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ABSTRACT

Parameters of statistical distributions that are input to simu-
lations are typically not known with certainty. For existing
systems, or variations on existing systems, they are often
estimated from field data. Even if the mean of simulation
output were estimable exactly as a function of input pa-
rameters, there may still be uncertainty about the output
mean because inputs are not known precisely. This paper
considers the problem of deciding how to allocate resources
for additional data collection so that input uncertainty is
reduced in a way that effectively reduces uncertainty about
the output mean. The optimal solution to the problem in
full generality appears to be quite challenging. Here, we
simplify the problem with asymptotic approximations in
order provide closed-form sampling plans for additional
data collection activities. The ideas are illustrated with a
simulation of a critical care facility.

1 INTRODUCTION

Simulations of design proposals for nonexistent systems
can help a modeler evaluate the performance of the system
as a function of a range of design and statistical input
parameters. Simulations of existing systems, or variations
of existing systems, can similarly help modelers evaluate
design proposals and inform decisions to improve system
performance.

An advantage of a system that already exists is that
field data may be available to estimate statistical input
parameters. Statistical software is widely used to identify
an input distribution and parameter to describe demand;
processing times; failure and repair distributions; routing
probabilities; and other distributions that determine system
performance (Law and Kelton 2000).

However, input parameter estimates based on field data
are subject to random variation because the field data are
observations of random phenomena. Barton and Schruben
(1993, 2001) provide compelling examples that show how

ignoring input parameter uncertainty can significantly reduce
the coverage of confidence intervals for the mean.

The problem is easy to identify.
Simulations that use a single parameter estimate can

model the stochastic randomness for the given input param-
eters. But they do not model the uncertainty associated with
not knowing the right parameter (Kleijnen 1994). Cheng
and Holland (1997) use classical statistical techniques to
approximate the output uncertainty of the mean simulation
output as a function of the input uncertainty. An alternate
method is to account for uncertainty in input parameters
using a Bayesian model average, or BMA (Draper 1995).
Chick (2001) addresses implementation issues for the BMA
in simulation experiments of queuing systems. The idea
is to run multiple replications, with input parameters sam-
pled before replications to represent input uncertainty. Both
bootstrap sampling (Cheng and Holland 1997; Barton and
Schruben 2001) and Bayesian posterior distributions (Chick
2001) have been proposed for input sampling.

While the BMA and bootstrap sampling indicate how
to quantify structural uncertainty, they do not show how to
reduce input parameter uncertainty and its effect on estimates
of the mean system performance.

This article illustrates one way to allocate resources to
collect additional field data to reduce input uncertainty in
a way that optimally reduces uncertainty about the mean
system performance. We assume that there are several
sources of structural uncertainty, such as imprecisely known
demand and service rates. But uncertainty about parameters
can be reduced by collecting additional field data (such as
actual demand and service times).

We assume that additional field data can be collected to
better infer the input parameters, and the goal is to plan data
collection activities to reduce input uncertainty in a way that
effectively reduces output uncertainty. Here, uncertainty is
quantified as the variance of an unknown quantity. Our
approach uses asymptotic normality approximations for the
input parameter uncertainty, and the mean output perfor-
mance is estimated by a linear approximation. This may
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Figure 1: Fraction of patients routed through different units
of a critical care facility.

cause suboptimal performance if the actual mean system
response is highly nonlinear over the range of likely input
parameter values. However, the approach is very general
and can give guidance for data collection activities in a
variety of situations.

A critical care facility simulation illustrates the ideas.

2 EXAMPLE: CRITICAL CARE FACILITY

The critical care facility illustrated in Figure 1 was originally
studied by Schruben and Margolin (1978). Patients arrive
according to a Poisson process and are routed through
the system depending upon their specific health condition.
Stays in the intensive care (ICU), coronary care (CCU),
and intermediate care units are presumed to be lognormally
distributed.

Schruben and Margolin (1978) studied how to allocate
random number streams to reduce variability in response
surface parameter estimates. Their response model predicts
the expected number of patients per month E[Y ] that are
denied entry to the facility as a function of the number of
beds in the ICU, CCU, and intermediate care units. They
presume fixed point estimates for k = 6 input parameters,
one per source of randomness, to describe the patient ar-
rival process (Poisson arrivals, mean λ̂ = 3.3/day), ICU
stay duration (lognormal, mean 3.4 and standard deviation
3.5 days), intermediate ICU stay duration (lognormal, mean
15.0, standard deviation 7.0), intermediate CCU stay dura-
tion (lognormal, mean 17.0, standard deviation 3.0), CCU
stay duration (lognormal, mean 3.8, standard deviation 1.6),
and routing probabilities (multinomial, p̂1 = 0.2, p̂3 = 0.2,
p̂4 = 0.05). Some parameters are multivariate, and there
are a total of K = 1 + 4 ∗ 2 + 3 = 12 dimensions of
parameters.

The actual system parameters are not known with cer-
tainty, and the estimated system performance will be in
error if the actual parameter values differ from their point
estimates. Here we fix the number of beds in each of the
three units (14 in ICU, 5 in CCU, 16 in intermediate care),
and study how the expected number of patients per month

that are denied entry depends on the unknown parameters.
Parameter uncertainty is modeled by taking the above point
estimates, presuming that they are maximum likelihood
estimates (MLEs) based on data from 100 patients, then
using a Bayesian approach to model parameter uncertainty
described in Section 3.

Section 4 describes an asymptotic relationship between
the input parameter uncertainty and uncertainty in the mean
system performance. If the mean performance is a known
function of the input parameters, equations in Section 4.1
can be employed to suggest how many additional data points
should be collected for each source of randomness in a way
that efficiently reduces output uncertainty. In many cases,
including the simulation model here, the response function is
unknown and must be estimated. Section 4.2 uses Bayesian
metamodeling techniques to select a simple linear response
model for the system. The metamodel is then used as a
surrogate for the actual response model. Section 5 presents
numerical results for the critical care facility and specific
suggestions for further data collection.

3 ASYMPTOTIC APPROXIMATIONS FOR INPUT
UNCERTAINTY

There may be several sources of randomness in a system. The
critical care facility has six sources of randomness modeled
by the Poisson, lognormal, and multinomial distributions.

However, the specific values of the input parameters
are unknown. For instance, the number of arrivals per day
is Poisson, but λ is unknown. The value of the parameters
are inferred from prior information and from field data. We
presume that observations satisfy the standard independence
assumptions. As the number of observations increases,
uncertainty about the parameter’s value decreases.

The distributions used in the critical care facility simula-
tion satisfy asymptotic normality properties. The normality
is with respect to the mode of the posterior distribution
of the unknown parameter and the Bayesian observed in-
formation matrix. We exploit this property to approximate
the posterior distribution of each parameter. We further
use the expected information of additional observations to
approximate the posterior distributions if a few more data
points were collected.

A motivation for the asymptotic approximations is pre-
sented in Section 3.1. The formalism for the Poisson dis-
tribution is then presented in Section 3.2. The lognormal
is treated in Section 3.3. The multinomial distribution is
handled similarly, see (Chick and Ng 2001) for details.

3.1 Analogy to Output with Normal Distribution

One way to think about the approximations below for input
parameter uncertainty is by analogy with the confidence
interval (CI) size for the mean of output from terminating
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simulations. The result is a well-known approximation for
the number of additional replications required to obtain a
CI of a given size.

Suppose that simulation output y1, . . . , yn is observed
for a fixed set of inputs, with sample mean ȳn and sample
variance S2

n . Then the 100(1 − α)% CI for the mean is

ȳn ± tn−1,1−α/2

(
S2

n

n

)1/2

.

Law and Kelton (2000, Sec 9.4.1) present an approximate
expression for the number of additional replications m∗
required to achieve an absolute error of δ is

m∗ = min

{
m ≥ 0 : tn+m−1,1−α/2

(
S2

n

n + m

)1/2

≤ δ

}
.

For large n, tn+m−1,1−α/2 does not change much as a function
of m. The size of the CI essentially scaled by presuming
the variance shrinks from S2

n/n to

S2
n/(n + m). (1)

A Bayesian analog for this approximation is given to describe
input parameter uncertainty, where n represents the amount
of information (prior and data points) that is available, and
m is the number of additional observations to make for a
particular source of uncertainty.

3.2 Poisson Arrivals

Suppose that number of arrivals per day x1, . . . , xn have
a Poisson distribution with unknown mean λ, and that
observations are conditionally independent given λ. The
probability mass function (pmf) is

Pr(x1, . . . , xn | λ) =
n∏

i=1

e−λ λxi

xi ! .

A common choice of probability model for � = λ is a
gamma distribution Gamma (α, β) with probability density
function (pdf)

f (λ) = cλα−1e−βλ.

The usefulness of the gamma distribution for λ in large part
comes from the fact that a gamma prior distribution results
in a gamma posterior distribution for λ.

Suppose now that prior information and field data com-
bine to result in a Gamma (α, β) posterior distribution for

λ, with α > 1. The normal distribution Normal
(
λ̃, �

)
ap-

proximation to a Gamma (α, β) distribution (Bernardo and
Smith 1994) has a mean equal to the mode λ̃ = (α − 1)/β

of the distribution of λ, and a variance � that is the inverse
of the Bayesian analog of the observed information,

�−1 = −d2 log f (λ | x1, . . . , xn)

dλ2

∣∣∣∣
λ̃

= α − 1

λ̃2
= β2

α − 1
.

The variance, colloquially, is roughly 1/information. This
normal distribution approximation is better for larger values
of α. Here, α grows with the number of arrivals

∑n
i=1 xi ,

and β grows with n.
How would the distribution of λ change if m more ob-

servation are to be made? The expected value of information
of one more day of arrival information is

H(λ̃) = EX

(
−d2 log f (X | λ)

dλ2

) ∣∣∣∣
λ̃

= 1

λ̃
= β

α − 1
. (2)

The analog to the approximation in Equation 1 to assess
the effect of m additional observations is to change � to

(�−1 + mH(λ̃))−1 = (α − 1)/β

β + m
. (3)

To see the analogy with Equation 1, recall that β grows at
the same rate as n, and that the variance of observations
given λ̃ is (α − 1)/β.

Specific data for the arrival rate to the critical care
facility was not published. We therefore presumed a standard
noninformative prior distribution f (λ) ∝ λ−1/2 for the
arrival rate λ, and presumed that the point estimate λ̂ = 3.3
is an MLE based on 100 patient arrivals. This results in
α = 100.5, β = 30.3, λ̃ = 3.28, E[λ] = 3.32, �−1 = 9.23,
and H(λ̃) = 0.3045.

The data collection activities suggested below in Sec-
tion 5 are relatively insensitive to small perturbations in
these assumptions. For example, if there were 99 arrivals
in 30 days, then α = 99.5, β = 30, and the resulting
analysis and conclusions would be quite similar.

3.3 Lognormal Service Times

The process for Poisson arrivals can be adapted for lognormal
service times. The logarithm of a random variable X with
lognormal distribution has a normal distribution with mean
µ and precision τ = σ−2. The likelihood function is

f (x1, . . . , xn | µ, τ) =
n∏

i=1

τ 1/2

√
2π

e(log xi−µ)2τ/2.
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A common choice of probability model for an unknown
θ = (µ, τ) is the normal-gamma distribution (Bernardo and
Smith 1994). The normal-gamma distribution has parame-
ters µ0, s0, α0, β0,

f (µ, τ) = (s0τ)1/2

√
2π

e(µ−µ0)
2s0τ/2 · β0

α0

�(α0)
τα0−1e−β0τ .

If the prior for (µ, τ) is a normal-gamma distribution, then
the posterior distribution is also a normal-gamma distribu-
tion, with parameters µn, s0 + n, α0 + n/2, βn, where

µn =
(

s0µ0 +
n∑

i=1

log xi

) /
(s0 + n)

is a weighted mean of the logarithms of the observations,

ns2 =
n∑

i=1

(
log xi −

n∑
i=1

log xi/n

)2

and βn = β0 + ns2/2 + s0n(µ0 − ∑n
i=1 log xi/n)/(s0 + n).

The noninformative prior distribution f (µ, τ) ∝ τ−1

results in a normal-gamma posterior distribution with pa-
rameters µn = ∑n

i=1 log xi/n, sn = n, αn = (n − 1)/2,
and βn = ns2/2. The mode of the variance is then
σ 2

n = ns2/(n − 1), the usual estimator for the variance.
Suppose that the prior distribution and data combine

to give a normal-gamma distribution for θ = (µ, τ) with
parameters µn, sn, αn, βn. Then µ̃ = µn and τ̃ = (αn −
1)/βn. The Bayesian observed information matrix is

�−1 = −∂2 log f (θ | x1, . . . , xn)

∂θ2

∣∣∣∣
θ̃

=

 sn

αn−1
βn

0

0
(
αn − 1

2

) (
βn

αn−1

)2


 .

And the expected information from a single observation is

H(θ̃) = EX

(
−∂2 log f (X | θ)

∂θ2

) ∣∣∣∣
θ̃

=

 αn−1

βn
0

0 1
2

(
βn

αn−1

)2


 .

In this case, �−1 and H(θ̃) are not proportional, as �−1
11 =

nH(θ̃)11, but �−1
22 = (n − 2)H(θ̃)22.

Specific data for the four types of lognormal service
times at the critical care facility was not published. We
presumed the noninformative prior distribution, and that
the point estimates for the mean and standard deviation
published in Schruben and Margolin (1978) were MLEs

based on a total of 100 patients through the system (e.g., 75
observations at ICU, 55 observations at intermediate ICU).
We solved for the sufficient statistics that would lead to the
published MLEs. At ICU, for example, the estimated mean
of 3.4 = eµn+σ 2

n /2 and variance 3.5 = e2µn+σ 2
n (eσ 2

n − 1)

result in µn = 0.8625 and β2
n = 0.7195.

4 INPUT TO OUTPUT UNCERTAINTY

Chick (1997) proposed general ideas for a Bayesian frame-
work to relate simulation input parameters and output pa-
rameters. Here, we discuss some specific asymptotic ap-
proximations that extend that framework.

The mean simulation response E[Y | θ ] = g(θ) is a
function of k input distribution parameters θ = (θ1, . . . , θk),
where each θi is an input parameter (potentially multivariate).
The output of the r-th replication is denoted

Yr = g(θ) + σZr,

where σ is a standard deviation and Zr is sequence of i.i.d.
zero mean, unit variance, random variables. In general, σ

and the distribution of Zr may depend on θ .
The parameters used for the critical care facility are

the arrival rate θ1 = λ; the mean and precision of the
logarithms of the ICU service times θ2 = (µ2, τ2), with
τ2 = 1/σ 2

2 , similar parameters for the logarithms of the
intermediate ICU service times θ3 = (µ3, τ3), intermedi-
ate CCU service times θ4 = (µ4, τ4), and CCU service
times θ5 = (µ5, τ5); and finally the multinomial routing
probabilities θ6 = (p1, p3, p4).

4.1 Known Response Function

Suppose that the mean simulation response E[Y ] = g(θ)

were a known function of the parameters θ = (θ1, . . . , θk).
Assume for the moment that n observations are available
from each of the sources of randomness.

Informally, the posterior distribution of θ , given n ob-
servations, is asymptotically normal as the number of obser-
vations n increases, with mean θ̃n and variance/covariance
matrix �n, where �−1

n is the Bayesian analog of the ob-
served information matrix, as above in Section 3. Bernardo
and Smith (1994, Sec 5.3.2) provide a more formal statement
and technical conditions for the assertion to hold.

The distribution of θ induces a distribution on g(θ).
We approximate g(θ) in the neighborhood of θ̃ with a local
linear approximation. A linear transformation of normally
distributed random variables is also a normal random vari-
able. Let ∂g(θ̃n)/∂θi be the gradient of the response with
respect to the i-th input parameter, evaluated at θ̃n. That
gradient is a vector if θi is multivariate. Set

∇g(θ) = [∂g(θ)/∂θ1 . . . ∂g(θ)/∂θk] .
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If the distribution of θ is approximated as a Normal
(
θ̃ , �

)
distribution, and g(θ) is linear, then g(θ) is distributed

Normal
(
g(θ̃), ∇g(θ̃)�∇Tg(θ̃)

)
.

The number of observations for each of the k source
of randomness may differ, as may the number of additional
data points to collect. Suppose that ni is the equivalent
number of data points for source of randomness i, resulting
in information �i,ni

. A simple variation on the proposition
indicates that the (asymptotic) approximation to the output
variance as a function of the input uncertainty is

k∑
i=1

∂g(θ̃n)

∂θi

�i,ni

∂g(θ̃n)
T

∂θi

.

Further suppose that mi additional points are to be
collected for source of randomness i. Using the approxi-
mations of Section 3 for input parameter uncertainty, the
output variance after collecting additional information is
approximately

Vin =
k∑

i=1

∂g(θ̃n)

∂θi

(�−1
i,ni

+ miH(θ̃n))
−1 ∂g(θ̃n)

T

∂θi

. (4)

If each observed information matrix is proportional
to the corresponding expected information matrix (say,
niH(θ̃ni

) = �−1
i,ni

), then Equation 4 simplifies to

Vin =
k∑

i=1

∂g(θ̃n)

∂θi

H−1(θ̃ni
)

ni + mi

∂g(θ̃n)
T

∂θi

(5)

One formal optimization problem for reducing this
asymptotic approximation to output variance can be for-
mulated by assuming that sampling costs for source i is
linear in the number of samples, cimi , and solving:

min Vin (6)

s.t. mi ≥ 0 for i = 1, . . . , k∑
cimi = b,

where b is the sampling budget. Special features of the data
collection process can be handled by adding constraints. For
instance, if service times and routing decisions are collected
and reported together, then a constraint can be added to
require that the corresponding mis be equal.

Proposition 1. If Vin simplifies to Equation 5, and the
integer restriction is relaxed (let the mi be continuous), and

b is large, then the solution to Equation 6 is:

m∗
i = b + ∑k

=1 nc∑k
j=1

(
ξj cicj

ξi

)1/2 − ni (7)

where

ξi = ∂g(θ̃n)

∂θi

H−1(θ̃ni
)
∂g(θ̃n)

T

∂θi

.

Proof. See Chick and Ng (2001).

For small b, the nonnegativity constraints for the mi

need consideration. If Vin does not simplify to Equa-
tion 5, then the solution to Equation 6 can be computed
numerically. That optimization was implemented with a
spreadsheet solver for this paper.

If g(θ) is not linear, then the naive estimator of Eθ [g(θ)]
can be biased (further, the variance and expectation might
not exist!). While a Taylor series expansion correction can
correct for first order bias when the expectation exists, we
do not do so here. The current proposal seeks to reduce
output variance, but does not consider mean squared error.
When the variance does not exist, we reduce an asymptotic
approximation to the variance induced by a linear metamodel
for g(·) in the neighborhood of θ̃ .

4.2 Unknown Response Function

The response function g(θ) is not known for the critical
care facility simulation. This is typical of many simula-
tion projects. An approximation to the response function
is therefore needed. Since the asymptotic approximations
introduced above ‘hit their limit’ in some sense with linear
approximations, we only seek a reasonable linear approxi-
mation to g(θ) in the region around the most likely values
of the unknown parameters, θ̃n.

There are several approaches to approximating the gra-
dient near θ̃n. Any might be appropriate.

Here we use a Bayesian model average to identify a
reasonable response surface metamodel, using the general
approach of Raftery, Madigan, and Hoeting (1997). Namely,
we consider 2K candidate linear metamodels, if there are
K dimensions of parameters. Each metamodel contains
an intercept term, but is distinguished by the presence
or absence of a linear coefficient for each dimension of
the parameter. For the critical care facility, the k = 6
parameters have a total of K = 12 dimensions. This results
in 212 = 4096 linear response metamodels of the form:

Y = β0 + σZ

Y = β0 + β1λ + σZ
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Table 1: The five most likely response models. A 1 indicates the presence of a regressor in the linear model, a 0
indicates absence. ‘Post’ is the posterior probability of the model given the data. The most likely linear metamodel is
Y = β0 + β1λ + β4µ3 + β5τ3 + β6µ4 + β10p1 + β11p3 + β12p4 + σZ.

λ µ2 τ2 µ3 τ3 µ4 τ4 µ5 τ5 p1 p3 p4 Post
1 0 0 1 1 1 0 0 0 1 1 1 0.692
1 1 0 1 1 1 0 0 0 1 1 1 0.069
1 0 0 1 1 1 0 1 0 1 1 1 0.059
1 0 0 1 1 0 0 0 0 1 1 1 0.037
1 0 0 1 1 1 0 0 1 1 1 1 0.027

Y = β0 + β2µ2 + σZ

Y = β0 + β3τ2 + σZ

...

Y = β0 + β1λ + β2µ2 + . . . + β12p4 + σZ

The Z are presumed to be standard normal random variables.
Here we use the same formulation for prior probability

distributions for the unknown metamodel form and vector
of βs that were used by Raftery, Madigan, and Hoeting
(1997). Each metamodel is given prior probability of 2−K ,
and the probability for the vector of βs, given the meta-
model, is chosen to be proper yet relatively noninformative.
See Raftery, Madigan, and Hoeting (1997) for further de-
tails, an argument for the reasonableness of the approach,
and numerical experiments that show good performance in
some sense. Chick (2000) used the same approach for in-
ferring the response surface of an M/M/1 queue, with some
numerical evidence that shows that the correct response can
be identified even though the homoscedasticity assumption
is violated.

Simulation replications with input/output realizations
(θ r , yr ) are used to infer the marginal probability that a
given metamodel is best and to estimate the βs. We sample
the θ r from the Bayesian posterior distributions (given field
data) determined above in Section 3. This focuses attention
to the likely values of θ .

The overall output variance consists of input uncertainty
terms (like Vin) that decrease with the amount of field data,
and uncertainty about the βs and σ decreases with the
number of replications.

5 ANALYSIS: CRITICAL CARE UNIT

We use simulation to estimate how input parameter un-
certainty results in uncertainty about the mean number of
patients per month that are denied entry to the critical care
unit described in Section 2. Input parameter uncertainty is
approximated as in Section 3. We then used the Bayesian
model average (Draper 1995; Chick 2001) to sample 32

independent sets of input parameters for the critical care
simulation. For each input parameter, we ran 4 independent
replications of the critical care unit, for a total of r = 128
replications. Each replication simulated 50 months of op-
eration (after a 10 month warm-up period).

The input-output combinations were then used to select
a linear metamodel to represent the local behavior of the
mean response in the area of the most likely parameter
values, as described in Section 4. The posterior probability
for each of the 212 metamodels was computed, and the most
likely five response metamodels are listed in Table 1. The
column ‘Post’ gives the posterior probability for the given
metamodel. The top 5 metamodels accounted for 88.4%
of the probability. The presence of a 1 under each input
parameter indicates that a linear factor with that parameter
is included in the model. A 0 indicates that the factor
is less important than stochastic noise. The most likely
linear model, based on the observed output, is Y = β0 +
β1λ+β4µ3 +β5τ3 +β6µ4 +β10p1 +β11p3 +β12p4 +σZ,
where σ is the standard deviation for the random noise
in the output. Point estimates (posterior modes) of the
βs are β̃1 = 28.97, β̃4 = 29.5, β̃5 = −0.63, β̃6 = 11.8,
β̃10 = −56.2, β̃11 = −10.5, β̃12 = −46.72, and σ̃ = 1.6.
We set β̃i = 0 for all ‘unimportant’ βi . Estimates of Vin

presumed that the response function is this most likely
metamodel, and that gradients were given by the β̃i .

The approximation to uncertainty about the mean per-
formance that is due to input uncertainty is

√
Vin = 10.0.

Uncertainty about the mean performance due to stochastic
variation in simulations is about σ̂ /

√
r = 0.14, or approx-

imately
√

Vin/70. For this study, then, input uncertainty
results in a much greater uncertainty about the performance
of the system than stochastic uncertainty associated with
random outcomes in the simulation. We do not report un-
certainty in the output mean due to uncertainty about the
βs.

The most likely model indicates that the parameters
for the arrival rate, the intermediate ICU, the intermediate
CCU, and the routing probabilities are the most important,
in terms of influence on the output uncertainty. We then
used the asymptotic approximations in Section 3 to identify
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Table 2: Asymptotic approximation for the reduction in
output uncertainty Vin due to input uncertainty, as a function
of the number of observations b that can be collected. Also
shown for each b is the optimal number n1 of days of
arrival data, n3 intermediate ICU times, n4 intermediate
CCU times, and n6 routing decisions.

Budget, b n1 n3 n4 n6 Vin

0 0 0 0 0 100.0
100 100 0 0 0 30.3
400 313 37 0 50 13.9

1000 661 131 9 199 7.0

how many additional data points should be collected in
those areas, as a function of the sampling budget b.

Table 2 describes how many data points in each of those
areas should be collected. The table assumes that a total of
b data points can be collected, and that the collection cost
for each area is the same (ci = 1 for i = 1, . . . , k). Clearly
the most important area for additional data collection, based
on this analysis, is the arrival rate. The routing probabilities
also appear to be relatively important as well.

6 CONCLUSIONS

Input distribution selection and output analysis are often
treated separately in discrete-event simulation education
and practice. Sensitivity and uncertainty analysis are areas
where the two topics meet. The premise of this paper is
that input uncertainty results in uncertainty about the mean
performance of a system, and that additional data collection
activities can be a mechanism for reducing input uncertainty.
This in turn reduces output uncertainty. Analytical solu-
tions to the problem of identifying optimal data collection
plans for arbitrary stochastic systems seems to be a difficult
problem. The approach in this paper is to use asymptotic
approximations for uncertainty, and to estimate gradient in-
formation, in order to provide allocations of resources for
additional data collection.

An advantage of this approach is its apparent broad
generality. This paper dealt with the Poisson, lognormal
and multinomial distributions, but the same idea seems to be
generalizable to other members of the regular exponential
family of distributions. The mean response is estimated
from simulation output when it is not known. We used a
specific Bayesian technique to estimate the gradient, but in
principal any technique for estimating the gradient can be
used.

There are several considerations, however, that warrant
further exploration. A more formal mathematical formula-
tion for the regular exponential family should be given. The
sensitivity of the data collection allocation to the gradient

estimation scheme should be evaluated. Linear approxima-
tions to the mean of nonlinear functions of input parameters
may result in bias, particularly when the number of observed
data points is small.

We note that some expectations, much less the variance,
might not exist when independent conjugate prior distribu-
tions are used (see the M/M/1 example in Chick 2001).
However, the nonexistence of some of those moments may
be avoided by modifying the model to better reflect reality
(assume capacitated queues, run transient rather than steady
state simulations) . The asymptotic approximation might
not reflect the actual distribution well when there are few
observations. And in some situations, Bayesian representa-
tions of input uncertainty are based on expert opinion and
have no obvious sampling mechanism for further inference.

Nonetheless, the formulas in this paper present an im-
plementable mechanism for guiding data collection plans
to reduce input uncertainty in a way that in some sense
effectively reduces output uncertainty.
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