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ABSTRACT

The field of property testing studies algorithms that distin
guish, using a small number of queries, between inputs which
satisfy a given property, and those that are ‘far’ from $gtis
ing the property. Testing properties that are defined in serm
of monotonicity has been extensively investigated, prilpar

in the context of the monotonicity of a sequence of integers,
or the monotonicity of a function over thedimensional hy-
percube{l,... ,;m}". These works resulted in monotonicity
testers whose query complexity is at most polylogarithmic i
the size of the domain.

We show that in its most general setting, testing that Boolea
functions are close to monotone is equivalent, with resfmect
the number of required queries, to several other testing-pro
lems in logic and graph theory. These problems include: test
ing that a Boolean assignment of variables is close to an as-
sighment that satisfies a specttiNF formula, testing that a
set of vertices is close to one that is a vertex cover of a peci
graph, and testing that a set of vertices is close to a clique.

We then investigate the query complexity of monotonicity
testing of both Boolean and integer functions over genexal p
tial orders. We give algorithms and lower bounds for the gen-
eral problem, as well as for some interesting special cdees.
proving a general lower bound, we construct graphs with com-
binatorial properties that may be of independent interest.
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1. INTRODUCTION

Property testing [24, 15] deals with a relaxation of decisio
problems where one is to determine whether an input satisfies
a particular property or is far from satisfying it. This has r
cently become quite an active research area; see [23, 12] for
surveys on the topic.

Monotonicity is a natural property of functions on posets.
Given a posef? = (V,<p) and a linear ordeL, a function
f : V. — Lismonotongf f(u) < f(v) forall u,v € V
with v <p wu. A function f is e-closeto monotone if we
can makef monotone by changing its value on at mostsan
fraction of the domain. Along with linearity and low-degree
testing, monotonicity is one of the more studied propeiities
the context of property testing (see [10, 16, 8, 4, 2, 14,.11])

Virtually all previous works deal with posef3 that happen
to be hypercubes of different sizes and dimensions, and pro-
vide 1-sided error testers whose complexity is at most poly-
logarithmic in the size of the domain. For the case where
is the linear order of siz&v, and L is large enough, there is
an optimal testing algorithm which usé¥log N) time and
queries [10]. The case wheR is then-dimensional hyper-
cube[M]|*, M = {1,...,m}, whereu = (u1,...,un) <
v = (v1,...,0s) if u; < v; for everyi, was first studied
and shown to have monotonicity testers with query complexit
é(§m2|L|) by [16]. The most efficient known tester for this
case has complexit®)( 2 (log m)(log |L|)) [8]. For Boolean
functions, this complexity can be made independent.¢8].

Very little was known regarding lower bounds for mono-
tonicity testing. For the case wher@ is the linear order of
size N, the lower bound in [11] which shows that the algo-
rithm of [10] is tight gives the only previously known non-
constant lower bound for any monotonicity testing problem.
In particular, no nonconstant lower bound was known for any
poset wherL, = {0, 1}, namely, for Boolean functions. The
lower bound question for the case of the Boolean hypercube,
as well as for general posets, remained unresolved.

Our Results. The main objective of this work is a systematic



study of the query complexity of monotonicity testing on gen  ranges, this applies to posets with a linear number of compar
eral posets. Our results fall into three categories: recdnst ble element pairs. We also prove that for posets derived from
between testing monotonicity and other testing problems, a graphs with bounded separators, monotonicity testingrod-fu
gorithms for testing monotonicity and lower bounds. tions with arbitrary ranges requires only a logarithmic twem

We begin by showing that monotonicity testing of Boolean of queries.

functions over general posets_ IS _equwalent to _the_follg{vm Organization. Section 2 introduces basic definitions and gen-
thrge testing problems. Th.e first 1S that of testing if a 9VeN  eral tools. Section 3 shows the equivalence to testing 2;CNF
assignment to Boolean variables is close to one that satisfie | artay cover and clique. Section 4 provides the test for gen-
afflxed_ Z'CNF f"ffm‘é'a- Thi _seccl)nd is that of testing if a set eral posets. Section 5 prepares the tools for the lower bound
of vertices (in a fixed) graph is close to a vertex cover. Here ¢, yeneral posets, while the specific constructions arergiv
closeness captures the number of vertices that need to bd add in Section 6. Section 7 presents the lower bounds for mono-

t(; make thfe set |ntfo a vertex colver. The tr|1.|rd prollaqlem 'i that y5nicity testing over the hypercube. Finally, Section Sta@rs
of testing If a set of vertices Is close to a clique, where@los g iiang algorithms for several special classes of posets.
ness refers to the number of vertices that need to be removed t

make the setinto a clique. These reductions provide additio
motivation for studying monotonicity over general posets. 2. PRELIMINARIES

We next present an algorithm with 8/ N/e) query com-
plexity for testing monotonicity over general posets wittel-
ements, addressing an open problem posed by [8, 22]. This, in
turn, yieldsO(+/N/¢) query tests for all the above equivalent
properties.

We then show that no non-adaptive test which makes only a
polylogarithmic number of queries exists. Our main hardnes

result is a lower bound oV @&tz ) queries for general
Boolean non-adaptive monotonicity testing. This implies a
adaptive lower bound d( 26X, This addresses the open
. . g log N. .

problem raised in [8, 22], for which no previous lower bound
was known. It also shows that for the above equivalent prop-
erties, monotonicity testing is the ‘essential difficulttha

To achieve our lower bound, we show that there is a graph

Property testing. A property is a collection of functions with
a fixed domainl” and a fixed rangd.. Thedistancebetween
functions f and f’, denoted bydist(f, '), is the number of
domain elements on which they differ. The distadi€ (£, P)
of afunctionf to a propertyP ismin s ¢ p dist(f, f'). Itsrel-
ative distanceo P is its distance tdP divided by the size of
the domain. A function is-far from P if its relative distance
toP is at leask.

A property is(e, g)-testableif there is a randomized algo-
rithm that for every input functiorf queries the values of
on at mosy points of the domain, and with probability at least
% distinguishes between the case tffidtas the property and
the case thaf is e-far from the property. The algorithm is
loa 1/c referred to as afke, g)-testor simply ane-test An algorithm
with N vertices that can be partitioned ind6™(estos N in- is non-adaptivef its queries do not depend on the answers to
duced matchings of sizeV. The latter result is of indepen-  previous queries. An algorithm hdssided errorif it always
dent interest: graphs with a similar property were constdic  accepts an input that has the property.
by Ruzsa and Szemerédi [25] to provide a lower bound for a
Turan-like theorem. Recently they have been used by kHasta
and Wigderson [18] for constructing better linearity tésho-
tivated by conjectures in graph theory, Meshulam [21] con-
structed similar graphs with different parameters. Our ap-
proach is different from all of the above.

We also present lower bounds for non-adaptive monotonic-
ity tests over the (Boolean)-dimensional hypercube. We
prove anQ(,/n) lower bound for 1-sided error algorithms,
and anQ(logn) lower bound for 2-sided error algorithms.
These results imply the corresponding adaptive lower beund
of Q(log n) andQ(log log n), respectively. These are the first
nontrivial lower bounds for the Boolean hypercube, for bbth

sided and 2-sided error algorithms, answering the oper-ques responds to monotonicity of functions on posets. We often

t|on§ raised by the vyorks (.)f [16, 8, 22]. consider a special case of monotonicity restricted to Baole
Finally, the q_u_estlon arises as to what other posets can befunctions or labelings (namely, with = {0, 1}), which we

tested more efficiently tha}n the general lower bound. We s.how call Boolean monotonicity.

that functions over certain types of posets have tests with a o ) N

number of queries that is independent of the size of the poset Handy lemmas for monotonicity testing. A transitive clo-

For Boolean functions, this includes posets whose Hasse di- Sure of a graplz = (V, E), denoted byI'C (G), is a graph

agrams are trees, posets having constant size antichais, a (V> E') where(v, v;) isin E' if there is a directed path from

what we call ‘top-parallel’ posets. For functions with arary v1 towz in G. Observe that two graphs with the same transitive

closure give rise to the same monotonicity propeniync.

1 H H ,
Substituting the graphs we construct for the graphs of Ruzs LEMMA 1. Let f be a labeling for a graptG(V, E). If

and Szemeredi in [18] yields a family of linearity tests.€Eb . . - Pl
tests are incomparable to these of Hastad and Wigdersen, th f IS monotone on an induced subgragh = (V ) of
could be better or worse depending on the distance of the TC (G), thenf’s distance to monotone is at mg$t — V'|.

tested function to the closest linear function.

Monotone functions and graph labelings.Let G = (V, E)

be a directed graph. Let : V — L be a labeling oft”
with members of a linear orddr. Thenf is monotoneonG if
f(vi) < f(v;) for all (vs,v;) € E. The monotonicity prop-
erty, denoted bynong, is the set of monotone labelings Gf

If there is a directed path fromy to v; in G, we say thav; is
beloww; (orv; is abovew;) and denote it by; < v; (which

is not an order relation in general). Every such pair of cesi
of G imposes a constraint(v;) < f(v;). A pair of vertices
(vi,v;) is violatedif v; <g v; and f(v;) > f(v;). Ver-
ticesv; andv; areequivalentn G if v; <g v; andv; <g v;,
namely, if both are in the same strongly connected component

Note that monotonicity of labelings of acyclic graphs cor-




PROOF Assuming thatf is monotone on an induced sub-
graphG’' = (V', E') of TC (G), we makef monotone on
TC (G) by relabeling only vertices it — V.

Indeed, fixi”’ and letf|y be the partial labeling ol that
is monotone oi&’ (V', E'). We extendf|y to V for one ver-

texv € V — V' at a time, always keeping the partial labeling
monotone on the induced current graph. We now show how to

extend the domain of by one vertex. Leb € V — V' be a
‘minimal’ element inV — V' (namely,v is unreachable from
any other vertexw € V — V' that is not equivalent to it). Let
T = {u € V'|u <¢ v}. We extendf to V U {v} by letting
f(v) bemaxyer{f(u)} if T # @ and the minimum value in
the range otherwise. By transitivity, sinfevas monotone on
V', the extended is monotone o/ U {v}. u

COROLLARY 2. Let f be alabeling ofG = (V, E). Then

dist(f, mong) is equal to the minimum vertex cover of the

graph of violated edges &C (G).

A matchingin a graph is a collection of edges that share
no common vertex. The next two lemmas relate a function’s
distance to monotone to the number of edges it violates in the

transitive closure of the graph. The first of them followsnfro

Corollary 2 and the fact that the size of a maximum matching

is at least 1/2 of the size of a minimum vertex cover.

LEMMA 3 ([8]). Let f be a labeling which ig-far from
monotone on a grapl# with N nodes. Thefl'C (G) has a
matching of violated edges of siz&//2.

LEMMA 4. Letf be a Boolean labeling which ésfar from
monotone over a grap& with V nodes. The'C (G) has a
matching of violated edges of siz&y.

PROOF. LetP' be aposet of vertices i with partial order
defined byv < w if (v,u) is a violated pair inG. LetA C V
be a maximal antichain i®'. Certainly, f is monotone on
the subgraph of'C (G) induced byA, as A contains no vio-
lated pairs. Then by Lemma &;st(f, mong) < |V| — |A|.
By Dilworth’s theorem [7]|A] is equal to the minimum num-
ber of disjoint chains that covel?’. However, a chain iP’
consists of at most two vertices &s,u) and (u, w) cannot
be both violated by a Boolean function. Hence, to cq¥ér
elements, at leag¥’| — | A| out of |A| chains have to be of
length exactly two (otherwise, less thn| elements are cov-
ered). This collection of at leapt’| — |A| > dist(f, mong)
disjoint chains of size two is a matching of violated pairsm

Reduction from monotonicity on general graphs to mono-
tonicity on bipartite graphs. We now prove that testing mono-
tonicity on arbitrary graphs is equivalent to testing mama-

ity on bipartite DAG's (which naturally correspond to paget

Definition 1. For each directed gragh = ({v1,...,vn}, E),
let B¢ be the bipartite grapt{vs, ..., vn }, {v1,...,vx }; EB)
whereEp = {(vi,v})| v; is reachable from v; in E}. For
each labelingf of G, define the corresponding labelirfg of
Bg by fs(vi) = fB(vi) = f(vi).

Note thatB¢ is a transitively closed DAG witBN vertices
and the same number of edgeskG (G).

CLAIM 5. Let f be a labeling on a grapl&. Then
dist(f,mong) < dist(fs, mongg).

PROOF. The proof is straightforward, and we omitit. m

In factdist(f,mong) = dist(fs, mongs,). We postpone
the proof of this stronger claim to the full version of the pap

THEOREM 6. If mong, is (§,g)-testable for a graptG
thenmong is (g, g)-testable. The reduction preserves 1-sided
error: a 1-sided test fornon s, gives a 1-sided test fenonc.

PROOF Let f be a labeling ofG and letBg be the asso-
ciated graph with labelings as defined above. By Claim 5,
dist(f,mong) = dist(fs, mong). If f ise-far from mono-
tone onG then fg is /2-far from monotone oB¢ because
B¢ has twice as many nodes. A test f6ron input f can
simulate a test foB¢ on input fg, asking at most the same
number of queries. [

3. EQUIVALENCE OF BOOLEAN MONO-
TONICITY AND OTHER PROBLEMS

Testing 2-CNF assignments is equivalent to testing Boolean
monotonicity. Recall that a Boolean formula is in conjunc-
tive normal form (CNF) if it consists of clauses joined hgy,
where every clause is an of literals. (A literal is a Boolean
variable or a negated Boolean variable.) If all clauses have
two literals, the formula is a 2-CNF. Let be a 2-CNF for-
mula with variablesX1, ..., Xy, andf : {X1,..., Xy} —
{0, 1} be an assignment to its variables. The propStyl’(¢)

is the set of satisfying assignments @af We show that the
testability question af AT'(¢) for a 2-CNF formulap is equiv-
alent to the testability of Boolean monotonicity on digraph

THEOREM 7. For every graphG with NV vertices, there
is a corresponding 2-CNRkp¢ on N variables such that if
SAT (éc) is (g, q)-testable themnong is also(e, g)-testable
for Boolean labelings. The reduction preserves 1-sidedrerr

PROOF LetG = (V, E) be a digraph. With each € V
associate a Boolean variabtg. Define the 2-CNF formula
¢c on the set of variableX = {z,| v € V'} as follows: for
each edgéu, v) € E, form the claus¢z, V z,). A Boolean
labelingf onV (G) defines an assignmefion X by f(z,) =
f(v). Clearly,dist(f, mong) = dist(f, SAT(¢c)). Thus,
atest forSAT (4¢) can be used as a test forong. L]

THEOREM 8. For every 2-CNF¢ on N variables, there
is a corresponding grapl&@, with 2V vertices such that if
mong, is (¢/2, q)-testable for Boolean labelings théA T (¢)
is (g, g)-testable. The reduction preserves 1-sided error.

PROOF Let ¢ be a satisfiable 2-CNF formula on a s€t
of N variables. (If¢ is unsatisfiable, it has a trivial test that
rejects all assignments). With each Boolean variable X,



associate two vertices, andvz that represent literals corre-
sponding tar. We use the convention, = 7z andvz = 7.
Define themplication graph G4, on the set of the correspond-
ing 2N vertices, as follows: for each claus® y, wherex and
y are literals, add edgg®,, v.) and(vz, vy ). For any edge
(u,v) call edge(w, ) its dual edge. Note that dual edges ap-
pear in the implication graph in pairs, with the exception of
edges of the fornfu, @), which are dual to themselves.

Let f : X — {0,1} be an assignment t$. Define the
associated Boolean labelirfg: of G4 by fa(v.) = f(z) for
all literalsz. If f satisfiesp, the corresponding labelinfy; is
monotone orG . It remains to prove thakist(f, SAT (¢)) <
dist(fa, mong, ). To show this we transforrfiinto a satisfy-
ing assignment fop by changing at mosfist(fa, mong,)
variable assignments. To this end, a Boolean labeling of an
implication graph is callechegation-complianif v, and v,
have different labels for all literals. Note that every negation-
compliant labeling o7, has a corresponding assignmenpto
Furthermore, iff is monotone and negation-compliant (]
then the corresponding assignmehnfor ¢, given by f(z) =
f(vx) for every literalz, is a satisfying assignment fer.

Note that for every literat, v, andv, are never in the same
strongly connected component becayss satisfiable. Also,
if v, is equivalent ta, in G thenz; is equivalent t@,.

The following algorithm transformgc into a nearby mono-
tone, negation-compliant labeling.

1. Convertfa to a nearest monotone assignmefat on
Gy. (fa is not necessarily negation-compliant.)

2. While Gy has nodes, with fg(vs) = fa(vz) = 0 :
Find a maximatiz (with respect th¢) among those
with fg(ve) = fa(vz) = 0. Changefa(v.) to 1 for
all v, that are equivalent to, (includingv, itself).

3. While G, has nodes, with fe(v.) = fe(@z) = 1:
Find a minimalwv, among those withfg(v,) =
fo(vz) = 1. Changefg (v.) to 0 for allv, that are
equivalent taw, (includingwv, itself).

First, we show that the resulting labelirfg: is monotone
onGy. Indeed,f is monotone after step 1. Since it is mono-
tone, nodes in the same strongly connected component (i.e.
equivalent nodes with respect @;) have the same labels.
Hence, after each change in step 2, equivalent nodes stdl ha
the same labels. Suppoge is monotone ol before some it-

eration of step 2 and is not monotone after it. Then some edge

(vz, vy ) is violated by changing (v, to 1. Thenfg(vy) = 0
both before and after this iteration, anglis not equivalent to
Ug. Sincevy >g vg, it must be tha@fg(m) = 1 (otherwise,
vy would have changed beforg). But then the dual edge
(vy,7s) is violated before the iteration, giving a contradiction.

Similarly, if f& is monotone orG before some iteration of
step 3 then it is monotone after it. _

Secondly, the resulting labelinfz is_negation-compliant
because step 2 relabels all nodgswith f(v.) = f(vz) =0,
and step 3 relabels all nodes wiftw,) = f(77) = 1.

Finally, let f be the assignment t& with f(z) = fa(v.)
for every literale € X. By the remarks abovgz,is a satisfying
assignment fog. It is not hard to show thadist(f, f) <
dist(fg,monc¢). ™

Other testing problems equivalent to 2-CNF testing. Re-

call that amonotoneCNF is a CNF with only positive literals.
We prove that testing 2CNF is equivalent to testing monotone
2CNF. Since we have shown that 2-CNF testing is equivalent
to testing Boolean monotonicity over general graphs, wrkch
equivalent to testing Boolean monotonicity on special lafid
bipartite graphs, it is enough to prove the following theore

THEOREM 9. LetG = (X, Y; E) be a bipartite digraph
with all edges directed frofX toY and|X| = |Y| = N. For
eachG there is a corresponding monotone 2-CME on N
variables s.t. ifSAT(4¢q) is (g, g)-testable then monotonicity
of Boolean functions ove¥ is also(e, g)-testable.

PROOF Associate a variable, with every nodey in X U
Y. Each nodey in Y is represented by, , while each node:
in X is represented by,. Define a Boolean formulaég on
the set of variableg = {z,| v € X UY} as follows: form a
clausg(z, V z,) for each edgéz, y € E). A Boolean labeling
f of G defines an assignmeffitfor Z by f(z,) = 1 — f(z)
if z € X andf(z,) = f(y) if y € Y. Then an edgéz, y) is
violated if and only if the corresponding claugg V z,) is un-
satisfied. Thereforejist(f,mong) = dist(f, SAT (¢c)),
and each test fapi can be used as a test fiong. n

Let U = (V, E) be an undirected graph. For&a C V,
let fs : V. — {0,1} be a characteristic function o, i.e.
flv) = 1ifand only ifv € S. A vertex coverof U is a
subset of the vertices where every edgd/ofouches one of
those vertices. Aliquein U is a subset of the vertices that
induces a complete graph 0. The propertyV’ C(U) is the
set of all characteristic functionfs such thatS is a vertex
cover of U. Similarly, the propertyCLIQU E(U) is the set
of all characteristic functiongs such thatS is clique ofU.

THEOREM 10. The following statements are equivalent:

o SAT(¢)is (g, q)-testable for every monotone 2-ChF
on N variables.

e VC(U)is (g, q)-testable for every grapti on N nodes.

e CLIQUE(U) is (g, q)-testable for every grapl/ on
N nodes.

Moreover, the reductions preserve 1-sided error.

The theorem follows from the following three lemmas.

LEMMA 11. For every undirected grapi/ on N nodes
there is a corresponding monotone 2-CME on NV variables
s. L. ifSAT (¢v) is (¢, g)-testable then so B C(U).

PROOF LetU = (V, E) be an undirected graph. Asso-
ciate a Boolean variable, with eachv € V. Define the 2-
CNF formulagy on the set of variableX = {z,|v € V} as
follows: form the clauséz., V ) for each edgéu, v) € E.

A subsetS of vertices inV defines an assignmefitto vari-
ables inX by f(x,) = fs(v). Clearlydist(fs, VC(U)) =
dist(f, SAT(¢v)), and every-test forSAT(¢) can be used
as atest fol’C(Uy). [



LEMMA 12. For every undirected grapli/ on N nodes
there is a corresponding graghi’ on N nodes s. t. it/ C(U")
is (g, q)-testable then so € LIQUE(U).

PROOF LetU = (V, E) be an undirected graph. Define
U' = (V,E') whereE’ is the set of vertex pairs that are not
edges inE. For a subsefS of V, let S’ = V\S. Clearly,
dist(fs, CLIQUE(U)) = dist(fs/, VC(U")), and every-
test forvVC(U’) can be used as antest for CLIQUE(U).

]

LEMMA 13. For every monotone 2-CNg-on NV variables,
there is a corresponding undirected grapfy on IV nodes s.t.
if CLIQUE(Uy) is (e, q)-testable then so iSAT(¢).

PROOF Let¢ be a monotone 2-CNF. Associate a nage
with each variabler of ¢. Define the undirected grapli,
on the set of vertice} = {v.| ¢ € ¢} as follows: start
with a complete graph ol and then for each clauge V y)
in ¢ delete an edgéu,,u,) from U. An assignmentf to
the variables ofp defines a subsef of the vertices ofV’
by S = {v.| f(zx) = 0}. Clearly, dist(f, SAT(¢v)) =
dist(fs,CLIQUE(U,)), and every-testforCLIQUE(U)
can be used as a test 8T (o). L]

4. GENERAL UPPER BOUND

We present a simple 1-sided errotest for monotonicity
(not necessarily Boolean) on bipartite gragghs= (X, Y; E)
with | X| = |Y| = N and all edges are directed framto Y.

TESTT: FORG = (X,Y; E)

1. Queryg = [2 N/e] vertices uniformly and in
dependently from each of andY'.

2. Reject if a violated pair of vertices is found; oth-

erwise, accept.

THEOREM 14. If G = (X,Y;E) as above, then algo-
rithm Ty is a 1-sided error(s, O(4 /N/e)) -test formong.

PROOF. The test accepts all monotone functions. Suppose
a function ise-far from monotone. Then by Lemma 3, there
areeN/2 vertex-disjoint violated pairs. Call themvitness-
pairs and their verticesyitnesses A randomly chosenX -
vertex is a withess with probability.

Let F be the event that no violated pair is detectEg, be
the event thaK e¢/2 X-witnesses are queried, afg be the
event tha eq/2 Y -witnesses are queried.

Pr[F] < Pr[Fx] + Pr[Fy] + Pr[F|Fx A Fy]

eq/2 \**
5N/2>

Thus, the test fails with probability less than 1/3.

52
< 26_84-8_% < %

Se_8+e_8+<1—
[ ]

By Theorems 6—10, monotonicity over general graphs and prop
erties in Section 3 have 1-sided en(m, O(,/N/e))-tests.

5. GENERAL LOWER BOUNDS

This section addresses lower bounds for testing monotonic-
ity on general graphs. We restrict our attention to the Baole
case which implies matching lower bounds for all properties
in Theorem 10. We first define what we call Ruzsa-Szemerédi
type graphs. We then show that monotonicity over such graphs
(with suitable parameters) is hard to test non-adaptively.

Let U = (V, E) be an undirected graph and &f C E
be a matching inU, i.e. no two edges il have a ver-
tex in common. LetV (M) be the set of the endpoints of
edges inM. A matchingM in U is calledinducedif the in-
duced graplV[V (M)] contains only the edges 8f. Namely,
(u,v) € E(U)ifand only if (u,v) € M forallu,v € V(M).

A (bipartite) graphU = (X,Y; E) is called(s,t)- Ruzsa-
Szemerédif its edge set can be partitioned into at leash-
duced matchingd/s, . .. , M,, each of size at least

THEOREM 15. LetU = (X, Y; E) be an(m, e N)-Ruzsa-
Szemerédi graph withX| = |Y| = N. Direct all edges o/
from X to Y to obtain a graphG. Then any non-adaptive
£-test formong requiresQ(y/m) queries.

PROOF We use Yao's principle, which says that to show
a lower bound on the complexity of a randomized test, it is
enough to present an input distribution on which any deter-
ministic test with that complexity is likely to fail. Namely
we define distributiondDp, Dy on positive (monotone) and
negative é-far from monotone) inputs, respectively. Our in-
put distribution first chooseBp or Dy with equal probabil-
ity and then draws an input according to the chosen distribu-
tion. We show that every deterministic non-adaptive tegt wi
q = o(+/m) queries has error probability larger thgf8 (with
respect to the induced probability on inputs).

We now define the distribution8r andDy, as well as the
auxiliary distributionD . For Dp and Dy, choose a random
i € {1,...,m} uniformly. For all nodex € X andy € Y
outside of matchind/;, setf(x) = 1 andf(y) = 0. ForDp,
uniformly choosef(z) = f(y) = 0or f(z) = f(y) =1
independently for all edgeg, y) € M;. For Dy, uniformly
choosef(z) = 1— f(y) = 0 or f(z) = 1— f(y) = 1
independently for al{z, y) € M;.

Dp is supported only on monotone labelings, g is
not supported only on negative inputs. However, fotarge
enough, with probability more than 8/9 at least 1/3 of theasdg
of M; are violated when the input is chosen accordindpte,
making the inpute/6-far from monotone. Denote the latter
event byA and defineDy = Dw|4, namely,D is Dy con-
ditioned on the eventt. Note that forD an edge is violated
only if it belongs toM;, since the matchings are induced.

Given a deterministic non-adaptive test that makes & et
of ¢ queries, the probability that one or more &f;'s edges
have both endpoints W’ is at mosy? /(4m) for bothDp, Dy .
This is because the matchings are disjoint, and the vertex se
V' induces at mos§® /4 edges ofG. Forq = o(y/m), with
probability more tharl — o(1) no edge ofM; has both end-
points inV’. Conditioned on any choice affor which M;
has no such edge, the distributionfif, is identical for both
Dy andDp: every vertex outside ab/; is fixed to 1 if it is
in X and to O ifitis inY", and the value of every other vertex
is uniform and independent ové®, 1}. Let C(¢) denote the



set of inputs consistent with query answers V' — {0, 1}.
Prp,[C(¢)|no edge inM;] = Prp [C(4)|no edge ind;].
For every tuple of answexs, the error probability under the
above conditioning (with negative inputs chosen unfigy
rather thanDy) is 1/2. As the probability of the condition
is > 1 — o(1), the overall error probability without the con-
ditioning is> 1/2 — o(1). Since negative inputs are chosen
underDy, not Dy, the success probability {4/2 + o(1)) -
(Pr[A]) ™" < (1/2 4+ 0(1)) - 9/8 < 9/16 + o(1). Thus, the
error probability is> 7/16 — o(1). [

6. CONSTRUCTIONOFHARDTOTEST
GRAPHS

This section constructs Ruzsa-Szemerédi graphs thiak yie

N? ( Toglog N ) non-adaptive lower bounds for monotonicity test-
ing. We then discuss the parameters of Ruzsa-Szemeemtigr
that are currently attainable.

THEOREM 16. There eXiStalﬁNQ(“’s‘}’SN),N/3—0(N))-
Ruzsa-Szemerédi grapbs= (X,Y; E) with | X| = Y| =
N.

COROLLARY 17. For some2N-vertex graph€z, every non-

1
adaptive (15 — o(1))-test formong requiresNQ(los )
queries.

PROOF OFTHEOREM16. Letm,n be two integers where
n is divisible by 3 andh = o(m). The vertex setol/ is X =
Y = [m]*, thusN = m™. We define a family of (partial)
matchings on the vertices &f and take the edge-set of the

Let B,R,W C [m]” be the sets of the blue, red and white
points, respectively. TheR = |B| + |R| + |W]|.

First, we claim thatW| < |R| + | {z : 3, z; = 1}|. In-
deed, consider a new matching betwé&®nand R defined by
matchingw € W to w — 17. Assume thain = 0(mod 3).
Then the only unmatched points W are contained in the
set{z : 3i, x; = 1}, proving this claim. SimilarlyjWw| <
|B|+|{w:EIi, xizm}|.

Next, observe that the only blue and red points (in the cor-
responding copies ¢fr]”) unmatched by are these which
have a coordinate whose value is{ib, 2, m — 1, m}. It fol-
lows that
|M| > (|R|+|B|)/2—|{z : Ji,zi € {1,2,m — 1,m}} | >
P/3—

(H{z: i, 2i € {1,2,m — 1, m}} | + | {x : 3,2 = 1,m}|)
> P/3— %’ - P. Sincep = o(m), the claim of the lemma fol-
lows. (]

Now, letT, T be two %-sets in[n], such tha{T N T1| <
n/7. We claim that no edge a¥/r is induced byMr, . In-
deed, leb be matched te by My, in particulatb—r = 2-17.

If the edge(b, r) is induced byMr, , thenb is colored blue and

r is colored red in the coloring defined . By the defini-
tion of the coloring, sincg " ; b:; > >, r;, b is located

in a blue level separated by a white level from the red level
of r. This implies thaf Yier bi — Yien, ri| > %.Onthe
other hand,| ZieTl bi — EieTl ”| = | ZiETl (b — T1)| =

| Yier, 2-17)i] = 2-|ITNTi| < 22 < %, reaching a
contradiction.

We would like to have a large familf of % -subsets ofn],
such that the intersection between any two of them is of size

graph to be the union of the edge-sets of these matchings. Theat mostz, or, equivalently, such that the Hamming distance

matchings are indexed by a family &f-subsets ofn]. Let
TCln],|T|=%. Letp=%.

Definition of a matching Mr. Color the points in the two
copies offm]™ by blue, red and white. The color of a point
is determined b)EieT x;. First, partition the vertex set into
levels where the leveL, isthe se{z : 3, . ;i = s}. Then
combine levels intatrips, where for an integek = 1...m, the
Strip Sy = Lgp U ... U L(j41)p—1. Color the stripsS;, with

k = 0(mod 3) blue, the strips wittk = 1(mod 3) red, and
the remaining strips white. The matchiddr is defined by
matching blue points ifX to red points inY” as follows: If
a blue pointb in X has all itsT-coordinates greater thah
match itto apoint = b — 2 - 17 in Y. The vectorlr is the
characteristic vector df’; it is 1 onT" and0 outsideT’. Note
thatr is necessarily redMr is clearly a matching. Our next
step is to show that it is large.

LEMMA 18. |Mr| > N/3 — o(N).

PrROOF Consider the “projected” matchini on the ver-
tices of the bipartite grapti” = ([m]”, [m]”), which is de-
fined byT. Namely, partition the points din]” as described
above, coloring them by blue, red and white, and match a blue
point in one copy ofm]” to a red one in another, by subtract-
ing 2 - 17. SinceMr is determined by the coordinatesih it
is enough to show thad| > P/3 — o(P), whereP = m?.

between any two of them is at lea§t — 22 = 52, So we
need a lower bound on the size of a constant weight binary
error-correcting codér with the following parameters: block
lengthn, weight w %, distanced = g—’l‘ Applying the
Gilbert-Varshamov bound for constant weight codes [19], we
getllog|F| > H(1/3) —1/3- H(4/7) —2/3 - H(2/7) —

o(1) = 0.014 —o(1). Choosem = n? and define the edge-set
E(U) of U by E(U) = Uy Mr. By the preceding discus-
sion, U is a graph onV = n>" vertices, whose edge-set is a

disjoint union of22(®) = N(eiten) induced matchings
of sizeN/3 — o(N). [

(s,t)-Ruzsh-Szemeedi Graphs. For which values ok and
t is there ar(s, t)-Ruzsa-Szemerédi graph? We are interested
in the asymptotic version of this question 85 — oco. Call
a sequence of paig(IV), t(IV))-realizableif there is an in-
finite sequence ofV, and graphd/x with N vertices, that
are (s(N),t(N))-Ruzsa-Szemeréedi. Defirfe to be the set
{(s(NN),t(N))} of realizable sequences. Note tiais mono-
tone in the natural order on pairs, namely if it contajest),
ands’ < s, t' < t, then it contaings’, ¢'). Therefore it is
defined by its set of maximal points.

Two trivial maximal points irP are (%), 1), coming from
a complete graph oV vertices, and1, N/2), coming from
a perfect matching oV vertices. A much more interesting
point in P is given by a construction of Ruzsa and Szemerédi



[25], following Behrend [5]. Their result, with some abusfe o
notation, can be stated as followéN/3, N/2O(VI°g N)) €
P. We have already seen that fer= (1) there is an ab-
solute constant, such that(Ne/'°g'°s N ¢N) € P. This
trivially implies that there is a constartsuch that for any
positive e, (l/e-NC/l"gl“gN,eN) € P. A more techni-
cally involved generalization of the construction in thecs
tion, postponed to the full version of the paper, gives: g¢her
is a constant such that for any constant positive< 1/4,
<N(c-log l/e)/loglogN’ 6N) cP.

Letting e go to 0 as NV grows, it can be shown far/e =

Q (y/log N /log log N), that there is an absolute constant
¢ <15t (N, N/O (y/log N/loglog N ) ) € P.

7. HYPERCUBE LOWER BOUNDS

1-sided non-adaptive lower bound.Consider the set inclu-
sion order on the vertices of the Boolean hyperc{ibgl }™.
Forz € {0,1}", let||z|| be its Hamming weight.

THEOREM 19. 3¢ > 0 such that every non-adaptive 1-
sided errore-test for monotonicity of Boolean functions on the
n-dimensional Boolean hypercube requif@é,/n) queries.

PROOF. Note that a 1-sided error test must accept if no vio-
lation is uncovered; otherwise, the test fails on monotomef
tions consistent with the query results. ot 1, ..., n define

a functionf; : {0,1}" — {0,1} by
1 if ||z]| > n/2 ++/n
filz1,... ,xn) = 0 if |zl < n/2 —+/n
1 —xz; otherwise

It is easy to see that for all < 7 < n, f; is e-far from mono-
tone, for some constaat> 0 independent of. The following
immediately implies our theorem. [

LEMMA 20. For every non-adaptive-query monotonicity
test, there exists an indéxe [n], such that the test succeeds
(finds a violation) onf; with probability at mosQ(q/+/n).

PROOF It suffices to prove the claim for tests that only
query vertices with Hamming weight in the rangg2 + /n,
as queries out of this range do not participate in any viotati

We show that every set gfqueries reveals a violation for at
mostO(g+/n) of the functionsf;. It follows that for every test
that makesy queries,y_"_; Pr[a violation for f; is found =
O(g+/n), and so there exists afy for which the test finds a
violation with probability at mos©(q/+/n), as claimed.

Let @ be the set of queried vertices §0, 1}" of sizegq.
The queries detect a pair of vertices violated fpynly if @
contains comparable verticasandwv that differ in coordinate
1. Construct an undirected graph with vertex@eby drawing
an edge between andy if they are comparable. Consider a
spanning forest of this graph. If such verticesndv exist,

they must lie in the same tree. Furthermore, there must exist 2 all suchw, v of the setd/,, , UV,

adjacent vertices on the path betweemandv that differ in
coordinatei. Therefore, the number of functiorfs for which

the queries reveal a violation is at most the maximum number
of edges in the forest (which is at ma@st 1) multiplied by the
maximum possible distance between adjacent vertgay).

The total is at mos©(q/n). L]

2-sided lower bound.We give a logarithmic lower bound for
non-adaptive 2-sided monotonicity tests of Boolean fiomsti
over{0, 1}™. This implies a non-constant (though doubly log-
arithmic) lower bound for adaptive testing of this property

THEOREM 21. Je > 0 such that every non-adaptieetest
for monotonicity of Boolean functions on thedimensional
Boolean hypercube requird¥(log n) queries.

PrROOF The lower bound uses Yao's method. Namely, we
define two distributions over input function&®p, and Dy,
such that for any set of < % log n vertices of the hyper-
cube, the distributions induced difs, 1}? by restricting the
functions to they vertices are< % close, while an input chosen
according taDp is monotone, and an input chosen according
to Dy is e-far from monotone for a constaat

Two distributions. Forz € {0,1}", we viewz both as a
binary vector of lengtm and a subse{i : z; = 1} of [n].

Definition 2. Leta = 1L. GivenB C [n], letmaj(zNB)
be 1 wher|z N B| > %|B| and 0 otherwise.
Thetrimmed oligarchy function according B is

1 if ||lz|| > n/2 + ayv/n
fe(z) = 0 if |z]] < n/2 —ay/n

maj(x N B) otherwise
Thetrimmed anti-oligarchy function according 1B is

1 if ||z|| > n/2 + av/n
fa(e) = 0 if |lz]] <n/2—avn
1 —maj(z N B) otherwise

The theorem follows from the next two lemmas. u

LEMMA 22. There exists > 0, such that for any nonempty
setB, fg is monotone ang# is e-far from monotone.

PROOF It is easy to see that trimmed oligarchy functions
are monotone. For trimmed anti-oligarchy functions, wd wil
find e2™ vertex-disjoint violated pairs.

Letm = |B|. For every integew such thatin — a/n <
w < 1n, and every integes such thad < v < im, letUy,»
denote the sefz € {0,1}" : ||z|| = wand|z N B| = v},
andV,,, denote the seftx € {0,1}" : ||z|| = n—w and|zN
B| = m — v}. By definition, f(z) = 1 for everyz € Uy,»
and f(z) = 0 for everyx € Vy,v. Uy, @andV,, , have the
same size, since is in Uy, iff the complement ofz is in
Vu,». We want to find a bijectiow : U,,,, — V4, such that
x X o(zx) foreveryx € Uy,y.

Consider the bipartite graph ov&t,,», UV, With the poset
relations as edges. It is easy to see that this graph has a con-
stant degree, so a matching exists (by Hall's Theorem) & thi
degree is nonzero. This happensuifv satisfy 5 Im—v <
1n — w in addition to the conditions above. The union over
v covers a fixed fraction of
the hypercube, so we are done [



To defineDp and Dy pick a random seB C [n] by inde-
pendently choosing each coordinate to ligHwith probabil-
ity &=n~'/2. ForDp, take the correspondinfp and forDy,

take the corresponding.

LEMMA 23. Dy and Dp restricted to any set of =
% log n queries aree-close, for any > 0.

PROOF SKETCH Letg = 55logn. Letaz,...,z, be
a fixed subset of0,1}". We can assume, without loss of
generality, that the points satisty/2 — ay/n < [jzi]] <
n/2 + ay/n. This is because the functions Dp and Dy
are constant and identical outside this range.

Inside the range, for an®, the corresponding oligarchy and
anti-oligarchy functionccomplemeneach other. Therefore,
the induced distributiondp anddy on {0, 1}¢ are mirror im-
ages of each otherdp(a) = dn(a) for anya € {0,1},
wherea is the complement af. For a distribution on{0, 1},
letd be its mirror image. Call symmetridf d = d. Our claim
amounts to showindp to be almost symmetric.

In fact, we construct a symmetric distributiensuch that
[ldp — s|l1 = o(1). This implies our claim since

ldp —dnlli = |ldp —dp|h
lldp — slls + [|dp — 5ll1 = 2[ldp — s]|1.

INA

We get tos by a sequence of four distributions, each one

and its complemerit would be chosen with almo3the same
probability. Thereforeds is close to a symmetric distribution
son{0, 1}, completing the proof.

We know, say by the Berry-Esseen theorem ([9], p. 126)
that a binomial distribution with parametdtsandp, such that
kp > 1, is, in some sense, close to the normal distribution
which is, of course, symmetric. We give a precise meaning
to this intuition, proving directly that such a binomial glis
bution is stochastically close to a symmetric one. Thisnalo
us to replaceZ; with large parametek = | A;| by symmetric
random variables.

As to Z; for which the paramete¥ is small, it turns out that
we can get rid of them simply by replacing them with =

8. FAMILIES OF GRAPHS WITH EFFI-
CIENT MONOTONICITY TESTS

This section describes several families of efficientlyabk
graphs, including graphs with few edges in the transitiee cl
sure, graphs with small width, top-parallel graphs, treed a
graphs with small separators. All tests presented havdedsi
error. Hence, we only need to analyze the probability ofrerro
for functions that are far from monotone. Throughout the sec
tion, we denote the transitive closure of a gr&pby TC (G).

8.1 Tests with query complexity indepen-
dent of graph size

close to its predecessor. The first element in the sequence is Our first testT>(q) works when the fraction of vertex pairs

di1 = dp and the last is. The triangle inequality then implies
that the distance betweefr ands is at most the sum of the

violated by the input function is high and is useful for tegti
graphs with few edges in the transitive closure, as well agdlsm

distances between the consecutive elements of the sequence Wwidth graphs. Note that tegb(q) queries at moslq vertices.

Forl <i < g, lety; € {0,1}" be such thally;|| = n/2
and||z; — yi|| < ay/n. Letd, be the distribution 00, 1}¢
induced by restricting the functions ip to 41, ..., 4q. Then
d» is close tal;, because w.h.p. over the choice of a functfon
from Dp, changing the queries by at ma3{,/n) bits, does
not change the value of theon the queries.

Then/2-setsy;...y, induce a standard partition ff] into
24 disjoint subsets, indexed 0, 1}9. ForI € {0,1}9, the
I'th element of the partitionigl; = (., _; ¥ N[ ;.1,— ¥i -
Hereys is the set complement af;. We define2? random
variables depending oB by settingR;(B) = |B N A;|. If
Ay is empty,R; is identically0.

Note that{ R; } are independent binomially distributed vari-
ables, and that they determine the restrictioif t y1...y4. In
fact, isf(y;) = 1ifand only if |y; N B| > |y§ N B|, which is
equivalenttoy-, ;. Rr > 3=, .4 Ri.

SinceE (3., Rr) =np/2 = E(},,,4; Rr), we can
replace eactR; by a random variabl&; = R; — ER; with
zero expectation.

Next, we would like to replace each; by a symmetric
random variableS;. Observe that once we do so, provided the
new distributionds on {0, 1}¢ is close tod», we are basically
done. Indeed, a choice of a point{fl, 1}¢ according tals is
determined by the signs qflinear expressions i§;. Since
ds is invariant under flipping the sign of all th&y, a pointa

2A real random variabl& is symmetric if for allt, Pr{X <
EX —t} = Pr{X > EX +t}. The two notions of sym-
metric distributions in the proof should, hopefully, cause
confusion.

TESTT>(q)

1. Pick g edges from the transitive closure of the
graph uniformly and independently.

2. For each edge, query its endpoints. Reject if jt is
violated; otherwise, accept.

LEMMA 24. If G is a graph with at mostN edges in
TC (G), then algorithmT> with parameterg set todc/e is
a 1-sided error(e, 8¢/e)-test for monotonicity 0.

A graphG haswidth w if every set of mutually incomparable
vertices has size at most The following shows thal» can
be used to test small width graphs.

LEMMA 25. If G is a graph of widthw, then algorithm
T, with q set to2w/e” is a 1-sided error(e, 4w/e?)-test for
monotonicity of Boolean functions @i

PROOF OFLEMMA 25. LetG be a graph of widthw and
let f be a Boolean labeling df (G) that ise-far from mono-
tone. We will show that the number of violated edges in the
transitive closure is at least N2 /(2w) — o(1). Since the to-
tal number of edges in the graph is at md&t/2, the test will
find a violated edge with probability at least- ¢~ 2 > 2/3.

3Because in order to gatin i-th coordinate we need the cor-
responding linear expression to &eictly positive, and to get
0 we need it to be only non-positive (zero included).



CLAIM 26. If dist(f,G) > d for a Boolean labelingf,
then there is a sef, |T'| < w, of O-labeled vertices, s." is
incident to at least! violated pairs.

PROOF OF CLAIM. If dist(f, mong) > d, by Lemma 4,
TC (G) has a matching of violated edges of sizeCall end-
points of the edges in the matchimgtnesses Let Z be the
set of O-labeled witnesses and BtC Z be a minimal set of
vertices s.tVz € Z,3t € T with z <¢ t. Clearly,T contains
no comparable pairs, and hence is of size at mosEach 1-
labeled witness is below one of the nodesZirand hence in
T. u

Applying the claim toTC (G) and removing the nodes in
T from the graph repeatedly until no vertices are left, we ob-
serve that the number of violated edgedli@ (G) is at least
eN + (eN —w) + (eN —2w) +--- + (eN mod w) ~
(e2N?)/(2w). "

Top-parallel graphs. LetG1 = (V4, E1) andGa = (Va, E»)

be disjoint graphs. Grap& obtained by connecting’; and

G, in parallelis defined byG = (Vi U V2, E1 U E»). Graph

G obtained by connecting/; and G» using thetop opera-
tion is defined byG = (V1 U V2, E1 U E> U E;), where

E, = {(v2,v1)|v1 € V1 andvy € Va}. Top-parallelgraphs
are defined recursively: the 1-vertex graph is top-paradied

a graph formed by top or parallel operations from two top-
parallel graphs is also top-parallel. Examples of top-elra
graphs include the transitive closure of a rooted tree wlith a
edges directed either towards the root or away from the root,
and the transitive closure of a complete layered graph. The
proof of the following lemma is omitted.

LEMMA 27. If G is a top-parallel graph, it has a 1-sided
(e, 4/<*)-test for Boolean monotonicity.

Tree-like graphs. A directed graptG(V, E) is tree-likeif it is
obtained by arbitrarily directing each edge of a fof@4tE).

LEMMA 28. If Gis atree-like graph, it has a 1-sided error
(,16/€”)-test for Boolean monotonicity.

The full proof is technical, and we omit it. We sketch a sim-
plified proof for the case of moted treeGG which is obtained
from a treeT’ = (V, E) by choosing a special vertexe V
and directing the edges along paths from other vertices to
Let Low(v) denote{u € V]u <¢ v} forv € V. Observe
that in a rooted treel,ow(z) N Low(y) = § for all incompa-
rable verticese, y. A vertexv € V is e-bad with respect to

a Boolean labeling if f(v) = 0 and more thag fraction of
vertices inLow(v) are labeled 1 by.

T3 FORBOOLEAN LABELINGS ON ROOTED TREES

1. Queryg nodes uniformly and independently.

2. For each queried node with label O, quéryodes
below it uniformly and independently. Reject i
violated pair is found; otherwise, accept.

If at least ans/2 fraction of vertices inG aree/2-bad with
respect to the input labelinfy the test rejects with probability

> 2/3. Otherwise, we can obtain a monotoffeby changing
f on less thare fraction of the vertices. LeZ be the set
of O-labeled vertices which are nef2-bad, andS be the set
of maximal nodes ofZ. Setf'(z) to 0 if z € Low(v) for
somev € S and to 1 otherwise. It is not hard to show that
f' is monotone and close tf, as claimed, which implies the
correctness of the test.

A generalization of abad vertex yields a similar test for
tree-like graphs.

8.2 Atestfor graphs with small separators

Here we consider graphs that can be broken into relatively
small connected components by removing a few vertices.

Definition 3. Let/ be an infinite family of undirected graphs
that is closed under taking subgraphs. We say thas k-
separable if everyW-vertex graphly € U can be broken into
connected components of size at m23f/3 by removing a
subset of at most vertices, called a separator.

E.g., forests aré-separable, bounded tree-width graphs have
bounded separators and planar graphsCir¢/ N )-separable
[20]. In the sequek might be a sublinear non-decreasing func-
tion of V.

Let G = (V, E) be a directed graph. Léfs be the undi-
rected graph obtained fro6i by undirecting its edges. Calt
k-separable iV¢ belongs to &-separable family of graphs.

Consider a ‘standard’ tree structure over disjoint subgsap
of G generated by inductively taking out separators. Namely,
generate a rooted tr@&where each node in T is associated
with a set of verticed”(z) of G. LetV; be a separator fdg
of size< k, and suppose théfz(V — V) hasl components.
The rootz of T is associated with, (i.e., V(z) = Vo) and
hasl children, one for each component. The subtrees of the
children are generated recursively from their respectorac
ponents by the same procedure. The recursion stops at compo-
nents of size less thadnlog N. The leaves are associated with
vertex sets of their components. Note that the depth of dee tr
isO(log N).

Letr = wo,z1,...,&; = x be the path from the root to
a nodez in T'. DenoteU!_,V (z;) by Path(z). Namely,
Path(z) contains all vertices off associated with: and all
vertices from separators that appear on the path from the roo
of T toz. For avertexw € V letT(v) denote the node of T
so that € V(z).

We present a 1-sided error test f@rusing the structuré'.

TEST FOR GRAPHS WITH SMALL SEPARATORST, (€)

1. Pickg nodes ofG uniformly and independently]

2. For each node, query all nodes itPath(T' (v)).
Reject if a violated pair is found; otherwise, ac-
cept.

Call a vertexv badif Path(T'(v)) contains a violated pair.

CLAIM 29. If a function ise-far from monotone, at least
/2 fraction of vertices are bad.

PrROOF. Consider a violated paiw, u). We will prove that
eitherv or u is bad. The claim then follows as the graph has at
leastz V/2 vertex-disjoint violated pairs (by Lemma 3).



If T'(v) andT'(u) are on the same path from the rootto aleaf [10] F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld and

in T, thenv € Path(T(u)) oru € Path(T(v)). W.Lo.g.,
suppos@ € Path(T(u)), thenu is bad becausBath(T (u))
contains a violated paifv, ). If T'(v) andT'(u) are not on

the same path from the root to a leaf, they got separated when[11]

T was constructed, i.e., some vertexn a directed path from
vtow, in G, isin a common ancestor @f(v) andT (u). Since
(v, w) or (w, u) has to be violated, eitherorw isbad. =

LEMMA 30. LetG = (V, E) be ak-separableN-vertex
graph. Then algorithrl is a 1-sided error(e, O (£ log N))-
test for monotonicity of functions (with general ranges)on

This generalizes the more efficient tests for Boolean func-
tions over tree-like graphs and bounded-width graphs fockvh
tighter results (bylog IV factor) are obtained in lemmas 28

and 25. It also provides an aIternatiQe, 0 (x/ﬁlog N))

test for planar graphs, which performs more queries than the
general algorithm from section 4, but requires fewer labat¢
parisons. We note that this result cannot be dramatically im
proved as the general monotonicity test for the line (whgh i
1-separable) requird3(log N) queries [11].
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