has a profit
pi and a weight wi, for i ��� n �	��
 1 � 2 ������ n � . The problem

�
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is to select a subset of the items whose total weight does not
exceed the capacity bound b and whose total profit is as large
as possible. In terms of an integer linear program (ILP), the
problem is

maximize ∑
i ��� n �

pixi

subject to ∑
i ��� n �

wixi � b

and xi ��
 0 � 1 � , for i ��� n ��
We assume that weights and profits are drawn independently,
uniformly at random from � 0 � 1 � . Following the conventions
in previous analyses [11, 9], the value of n is assumed to be
chosen according to the Poisson distribution with parameter
N. Furthermore, b � βN, for some constant β � � 0 � 1

2 � .
Our focus lies on the analysis of so-called core algo-

rithms that have been proven to be the most efficient algo-
rithms in numerous practical studies [7, 8, 14]. This algorith-
mic concept was suggested by Balas and Zemel [1]. The idea
is to start with the computation of an optimal fractional so-
lution with at most one fractional item and then to exchange
some of the items until an optimal integral solution is found.
The set of items that are candidates to be exchanged, is called
the core, and the hope is that the size of the core for “typical
instances” is relatively small. As a first step towards ana-
lyzing core algorithms, Lueker proved an upper bound on
the expected gap between the optimal integral and the opti-
mal fractional solution [11]. Based on this result, Goldberg
and Marchetti-Spaccamela [9] were able to prove structural
properties of the core resulting in the following bound on the
running time of a Las Vegas type core algorithm. For every
fixed k � 0, with probability at least 1 � 1 � k, the running time
of their algorithm does not exceed a specified upper bound
that is polynomial in the number of items. However, the de-
gree of this polynomial is quite large, the leading constant
in the exponent is at least a large three digit number. Even
more dramatically, the degree of the polynomial grows with
the reciprocal of the failure probability like � k log

�
k � . Ob-

serve that this kind of tail bounds does not allow to conclude
any sub-exponential upper bound on the expected running



time. This work was later extended to the multidimensional
knapsack problem by Dyer and Frieze [4].

Better bounds on the running time are only known for
an algorithm by Nemhauser and Ullmann [13]. This algo-
rithm, however, does not follow the core concept but instead
applies a dominance criterion to reduce the search space. A
subset S � � n � with weight w

�
S � � ∑i � S wi and profit p

�
S � �

∑i � S pi dominates another subset T � � n � if w
�
S � � w

�
T � and

p
�
S ��� p

�
T � . For simplicity, let us assume that all sets have

different profits. The considered random instances satisfy
this assumption with probability 1. Under this assumption,
no subset dominated by another subset can be an optimal so-
lution to the knapsack problem, regardless of the knapsack
capacity. Consequently, it suffices to consider only those sets
that are not dominated by other sets, the so-called dominat-
ing sets. In a recent study [2], we showed that, for uniformly
random instances, the expected number of dominating sets
is bounded by O

�
n3 � , even if the weights are chosen by an

adversary. This result implies an upper bound of O
�
n4 � on

the expected running time of the Nemhauser/Ullmann algo-
rithm. In fact, experiments show that the running time of
this algorithm behaves approximately like n3. Core algo-
rithms, however, show a much better performance in exper-
iments [7, 8, 14]. Their running time on uniformly random
instances is almost linear. Interestingly, the most successful
implementations of core algorithms [7, 14] additionally ex-
ploit domination in order to decrease the number of subsets
generated by the core.

1.1 New results

The motivation for our study is to understand and explain
the efficiency of knapsack core algorithms on random in-
stances. We present the first theoretical results on the run-
ning time of a core algorithm coming close to the results
observed in practice. In particular, we prove an upper bound
of npolylog

�
n � on the expected running time of a core algo-

rithm on uniformly random instances. In addition, following
a recent trend in practical studies ([7],[15]), we investigate
also harder instances in which profits and weights are corre-
lated. Here we prove a tradeoff describing how the running
time increases with the correlation.

As in the most efficient implementations, the algorithms
underlying our analysis combine the core and the domination
concept. However, certain details of this combination are
quite different. In particular, we use Goldberg and Marchetti-
Spaccamela’s definition of the core [9] and combine it with
the enumeration method for dominating sets by Nemhauser
and Ullmann [13]. Somewhat surprisingly, this combina-
tion of theoretical concepts does not only enable us to do
a rigorous mathematical analysis, but also yields a new im-
plementation of a core algorithm that outperforms the best
previous implementations by orders of magnitudes on well
studied benchmark instances.

1.2 Outline

In Section 2 we start with a short overview of the techniques
and results from previous work that we apply in our analy-
sis. In Section 3, we present an algorithm with almost linear
expected running time on uniformly random instances. This
algorithm, however, has some small failure probability, that
is, it might compute a sub-optimal solution with polynomi-
ally small probability. In Section 4, we show how failures
can be handled without increasing the expected running by
more than a constant factor. In Section 5, we describe an
average-case model for so-called weakly correlated instances
and generalize our analysis towards this model. Finally, we
briefly present a few preliminary experimental results.

2 Tools and techniques

2.1 Core algorithms

Core algorithms start by computing an optimal solution for
the relaxed or fractional knapsack problem. In this problem,
the constraints xi ��
 0 � 1 � are replaced by 0 � xi � 1. An
optimal solution to the fractional problem can be found
by the following greedy algorithm [1]. Starting with the
empty knapsack and we add items one by one in order of
non-increasing profit-to-weight ratio1. The algorithm stops
when coming to the first item that would exceed the capacity
bound b. This item is called break item and the computed
knapsack filling not including the break item is called break
solution. It has been shown that the break solution, and
hence also the fractional solution, can be found in linear
time by solving a weighted median problem [1]. For a
geometrical interpretation, let us map each item wi � pi to the
point

�
wi � pi � ��� 2. Then the greedy algorithm described

above can be pictured as rotating a ray clockwise around the
origin starting from the vertical axis and inserting all swept
items until the insertion of the current item would exceeds
the capacity. The ray defined by the break item is called the
Dantzig ray (see Figure 1).

There is a strong motivation to start with the computa-
tion of the break solution. It has been observed in practical
studies that the break solution is quite similar to the optimal
integral solution in the sense that the they differ in only a few
variables. So only a few items need to be exchanged to trans-
form the break solution to an optimal solution. The problem
is, of course, that we do not know in advance which items
to exchange. Therefore, one uses an appropriate subset of
candidate items, called the core. Assume the core contains
all items that needs to be exchanged to obtain an optimal so-
lution, then items outside the core can be fixed to the value
given by the break solution. There are various different ways
to define the core.

1In previous studies, the profit-to-weight ratio of an item is also called its
density. In this paper, the term density solely refers to the density function
describing the probability distributions of the profits.
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Figure 1: Dantzig ray and Break Item. The core stripe has
vertical width 2Γ with Γ denoting the integrality gap. The
loss of an item is the vertical distance to the Dantzig ray.

Goldberg and Marchetti-Spaccamela [9] define the core
as follows. Assume the items are given in order of non-
increasing profit-to-weight ratio and let κ denote the index of
the break item. The solution vector for the fractional problem
has the form X̄ � �

1 ������ 1 � f � 0 ���� � 0 � where f � � 0 � 1 � is
the entry at position κ. For any feasible integer solution
X � � x1 ���� � xn � , define ch

�
X � � 
 i � � n � : x̄i �� xi � , i.e., ch

�
X �

is the set of items on which X̄ and X do not agree. When
removing an item from the break solution the freed capacity
can be used to include items that have profit-to-weight ratio
at most r : � pκ � wκ corresponding to the slope of the Dantzig
ray. Obviously, replacing items by other items with same
weight but smaller profit-to-weight ratio leads to some loss
in profit. This loss can only be compensated by filling
the knapsack with more weight, that is, by decreasing the
wasted capacity. One can quantify the loss that is incurred
by replacing a “valuable” item (pi � wi � r) by a “cheap”
item (pi � wi � r) as follows. Based on the slope r : � pκ � wκ
of the Dantzig ray define loss

�
i � ��� pi � rwi � , i.e., loss

�
i �

corresponds to the vertical distance of item i to the Dantzig
ray. Goldberg and Marchetti-Spaccamela proved that the
difference in profit between any feasible integer solution X
and the optimal fractional solution X̄ can be expressed as

∑
i ��� n �

x̄i pi � ∑
i � � n �

xi pi � r

�
b � ∑

i � � n �
xiwi ��� ∑

i � ch � X � loss
�
i � 

The first term on the right hand side corresponds to an unused
capacity of the integer solution X whereas the second term
is due to the accumulated loss of all items in ch

�
X � . Define

P
�
X �	� ∑i ��� n � xi pi, and let X 	 be an optimal integral solution.

The integrality gap Γ � P
�
X̄ � � P

�
X 	 � gives an upper bound

for the accumulated loss of X 	 and therefore an upper bound
for the individual loss of each item in ch

�
X 	 � . Thus, all items

in ch
�
X 	 � have vertical distance at most Γ from the Dantzig

ray. Hence, the core can be defined to consist of all items

with loss at most Γ. The value of Γ can be obtained, e.g., by
guessing or by adding the items in order of increasing loss to
the core until the loss of the next item is not smaller than the
difference in profit between the optimal fractional solution
and the best integer solution computed so far.

2.2 Properties of the core

Lueker’s analysis [11] bounds the expected integrality gap
for uniformly random instances. In particular, he shows

E � Γ � � O
� log2 N

N � . Goldberg and Marchetti-Spaccamela [9]
observe that this analysis can easily be generalized to obtain
exponential tail bounds on Γ.

LEMMA 2.1. There is constant c0 such that for every α �
log4 N, Pr 
 Γ � c0α log2 N

N � � 2 � α.

In words, the integrality gap does not exceed O
� log2 N

N � ,
with high probability. Let us remark that the value of c0

depends on β, the constant determining the knapsack capac-
ity. The constraint α � log4 N satisfies our requirements but,
in general, the tail bound can be extended to hold for every
α � Nκ, for every fixed κ  1

2 . We will use this bound to
obtain a tail bound on the number of items in the core.

Goldberg and Marchetti-Spaccamela [9] use this tail
bound for their probabilistic analysis of a core algorithm.
Let us briefly sketch their analysis and explain why it fails
to bound the expected running time. It is the basis for
our modifications to the core algorithm. Let X denote
the number of core items, i.e., items with vertical distance
at most Γ from the Dantzig ray. Basically, the expected
value of X corresponds to N times the area covered by
the Γ-region around the Dantzig ray, that is, E �X ��� 2ΓN.
(There are some slight dependencies that we neglect here.
In fact, the Dantzig ray has some tendency to fall into
dense regions.) If Γ is fixed then this number is sharply
concentrated. Furthermore, because of Lemma 2.1 the

random variable Γ is sharply concentrated around O
� log2 N

N � .
Combining these results, it follows X � O

�
log2 N � , with high

probability. Consequently, the number of sets generated by
the core items is 2X � NO � logN � . Obviously, enumerating all
these sets cannot be done in polynomial time. Therefore,
Goldberg and Marchetti-Spaccamela use a further trick to
significantly reduce the number of sets enumerated. They
use a filtering mechanism that we call loss filter. This
mechanism generates only those sets with loss at most
Γ. For every fixed ε � 0, they show that the number of
sets generated is 2O ��� X � � NO � 1 � , with probability 1 � ε.
Unfortunately, the degree of this polynomial grows rapidly
with the reciprocal of the failure probability ε. Roughly
speaking, this is because the random variable X has moved to
the exponent so that small deviations in X might cause large
deviations in the running time. For this reason, the analysis



of Goldberg and Marchetti-Spaccamela fails to bound the
expected running time. Moreover, constant factors lost in
the analysis of X and Γ go directly to the exponent of the
polynomial running time bound.

Instead, we will replace the loss filter by a better filtering
mechanism reducing the number of enumerated sets from
2O ��� X � to NXO � 1 � . This way, we will be able to bound
the expected running time by N polylogN. Our filtering
mechanism is based on the following dominance criterion.

2.3 The Nemhauser/Ullmann algorithm

Fix a knapsack instance with n items. Recall, that a subset
S � � n � with weight w

�
S � � ∑i � S wi and profit p

�
S � � ∑i � S pi

dominates another subset T � � n � if w
�
S � � w

�
T � and p

�
S � �

p
�
T � . For simplicity, let us assume that all sets have differ-

ent profits. Observe that the considered random instances
satisfy this assumption with probability 1. Sets that are dom-
inated by other sets cannot be optimal solutions to the knap-
sack problem, regardless of the specified knapsack capacity.
Consequently, it suffices to consider those sets that are not
dominated by other sets, the so-called dominating sets. In
other terminology, dominating sets are Pareto-optimal solu-
tions, i.e., solutions that cannot be improved in weight and
profit simultaneously by other solutions.

Nemhauser and Ullman [13] introduced the following
elegant algorithm that computes the sequence of all domi-
nating sets in a very efficient way. For i ��� n � , let Si be the
sequence of dominating subsets over the items 1 ���� � i. The
sets in Si are assumed to be listed in increasing order of their
weights. Given Si, the sequence Si � 1 can be computed from
Si as follows. First duplicate all subsets in Si and then add
item i � 1 to each of the duplicated sets. In this way we ob-
tain two ordered sequences of sets. Now we merge the two
sequences by removing those subsets that are dominated by
any other set in the union of the two sequences. The result is
the ordered sequence Si � 1 of dominating sets over the items
1 ������ i � 1.

The sequence Si � 1 can be calculated from the sequence
Si in time linear in the length of Si, that is, linear in
the number of dominating subsets over the items 1 ������ i.
Since the optimal knapsack filling is described by one of
the subsets in the list Sn, namely the subset with largest
weight not exceeding the capacity b, generating Sn solves
the knapsack problem. This yields the following lemma.

LEMMA 2.2. For every i ��� n � , let q
�
i � denote the number of

dominating sets over items 1 ������ i and assume E � q � i � 1 � � �
E � q � i � � . The Nemhauser/Ullman algorithm computes an
optimal knapsack filling in expected time O

�
∑n � 1

i � 1 E � q � i � � � �
O
�
n � E � q � n � � � .

In [2] it is shown that E � q � n � � � O
�
n3 � for uniformly

random instances. Hence, the expected running time for

these instances is O
�
n4 � . Furthermore, an analysis is

presented which allows adversarial weights and randomly
drawn profits that possibly follow different probability dis-
tributions.

LEMMA 2.3. Suppose profit pi is drawn according to a
continuous, nonnegative probability distribution with density
function fi : ��� 0 � ��� 0. Suppose µ � maxi � � n �

�
E � pi � � and

φ � maxi ��� n �
�
supx �	��
 0

�
fi
�
x ���� . Then there is a constant

c1 � ��� 0 such that the expected number of dominating sets
is E � q � � c1φµn4 � 1.

Combining the two lemmas, it follows that the ex-
pected running time of the Nemhauser/Ullmann algorithm
is O

�
φµn5 � . Observe that profits can be rescaled such that

µ � 1, unless there is an item whose expected profit is un-
bounded. The interesting parameter is the maximum den-
sity φ. The bound on the expected number of dominating
sets increases linearly with the maximum density. The same
holds for the expected running time. Saying it the other way
around, the less randomness is available, the larger the ex-
pected running time.

3 Algorithm FastCore 1: filtering dominated solutions

Our first algorithm has almost linear running time but fails
with a small probability. We use a static core consisting
of all items with loss at most d � cdN � 1 log3 N, for a suit-
able constant cd . In Figure 2a, core items correspond to
those items falling into the regions A or B. We use the
Nemhauser/Ullmann algorithm to generate all dominating
sets over the core items. The items in region C, i.e. items
outside the core and above the ray, are virtually added to
these sets. Among all dominating sets satisfying the capac-
ity bound the most profitable one is selected. If the profit
of this set differs from the profit of the optimal fractional
solution by at most d then we have a proof of optimality
and the algorithm outputs this set, otherwise the algorithm
outputs failure. The correctness of this algorithm follows
from the discussions in the previous sections. The algo-
rithm fails only if the chosen height of the core stripe is
smaller than the integrality gap, that is, if d  Γ. Notice,
that the algorithm might have nevertheless found the op-
timal solution but only the proof of optimality is missing.
From Lemma 2.1, it follows that the failure probability is
Pr � Γ � d � � 2 � cd logN � c0 � N � cd � c0 .

In the following probabilistic analysis, we will show
that the expected running time of our algorithm is
O
�
N polylogN � . This analysis is quite tricky and compli-

cated because of vast dependencies between different ran-
dom variables. The central ideas, however, are rather simple
and elegant. Thus, before going into the details, let us try to
give some intuition about the main ideas behind the analysis.
As the area covered by the core stripe is O

�
N � 1 log3 N � , the
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Figure 2: The core stripe consists of regions A and B which are defined by the Dantzig Ray. Items in region G have
insufficient variation in profit.

number of core items is only O
�
log3 N � , with high probabil-

ity. The running time of the Nemhauser/Ullmann algorithm
depends polynomially on the number of core items and is
linear in φ, i.e., the maximum density of the probability dis-
tributions for the profits of the core items. When calculat-
ing φ, we have to condition on the fact that these items have
weights and profits that fall into the core stripe. The height

of the core stripe is Θ
� log3 N

N � . Thus, intuitively, the profit
of a “typical” core item follows a uniform distribution over

an interval of length Θ
� log3 N

N � . More formally, we will show
that the conditional probability distributions for the profits of
almost all core items have density at most N. Hence, φ � N.
By Lemma 2.3, the expected number of dominating sets is
at most φpolylogN � N polylogN. Thus, by Lemma 2.2, the
running time can be upper-bounded by N polylogN as well.
Hence, interestingly, the linear term in the upper bound on
the running time is not due the number of core items but due
to the density of their profit distributions.

THEOREM 3.1. For uniformly random instances, algorithm
FastCore 1 computes an optimal solution with probability
at least 1 � N � cd � c0 . The expected running time of this
algorithm is O

�
NpolylogN � .

Proof. The bound on the failure probability follows from
previous discussions. It remains to prove the upper bound
on the expected running time. Let A and B denote the set
of points above and below the Dantzig ray r with vertical
distance at most d � cdN � 1 � log3 N from r, respectively.
In the following, we identify the ray with its slope, i.e.,
r � pκ � wκ with κ denoting the index of the break item.
Define

G � 
 � w � p � � A � rw � 1 � 1
N ��� 


�
w � p � � B � rw  1

N �
� 
 � w � p � � B � rw � d � 1 � 1

N � 

Define F � 
 � x � y � � � 2 : x ��� 0 � 1 ��� y � � 0 � 1
N ��� � 1 � 1

N � 1 � � .
Figure 2b depicts these regions. The motivation for these
definitions will become clear soon.

For a moment, let us assume that r and the number of
items in A and B as well as their individual weights are fixed
arbitrarily. Consider an item i with weight wi in region A.
The profit of this item corresponds to a point on the line
segment Li � 
 p � � 0 � 1 � :

�
p � wi � � A � . Observe that the

Dantzig ray depends on the weight wi of this item but not
on its profit. In particular, moving the point corresponding
to item i arbitrarily on the line segment Li does not affect
the position of the Dantzig ray. Under these assumptions,
the random variable pi is chosen uniformly from the interval
Li. The same holds for the items in region B. Observe
that the profit intervals for the items in

�
A � B ��� G have

length at least 1 � N, except for the break item that will be
handled separately. As a consequence, the density of the
profit distributions for these items is upper bounded by N.
Hence, applying Lemma 2.3 yields the following bound on
the expected number of dominating sets for these items. For
any given region R � � 2, let XR denote the number of items
in R and qR the number of dominating sets over these items.

LEMMA 3.1. E � q � A � B �	� G � X � A � B �
� G � j � � c1N j4 � 1, for
any j �� . �

Every additional item can increase the number of dom-
inating sets at most by a factor of two. For this reason, we
can assume that the break item is covered by the bound in
Lemma 3.1 as well. Furthermore, can apply this fact to
the items in G and obtain that the number of dominating
sets over the core items is qA � B � 2XG � q � A � B �
� G. The run-
ning time of the Nemhauser/Ullmann algorithm is roughly
E � qA � B � times the number of core items. In the following,
we will (implicitly) show that E � q � A � B �	� G � � N polylogN
and E � 2XG � � O

�
1 � . Unfortunately, however, the random



variables XG and q � A � B �	� G are not completely independent
as both of them depend on the position of the Dantzig ray.
The major difficulty in the remaining analysis is to formally
prove that this kind of dependence is insignificant.

We assume that the algorithm first computes the dom-
inating sets over the items in region

�
A � B � � G adding the

items in some order that is independent of the profits, e.g.,
in order of increasing weight. Afterwards, the items from
region G are added. Let T denote the running time of this
algorithm. Lemma 2.2 combined with Lemma 3.1 yields

E � T � XA � B � k � XG � g �
� c2 � � N � k � g � 4 � 1 � � k � g � � ��� N � k � g � 4 � 1 � 2g � � �

for every k � g � 0 and a suitable constant c2. Define
f
�
k � g � � c2N

�
k � g � 7 � 52g. Notice that f is defined in a

way such that it is monotonically increasing in g, for every
0 � g � k. Rewriting the above bound in terms of this
function, we obtain the following slightly weaker bound.

E � T � XA � B � k � XG � g � � f
�
k � g � 

Applying first G � A � B and then G �
�
A � B � � F combined

with the monotonicity property of f yields

E � T � �
∞

∑
k � 0

k

∑
g � 0

Pr �XA � B � k � XG � g � f
�
k � g �

�
∞

∑
k � 0

k

∑
g � 0

Pr � XA � B � k � X � A � B ��� F � g � f
�
k � g � 

Next replacing f
�
k � g � by c2N

�
k � g � 7 � 52g and rearranging

the sums yields

E � T � � c2N
∞

∑
g � 0

Pr � X � A � B ��� F � g � 2g

∞

∑
k � g

Pr � XA � B � k � X � A � B ��� F � g � � k � g � 7 � 5

� c2N
∞

∑
g � 0

Pr � X � A � B ��� F � g � 2g

∞

∑
k � 0

Pr � X � A � B �	� F � k � X � A � B ��� F � g � � k � 7 � 5 

Let us switch to a more compact notation and define X �
X � A � B �
� F and Y � X � A � B ��� F . This way,

E � T � � c2N
∞

∑
g � 0

Pr �Y � g � 2g
∞

∑
k � 0

Pr � X � k �Y � g � � k � 7 � 5 
(3.1)

In the following, we upper-bound the two probability terms
occuring in this bound one after the other. We start

by proving ∑∞
k � 0 Pr �X � k � Y � g � � k � 7 � 5 � O

�
polylogN � ,

for any choice of g � 0. Afterwards, we show that
∑∞

g � 0 Pr �Y � g � 2g � O
�
1 � . Hence, E � T � � O

�
polylogN � so

that the theorem follows.
First, let us study the term Pr � X � k � Y � g � . Observe,

the variables X and Y describe numbers of points in the dis-
joint regions

�
A � B � � F and

�
A � B � � F , respectively. If

these regions would be fixed, then these two variables would
be independent as points are generated by the Poisson dis-
tribution. Unfortunately, however, both regions are defined
by the Dantzig ray r and this ray somehow depends on the
points found in these regions. In fact, both of the consid-
ered regions are adjacent to r, and r has some tendency to
fall into a dense region. Therefore, we have to take into ac-
count the dependency of the variables X and Y on the random
variable r. We deal with this dependency by placing worst-
case assumptions on r. In particular, we assume an adver-
sary knowing all points in the unit square chooses the ray r
to be any ray through the origin instead of assuming that r
is the ray through the break item. The regions

�
A � B � � F

and
�
A � B � � F are now defined with respect to this adver-

sarial ray r. Let µ � 2dN. Observe that the value of E �X � is
roughly equal to µ.

LEMMA 3.2. For every adversarial choice of the ray r,

Pr �X � 2αµ � � N
�

eα � 1

αα � µ
, for every α � 1

Proof. The idea is to consider only a few essential posi-
tions of the ray r and to sum the probability over all these
positions. For this purpose, we define a set of overlap-
ping parallelograms Ri having the property that any given
core stripe A � B is completely covered by two of these par-
allelograms. The first l ��� 1 � � 2d �	� parallelograms cover
the right lower triangle of the unit square U. Parallelo-
gram Ri (i � 1 ������ l) is a quadrangle with corner coordinates�
0 � d � � � 0 ��� d � � � 1 � i2d � 2d � and

�
1 � i2d � . Another l parallel-

ograms cover the upper left triangle of the unit square U.
Parallelogram Rl � i (i � 1 ������ l) is a quadrangle with corner
coordinates

� � d � 0 � � � d � 0 � � � i2d � 1 � and
�
i2d � 2d � 1 � . Every

parallelogram covers an area of size 2d. It is easy to ver-
ify that this set of regions has the required property. Let
Xi denote the number of items in region Ri. Then E �Xi � �
area

�
U �

Ri � � N  2dN � µ. Using Chernoff bounds it holds
for all α � 1 and i ��� 2l � :

Pr � Xi � αµ � �



eα � 1

αα � µ



Hence, Pr � � i : Xi � αµ � � ∑2l
i � 1 Pr �Xi � αµ � � 2l

�
eα � 1

αα � µ

and so Pr � X � 2αµ � � 2l
�

eα � 1

αα � µ
� N

�
eα � 1

αα � µ
. �

The above tail bound on X holds for any adversarial choice
of a ray r. Consequently, when letting r denote the Dantzig



ray, the bound holds for any outcome of this ray as well.
Furthermore, it holds for any choice of the variable Y , too,
as the dependence between the variables X and Y is only
via the position of the Dantzig ray. As a consequence, for
every g � 0,

∞

∑
k � 0

Pr � X � k � Y � g � � k � 7 � 5

� Pr � X � 4µ � Y � g � � 4µ � 7 � 5� ∞

∑
α � 2

Pr � X � 2αµ � Y � g � � 2 � α � 1 � µ � 7 � 5

� �
4µ � 7 � 5 � ∞

∑
α � 2

N



eα � 1

αα � µ �
2
�
α � 1 � µ � 7 � 5 

Using µ � 2dN � 2cd log3 N yields

∞

∑
α � 2

N



eα � 1

αα � µ �
2
�
α � 1 � µ � 7 � 5

� µ5
∞

∑
α � 2

N



eα � 1

αα � 2cd log3 N 

2α � 2 � 7

µ � 5



For any fixed cd � 0, this term is bounded by O
�
µ5 � . Conse-

quently, there exists a constant c3 � 0, such that
∞

∑
k � 0

Pr �X � k � Y � g � � k � 7 � 5 � c3 log15 N 

Applying this upper bound to Equation 3.1 gives

E � T � � c2c3N log15 N � ∞

∑
g � 0

Pr �Y � g � 2g (3.2)

We further simplify.

∞

∑
g � 0

Pr �Y � g � 2g � E � 2Y � � E 
 2X � A � B � � F � � E � 2XF � 
(3.3)

The latter term can be bounded as follows.

LEMMA 3.3. E � 2XF � � e2.

Proof. The number of points in F is a Poisson random
variable whose mean corresponds to the area covered by
F times N because the number of points in the unit square
is a Poisson variable with mean N and points are placed
uniformly at random. Obviously, the area of F is 2 � N.
Hence, the number of points in F follows the Poisson
distribution with parameter 2. Consequently,

E � 2XF � � ∑
f � 0

Pr � X f � f � 2 f � ∑
f � 0

e � 2 � 2 f

f !
� 2 f

� e � 2 ∑
f � 0

4 f

f !
� e � 2e4 � e2 

�

Finally, combining Lemma 3.3 with the Equations 3.2 and
3.3 yields

E � T � � c2c3N log15 N E � 2XF � � c2c3e2N log15 N 
Thus Theorem 3.1 is shown. �
4 Algorithm FastCore 2: two lists of dominating sets

In order to obtain an algorithm that always computes an op-
timal solution, one can dynamically expand the core until
algorithm FastCore 1 is successful. A somewhat extreme
variant of this approach is to start with a core stripe that
immediately gives a high success probability, say 1 � N � 3,
and to use a single backup routine that computes all dom-
inating sets using the Nemhauser/Ullmann algorithm if the
core algorithm fails. The analysis in [2] shows that the ex-
pected running time for computing all dominating sets un-
der the uniform distribution is only O

�
N4 � . Thus, neglecting

dependencies, this approach promises an expected running
time of N � 3O

�
N4 � � O

�
N � for the backup routine. Let us

have a closer look at this approach. The running time is
mainly determined by the number of dominating sets. Let
qall, qin, and qout denote the number of dominating sets over
all items, over the items inside and over the items outside
the core stripe, respectively. Let E denote the event that the
core computation is successful. Then the expected number
of dominating sets is E � qin � � E � qall � � E � � Pr � � E � . The dif-
ficulty lies in estimating E � qall � � E � . Observe that the event

� E , by definition, is very unlikely. Thus the value of q all

might be extremely biased by � E , and, hence, the running
time of the Nemhauser/Ullmann algorithm conditioned on

� E might be much larger than O
�
N4 � .

In order to bypass the difficulties caused by dependen-
cies, we use a different approach utilizing two lists of domi-
nating sets. First, we compute a list with all dominating sets
over the items in the core. If this computation does not find
an optimal solution, we compute a second list with all dom-
inating sets over the items outside the core. Observe that
combining these lists to obtain all dominating sets yields a
combined list of maximum length qin � qout. This way the
expected number of dominating sets is upper-bounded by
E � qin �E � � Pr �E � � E � qin � qout � � E � � Pr � � E � . In the follow-
ing analysis, we will be able to give a good estimate for
E � qout � � E � as the random variable qout is only slightly bi-
ased by � E . Still this does not immediately solve the prob-
lem since the variable qin heavily depends on the event � E
so that we are not able to upper-bound E � qin � � E � appropri-
ately. Now the key observation is that we do not need to
compute all dominating sets but we only need to find the set
among them that is maximal with respect to the given ca-
pacity bound b. This, however, given the two sorted lists of
dominating sets can be done in time O

�
qin � qout � instead of

O
�
qin � qout � by scanning the two sorted lists as described by

Horowitz and Sahni in [10]. They use this technique to re-



duce the worst case running time of the Nemhauser/Ullmann
algorithm from O

�
2n � to O

�
2n � 2 � . We use their idea to deal

with the dependencies in our average-case analysis. Us-
ing this technique, the expected number of dominating sets
generated by our algorithm can be estimated by E � qin � �
E � qout � � E � . We have shown E � qin � � O

�
NpolylogN) in the

proof of Theorem 3.1. The following analysis mainly deals
with bounding E � qout � � E � .
THEOREM 4.1. Algorithm FastCore 2 always computes
an optimal solution. Its expected running time is
O
�
N polylogN � .

Proof. We begin the proof by specifying some details of the
algorithm that are missing in the description above. The
algorithm uses a fixed core stripe with d � 5c0

�
logN � 3 � N,

where c0 is the constant given in Lemma 2.1. Let us adopt
the notation from the previous section for the regions defined
by the core stripe as depicted in Figure 2. Let C and D denote
the regions above and below the core stripe, respectively. For
the purpose of a simple analysis, we add the region H (see
Figure 2c) to the core stripe. The analysis of the running time
of algorithm FastCore 1 for the items inside the core is not
affected by this change as we upper-bounded XG by XF and
F � G � H. Including H into the core stripe ensures that all
items in C � D follow a distribution with density at most N.

Let T , TA � B � H , and TC � D denote the running time of
algorithm FastCore 2, algorithm FastCore 1 applied to the
items in A � B � H, and the Nemhauser/Ullmann algorithm
applied to the items in C � D, respectively. Furthermore, let
E be the event that the core stripe was chosen sufficiently
large, i.e., the integrality gap is at most d. We account the
time for combining the two lists to the time needed for their
computation. This way,

E � T � � E � TA � B � H � � Pr � � E � � E � TC � D � � E �
The analysis of algorithm FastCore 1 yields E � TA � B � H � �
O
�
NpolylogN � . In the following, we will show

E � TC � D � � E � � NpolylogN
Pr � � E � �

which yields the theorem.
First, let us verify that every item in C � D follows a

distribution with density at most N. For a moment assume
that the Dantzig ray is fixed. Suppose an adversary specifies
the weight wi of an item i in region C (or analogously in
region D). Then the item can be moved up and down on the
line segment Li � 
 p � � 0 � 1 � : � p � wi � � C � without affecting
the event � E . The length of this line segment is at least
1
N as we added the region H to the core. Consequently,
independent of the outcome of � E , the profit of each item
follows a uniform distribution with density at most N. Thus
for all k �� ,

E � TC � D � � E � XC � D � k � � O
�
k5N � 

Let us switch to a more compact notation and define X �
XC � D. It remains to show

E 
 X5 � � E � � O



polylogN
Pr � � E � � 

Observe that Lemma 2.1 with d � 5c0
�
logN � 3 � N yields

Pr � � E � � 2 � 5logN � N � 5. Hence, it suffices to show that
E � X5 � � E � � O

�
max 
 N5 � Pr � � E � � 1 � � .

The idea is that the random variable X is very sharply
concentrated around its mean E � X �  N so that conditioning
on � E does not significantly change the expected value of X .
For every τ � 1,

E 
 X5 � � E � � ∞

∑
i � 1

Pr 
 X5 � i � � E �
� τ � ∞

∑
i � τ

Pr 
 X5 � i � � E � � τ � ∞

∑
i � τ

Pr � X5 � i �
Pr � � E � 

As X follows a Poisson distribution with mean at most N,
Pr � X5 �

�
2αN � 5 � � exp

� � 1
2 αN � , for every α � 1. Hence,

for i �
�
2N � 5, Pr � X5 � i � � exp ��� 1

4 i1 � 5 � . Now setting
τ � �

2N � 5 gives

E 
 X5 � � E � � �
2N � 5 � Pr � � E � � 1

∞

∑
i � τ

exp
�
� 1

4 i1 � 5 �
� �

2N � 5 � Pr � � E � � 1 O
�
1 � 

This completes the proof of Theorem 4.1. �
5 Correlated instances

Several experimental studies [7, 8, 14, 15] do not only
investigate uniformly random instances but also some other,
harder classes of random inputs, e.g., so-called “weakly
correlated” instances. We define δ-correlated instances,
0  δ � 1, a parameterized version of Weakly correlated
instances (the latter correspond to δ-correlated instances
with δ � 10%) as follows. All weights are randomly drawn
from � 0 � 1 � . Profits are set to a random perturbation of
the corresponding weight value, i.e., for all i � � n � , pi : �
wi � ri, where ri is a random variable uniformly distributed
in � � δ � 2 � δ � 2 � . This can be seen as choosing n points
independently at random from the quadrangle defined by
the points

�
0 � δ � 2 � � � 0 ��� δ � 2 � � � 1 � 1 � δ � 2 � � � 1 � 1 � δ � 2 � (see

Figure 3). For our analysis, we again assume that the value
of n is chosen according to the Poisson distribution with
parameter N, and b � βN, for some constant β � � 0 � 1

2 � .

5.1 Integrality gap for δ-correlated instances

In this section we prove an upper bound on the integrality
gap Γ for δ-correlated instances.

LEMMA 5.1. There is a constant c0 such that for every

1 � α � log4 N, Pr 
 Γ � c0α δ
N log2 N

δ � � 2 � α.
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Figure 3: For δ-correlated instances items are uniformly sampled from region Q. The right figure (magnified rectangle from
the left figure) shows an example for core stripes A and B with height d. Items in region G � F have insufficient randomness.

Proof. (sketch). We adapt the proof from Lueker [11] for
uniform instances. Please refer to [11] for details. In partic-
ular we compare the solution of an approximation algorithm
with the optimal fractional solution. The difference of the
objective values is an upper bound on the integrality gap.
The approximation works as follows. Define k : � log4

�
N � δ �

and ε � O
�
k4 � k � . Assume that items are ordered accord-

ing to non-decreasing profit-to-weight ratio. Starting with
the empty knapsack we insert items in this order until the
remaining knapsack capacity is about vk, where v is the ex-
pected weight of the next item (the average weight of points
in a region swept by the density ray when slightly rotating
it further). Let cap be the remaining capacity of the knap-
sack. We then repeatedly consider successive sets S1 � S2 ����
of about 2k items trying to find a subset S � Si with weight
in � cap � 2ε � cap� . The probability that we find such a subset
is at least 1

2 for every Si. This can be shown with the help of
the following lemma, which essentially shows that subsets of
random numbers lay exponentially dense.

LEMMA 5.2. (Lueker [11]) Let f be a piecewise continuous
density function with domain � � a � a � . Suppose f is bounded
and has mean 0 and variance 1. Let xk be a real sequence
with xk � o

� � k � . Suppose we draw 2k variables X1 ���� � X2k

according to f . Then, for large enough k, the probability
that there exists some k-item subset S ��� 2k � with ∑i � S Xi �
� xk � ε � xk � ε � is at least 1

2 , provided ε � 7k4 � k.

The profit-gap between the approximate and the optimal
fractional solution has two contributions: residual capacity
and cumulated loss of packed items. When the approxima-
tion algorithm find a suitable subset S, the residual capacity
of the knapsack is at most 2ε causing a loss in profit of at
most r2ε � O

� rδ
N � log N

δ � , where r � pκ � wκ is the slope of
the Dantzig ray. With high probability the slope r is upper-
bounded by a constant term depending on β. The cumulated
loss can be estimated by cap

�
r � rl � � k

�
r0 � rl � where l de-

notes the number of iterations performed by the algorithm
and r0 and rl are the slopes of the density ray before the
first and after the last iteration, respectively. In each iter-
ation the density ray advances O

�
δk � N � with high probabil-

ity. The accumulated loss of items in S � Sl is O
�
lδk2 � N � . In

each iteration the success probability is at least 1
2 , therefore

Pr � l � α � � 2 � α, for all α �� . �
5.2 Running time

We adapt algorithm FastCore 2 to the new situation by using
a smaller core stripe, that is, we set d � cd

δ
N log3 N

δ instead of
d � cdN � 1 log3 N. This way, we obtain the following result.

THEOREM 5.1. The expected running time of FastCore 2 on
δ-correlated instances is O

� N
δ polylog N

δ � .
Proof. (sketch). Let Q be the region from where we sample
the items (see Figure 3). The area of Q has size δ. Compared
to the uniform model, the concentration of items is larger by
factor 1 � δ. Choosing core height d � cd

δ
N log3 N

δ we expect
about 2cd log3 N

δ core items in contrast to 2cd log3 N for the
uniform case. Let A and B denote the core regions above and
below the Dantzig ray, respectively. Consider the case when
the slope of the Dantzig ray is larger than 1 (the other case is
similar). Define regions F and G with G � F (see Figure 3).

F � 
 � x � y � � Q : y � x � � d � δ � N � d � � �
G � 
 � w � p � � A � � w � rw � � F ��� 
 � w � p � � B � � w � rw � d � � F � 
For items in

�
A � B � � G the maximum density of the

profit distribution is N � δ. Therefore, for any j � � ,
E � q � A � B �	� G � X � A � B �	� G � j � � c1

�
N � δ � j4 � 1. Items in G

have larger densities, so we again pessimistically assume that
each of these items doubles the number of dominating sets.
We have chosen the size of F so that on average there is only
one item in F . This way our analysis, which accounts also
for items in G, applies here as well. �



DomF
DomF LossF

1 � δ Dom LossF 2-lists combo
2 0.34 0.07 – 0.02
4 1.01 0.16 – 0.04
8 2.88 0.32 0.01 0.07

16 7.47 0.77 0.01 0.13
32 17.83 2.54 0.02 0.27
64 41.28 6.83 0.02 0.54

128 109.31 16.92 0.04 1.23
256 – 36.13 0.06 3.05
512 – 86.51 0.11 8.42

1024 – 202.01 0.18 21.47

Table 1: Average running time (in seconds) for δ-correlated
instances of size n � 10000 without preprocessing. Each entry
gives the average over 1000 test instances. Columns 2–4 give
the numbers for three variants of our algorithm implementing a
specified subset of features: DomF = dominating-set filter; LossF =
Loss-filter; combo = knapsack solver by Pisinger. We fixed β � 0 � 4
for all experiments.

6 A few notes on experimental results

We implemented a core algorithm that combines the ideas
presented in this and other theoretical studies. Our im-
plementation uses the core concept from Goldberg and
Marchetti-Spaccamela considering only items in a stripe
around the Dantzig ray. In contrast to our theoretical analy-
sis, our experimental study uses a dynamically growing core.
This way the algorithm automatically finds the optimal core
size. The reason why we immediately switch to a dynam-
ically growing core is that any algorithm with a static core
cannot seriously compete with this dynamic approach. In
the theoretical analysis we only assumed a static, fixed size
core because a dynamically growing core introduces addi-
tional dependencies that we cannot analyze.

Our experimental study shows, if we combine all the
concepts presented in the preceding sections, then we ob-
tain an implementation that can outperform the best known
previous implementations. In particular, we apply the loss
filter from Goldberg and Marchetti-Spaccamela as well as
the dominance filter based on the Nemhauser/Ullmann algo-
rithm. In addition, we use two lists, which are finally merged
using the linear time algorithm of Horowitz and Sahni. Our
implementation beats the best previous implementation by
Pisinger (combo code with 64-bits integer arithmetic [7]) on
δ-correlated instances by several orders of magnitudes, but
only if we add all the features listed above. In fact, for
uniformly random instances the running time is dominated
by the time to find the optimal fractional solution and there
are no significant differences between different implementa-
tions. The experimental results for δ-correlated instances are

much more interesting. Table 1 presents first measurements
obtained on a Sun FireTM15K. As our theoretical results sug-
gest, the running time increases slightly super-linear in 1 � δ
for most of the implementations. The implementation us-
ing all the features shows even a slightly sub-linear behavior.
We want to point out that these experimental result are only
preliminary, and we plan to continue with a more thorough
study.
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