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Abstract. In this paper we initiate the study of testing properties of
hypergraphs. The goal of property testing is to distinguish between the
case whether a given object has a certain property or is “far away” from
the property. We prove that the fundamental problem of `-colorability
of k-uniform hypergraphs can be tested in time independent of the size
of the hypergraph. We present a testing algorithm that examines only
(k `/ε)O(k) entries of the adjacency matrix of the input hypergraph,
where ε is a distance parameter independent of the size of the hyper-
graph. Notice that this algorithm tests only a constant number of entries
in the adjacency matrix provided that `, k, and ε are constant.

1 Introduction

A classical problem in computer science is to verify if a given object possesses
a certain property. For example, we want to determine if a boolean formula is
satisfiable, or if a graph is connected. In its very classical formulation, the goal
is to give an exact solution to the problem, that is, to provide an algorithm that
always returns a correct answer. In many situation, however, this formulation is
too restrictive, for example, because there is no fast (or just fast enough) algo-
rithm that gives the exact solution. Recently, many researchers started studying
a relaxation of the “exact decision task” and considered various forms of approx-
imation algorithms for decision problems. In property testing (see, e.g., [1,11,13,
17,16,18,19,26,29]), one considers the following class of problems:

Let C be a class of objects, O be an unknown object from C, and Q be
a fixed property of objects from C. The goal is to determine (possibly
probabilistically) if O has property Q or if it is far from any object in C
which has property Q, where distance between two objects is measured with
respect to some distribution D on C.

The motivation behind this notion of property testing is that while relaxing
the exact decision task we expect the testing algorithm to be significantly more
efficient than any exact decision algorithm, and in many cases, we achieve this
goal by exploring only a small part of the input.

A notion of property testing was first explicitly formulated in [31] and then
extended and further developed in many follow-up works (see, e.g., [1,6,7,13,
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14,18,19,30]). Property testing arises naturally in the context of program veri-
fication, learning theory, and, in a more theoretical setting, in probabilistically
checkable proofs. For example, in the context of program checking, one may first
choose to test whether the program’s output satisfies certain properties before
checking that it is as desired. This approach is a very common practice in soft-
ware development, where it is (typically) infeasible to require to formally test
that a program is correct, but by verifying whether the output satisfies cer-
tain properties one can gain a reasonable confidence about the quality of the
program’s output.

The study of property testing for combinatorial objects, and mainly for la-
beled graphs, was initiated by Goldreich et al. [18]. They investigated several
interesting graph properties and showed, for example, that testing `-colorability
of graphs is testable in time independent of the input size.

We refer the reader to the excellent survey by Ron [29], where a very thorough
exposition of this field is presented and applications of this model are discussed.

1.1 Our Contribution

In this paper we extend the notion of property testing to hypergraphs, and study
the problem of testing colorability properties of hypergraphs.
Hypergraphs. Recall that a hypergraph is a pair H = (V, E) such that E is a
subset of the power set of V . The set V is the set of vertices and E is the set
of edges. We consider only finite hypergraphs (i.e., V is finite) and such that
V ∩ E = ∅. If E contains only sets of size k then H is said to be k-uniform. A
hypergraph is a well-known generalization of a graph; a 2-uniform hypergraph
is a standard undirected graph.

An `-coloring of a hypergraph H = (V, E) is a mapping χ : V → {1, . . . , `}.
An `-coloring χ of a hypergraph H = (V, E) is called proper if H contains no
monochromatic edge (that is, for every e ∈ E, there exist x, y ∈ e such that
χ(x) 6= χ(y)). A hypergraph H is `-colorable, if there exists a proper `-coloring
of H.

In the case when we will discuss the 2-coloring problem, we shall frequently
consider χ to be a function that assigns to every vertex either color red or blue.
Testing colorability property of hypergraphs. In this paper we study the problem
of testing the property that a given hypergraph is `-colorable. We assume the
hypergraph H = (V, E) with n vertices is k-uniform and it is represented by its
adjacency matrix A of size nk, that is, the entry A[vi1 , vi2 , . . . , vik

] is equal to 1
if and only if {vi1 , vi2 , . . . , vik

} ∈ E; it is 0 otherwise.
In general case, we are using the following definition:

Definition 1.1. Let P be any property of hypergraphs. Let ε be any real 0 ≤
ε ≤ 1. A k-uniform hypergraph H = (V, E) is ε-far from property P if it has
Hamming distance at least ε nk from any hypergraph having property P, that is,
in order to construct from H a hypergraph having property P one has to delete
or insert at least ε nk edges of H.

Using this notion of distance, we can formally define testing algorithms:
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Definition 1.2. Let P be any property of hypergraphs. Let ε be any real 0 ≤ ε ≤
1. An ε-tester for property P of k-uniform hypergraphs is an algorithm that

– accepts every hypergraph having property P, and
– rejects with probability at least 2/3 any hypergraph that is ε-far from property

P.

Observe that the behavior of an ε-tester may be arbitrary for hypergraphs that
neither have property P nor are ε-far from property P.

Specifically, given query access to an adjacency matrix A representing H, and
a distance parameter ε, we study the problem of determining with reasonably
high probability whether H is `-colorable, or whether more than an ε-fraction of
entries of A should be modified so that the hypergraph defined by the modified
adjacency matrix becomes `-colorable. In the later case, we say H is ε-far from
being `-colorable.

There are two measures of the complexity of testing algorithms: the query
complexity and the running time complexity of an ε-tester. The query complexity
of a tester (in our context of hypergraphs) is measured only by the number of
queries to the entries of the adjacency matrix of the input hypergraph, while
the running time complexity counts also the time needed by the algorithm to
perform other tasks (e.g., to verify if a given sub-hypergraphs is `-colorable).

To exemplify the notion of ε-testers, let us compare the notion of standard
approximation of 2-colorability with the notion of testing 2-colorability in 3-
uniform hypergraphs (this is a slight modification of an example used in [7]):

A hypergraph H might be nearly 2-colorable in the sense that there is a 2-colorable
hypergraph H∗ at small Hamming distance to H, but far from 2-colorable in the
sense that many colors are required to properly color H. Similarly, a hypergraph
H might be nearly 2-colorable in the sense that it is 3-colorable, but far from 2-
colorable in the sense that no hypergraphs having small Hamming distance to H
are 2-colorable. Therefore, both these notions are natural and the preferred choice
depends on the application at hand.

Results. Our main theorem is an ε-tester for `-colorability of k-uniform hyper-
graphs that has query complexity that is independent of the input hypergraph
size.

Our ε-tester follows the standard approach in this area: it first samples at
random a subset of vertices of the hypergraph H, and then checks whether the
sub-hypergraph of H induced by the vertices chosen is colorable:'

&

$

%

Tester(s, `)

Pick a subset S ⊆ V of size s uniformly at ran-
dom.

Let HS be the hypergraph induced by S in H.
If HS is `-colorable then accept H;

else reject H.

We can prove the following result.
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Theorem 1.1. Tester(s, `) with s = Õ((k `/ε)2) is an ε-tester for `-coloring k-
uniform hypergraphs.1

This immediately implies the following.

Theorem 1.2. There is an ε-tester for `-colorability of k-uniform hypergraphs
that has query complexity Õ((k `/ε)2 k) and the running time of exp(Õ(k `/ε)2).

1.2 Context and Related Work

Hypergraph coloring. Hypergraph coloring is a well studied problem in the liter-
ature in discrete mathematics, combinatorics, and computer science. In contrast
to graphs, where one can decide in linear time if a graph is 2-colorable (or equiv-
alently, bipartite), testing if a given hypergraph is 2-colorable is NP-hard even
for 3-uniform hypergraphs [23]. In [22], it is shown that unless NP ⊆ ZPP, for
any fixed k ≥ 3, it is impossible to approximate in polynomial time the chro-
matic number of k-uniform hypergraphs within a factor n1−ε for any constant
ε > 0. Very recently, Guruswami et al. [20] proved that for any constant c, it
is NP-hard to color a 2-colorable 4-uniform hypergraph using c colors. In [20]
even a stronger inapproximability result is shown, that there exists a constant
c0 such that, unless NP ⊆ DTIME(nO(log log n)), there is no polynomial time
algorithm that colors a 2-colorable 4-uniform hypergraph using c0 log log log n
colors.

The property of hypergraph 2-colorability (called also “Property B” by
Erdős) has been extensively studied in the combinatorics literature (see, e.g.,
[5,10,12,27]). In particular, the study of this problem led to the discovery of
the celebrated Lovász Local Lemma [12]. In computer science the problems of
coloring hypergraphs have been studied mostly due to its connection to impor-
tant graph coloring and satisfiability problems (cf., e.g., [9,24]). Extending the
approximation results for graph coloring, several authors have provided approxi-
mation algorithms for coloring 2-colorable hypergraphs [2,8,21,22]. For example,
the very recent polynomial-time approximation algorithm from [21] colors any
3-uniform 2-colorable hypergraphs using Õ(n1/5) colors.

Testing colorability. We are not aware of any prior testing algorithms for col-
orability of hypergraphs. However, very recently we have heard that, indepen-
dently to our work, Alon and Shapira (personal communication, 2001) developed
a testing algorithm for some general version of satisfiability that includes also
testing `-colorability of uniform hypergraphs.

Goldreich et al. [18] were the first who studied the problem of testing `-
colorability in graphs (although implicitly this problem could be traced to [28]).
In the most basic case of graph 2-coloring (that is, testing bipartitness), they
designed an algorithm with Õ(1/ε3) query complexity (and running time). Their
analysis was later improved by Alon and Krivelevich [3], who showed that the

1 Õ is a standard asymptotic notation that “hides” polylogarithmic factors.
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complexity of this algorithm is Õ(1/ε2). For the more general case of testing `-
colorability for arbitrary ` ≥ 2, Goldreich et al. [18] presented an algorithm with
the query complexity of Õ(`4/ε6) and the running-time complexity of 2Õ(`2/ε3).
Again, Alon and Krivelevich [3] improved the analysis of the algorithm and ob-
tained a bound of Õ(`2/ε4) on the query complexity and 2Õ(`/ε2) on the running
time. Alon et al. [1] presented another “constant-time” (i.e., independent of the
size of the input graph) property testing algorithm; their algorithm uses the Sze-
merédi Regularity Lemma, and therefore the bounds for the query complexity
and the running time, though independent of the size of the graph, have huge de-
pendency of ` and ε. Fischer [15] extended the methods from [1] and investigated
more general graph colorability properties.

1.3 Organization of the Paper

Because of space limitations, we concentrate our analysis mostly on testing 2-
colorability of 3-uniform hypergraphs and only briefly discuss extensions to the
general case. In the main part of the paper, in Section 2, we present a detailed
analysis of Tester(s, 2) and prove Theorems 1.1 and 1.2 for 2-colorability of 3-
uniform hypergraphs. Then, in Section 3, we briefly discuss extensions of this
result to `-colorability of k-uniform hypergraphs.

2 Testing 2-Colorability of 3-Uniform Hypergraphs

In this section we only consider 2-coloring of 3-uniform hypergraphs. Let H =
(V, E) be a 3-uniform hypergraph. This section is devoted to the proof the fol-
lowing result.

Theorem 2.1. Tester(s, 2) with s = O((1/ε)2) is an ε-tester for 2-coloring 3-
uniform hypergraphs.

Theorem 2.1 immediately implies the following.

Theorem 2.2. There is an ε-tester for 2-coloring 3-uniform hypergraphs with
query complexity of Θ(1/ε6) and the running time of exp(O(1/ε2)). ut

We choose s = 4 ·103 · (1/ε)2, though we did not try to optimize the constant
and it is easy to improve over our constant 4 · 103 significantly, perhaps even to
a one digit number.

In order to prove Theorem 2.1 we must show the following properties of
Tester(s, 2):

1. if H is 2-colorable, then the algorithm accepts H (that is, HS is 2-colorable);
2. if H is ε-far from 2-colorable, then the algorithm rejects H (that is, HS is

not 2-colorable) with probability at least 2/3.

Since if a hypergraph is 2-colorable, so is any its sub-hypergraph (and in par-
ticular, HS), property (1) trivially holds. Therefore we must only prove that
property (2) holds as well. From now on, we shall assume H is ε-far from having
2-coloring.
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2.1 Coloring Game with the Adversary

For the purpose of the analysis, we partition our sample set S into 100/ε sets
Ui, 1 ≤ i ≤ 100/ε, of size 40/ε each.

We analyze the following game on H:
We play 100/ε rounds starting with an initially empty set Vcolored of colored

vertices. In the course of the game we are adding new vertices to Vcolored and the
adversary chooses a color for each of these vertices. The coloring procedure of the
adversary may be arbitrary, but the partial coloring of H on the sub-hypergraph
induced by Vcolored must be always proper. If the adversary is unable to properly
color the vertex chosen, then we win. If the adversary properly colors the vertices
during all 100/ε rounds, he wins.

Formally, round i of the game looks as follows:

– We choose a vertex v from set Ui and add it to Vcolored.
– The adversary colors v either red or blue. He is not allowed to create

monochromatic edges.

The following claim that plays the key role in our analysis explains the idea
behind introducing the game.

Claim. If for any 3-uniform hypergraph H that is ε-far from 2-colorable we win
independently of the strategy of the adversary with probability at least 2/3, then
the hypergraph HS computed by Tester(s, 2) is not 2-colorable with probability
at least 2/3. Therefore, in particular, Tester(s, 2) is an ε-tester for 2-coloring 3-
uniform hypergraphs.

Proof. The proof is by contradiction. Let us assume that HS has a proper col-
oring χHS with probability greater than 1/3 (over the choice of S). Then, the
adversary may color each vertex v ∈ S according to χHS (v). Since the adversary
wins if χHS

is proper, he wins with probability greater than 1/3, which is a
contradiction.

By our discussion above, this implies that Tester(s, 2) is an ε-tester for 2-
coloring 3-uniform hypergraphs. ut

Therefore, our plan is to show that if H is ε-far from 2-colorable, then we win
the game with probability at least 2/3 independently of the strategy of the
adversary. In order to prove this result, we first concentrate ourself on estimating
the probability that we win against a single fixed strategy of the adversary, and
then generalize this estimation to winning against all strategies of the adversary.

2.2 Our Strategy

Informally, our strategy in round i is to choose an especially selected vertex v
from Ui that either cannot be properly colored or that adds many new “con-
straints” to the colors of the vertices of the hypergraph no matter what color
the adversary chooses to color v.
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During the game, some of the vertices are already colored. This coloring
defines constraints for the colors of the remaining, yet uncolored vertices. We
model these constraints by five sets Vcolored, Vconflict, Vred, Vblue, Vfree that
form a partition of the vertex set V , and by two graphs Gred = (V, Ered) and
Gblue = (V, Eblue).

Vcolored: contains all vertices that have been already colored by the adversary.
Vconflict: contains all yet uncolored vertices that are incident to both an edge

with two blue vertices (in Vcolored) and another edge with two red vertices
(in Vcolored); notice that these vertices cannot be properly colored by the
adversary.

Vred: contains all yet uncolored vertices that are not in Vconflict and can be
properly colored only in red (that is, these are vertices incident to an edge
with two blue vertices in Vcolored).

Vblue: contains all yet uncolored vertices that are not in Vconflict can be properly
colored only in blue (that is, these are vertices incident to an edge with two
red vertices in Vcolored).

Vfree: contains all remaining vertices (that is, yet uncolored vertices that can
be properly colored both red and blue).

Gred: contains an edge between two vertices v and w in V , if and only if there
is an edge e = {v, w, u} with a red colored vertex u ∈ Vcolored (thus, an edge
in Gred means that coloring both its endpoints red creates a monochromatic
edge).

Gblue: contains an edge between two vertices v and w in V , if and only if there is
an edge e = {v, w, u} with a blue colored vertex u ∈ Vcolored (thus, an edge in
Gblue means that coloring both its endpoints blue creates a monochromatic
edge).

Now, in order to formalize our strategy we define heavy vertices.

Definition 2.1. Let H = (V, E) be a 3-uniform hypergraph. Let Vcolored be a
subset of V that is properly 2-colored by χ : Vcolored → {red, blue}. A vertex
v ∈ V − Vcolored is called heavy for (Vcolored, χ) if at least one of the following
two conditions is satisfied after extending χ by any proper coloring of v:

– there are at least ε n2/10 new edges between vertices either in Gred or in
Gblue, or

– there are at least ε n/10 new vertices in one of the sets Vred , Vblue , or
Vconflict.

Now, we state our main lemma about heavy vertices:

Lemma 2.1. Let H = (V, E) be a 3-uniform hypergraph and let Vcolored be
an arbitrary subset of its vertices that is properly 2-colored by χ : Vcolored →
{red, blue}. Then, one of the following conditions hold:

– H is not ε-far from 2-colorable,
– there are at least ε n/10 heavy vertices for (Vcolored, χ),
– |Vconflict| ≥ ε n/10.
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Proof. The proof is by contradiction. Suppose none of the three conditions above
holds. Then, H is ε-far from 2-colorable. Using the negation of the other two
conditions we will construct a 2-coloring of H that violates less than ε n3 edges.
This implies that H is not ε-far from 2-colorable, which is a contradiction.

The algorithm below constructs a 2-colorable hypergraph H′ by deleting less
than ε n3 edges from H.

At the beginning of the algorithm we fix the sets Vred, Vblue, Vfree, and
Vconflict as well as the graphs Gred and Gblue. Then the algorithm colors the
vertices one after the other. Each time a vertex is colored its coloring may in-
troduce new constraints, that is, new vertices in the sets Vred, Vblue, or Vconflict

or new edges in the graphs Gred or Gblue. For each such new constraint there is
a set of edges that is responsible for the new constraint. These edges are called
the witnesses of the new constraint. E.g., if vertex v is colored red, then the
edge {v, u, w} is a witness for the edge (constraint) (u, w) in Gred. The algo-
rithm deletes all witnesses for new constraints. Thus, it maintains the following
invariant at the beginning of each for each loop:

The constraints for the colors of uncolored vertices are given by (a subset
of) the constraints represented by the sets Vred, Vblue, Vfree, Vconflict, and
the graph Gred and Gblue. E.g., if a vertex is in the set Vred it can be colored
red without creating monochromatic edges in the current hypergraph at
any time in the algorithm.

Below it is proven that we can maintain this invariant by removing less than εn3

edges.'

&

$

%

ConstructColoring(H)

for each v ∈ V that is either heavy or is in Vconflict do
χ(v) = red
remove all edges incident to v

for each v ∈ Vred that is not heavy do
χ(v) = red
remove all edges that cause new constraints

for each v ∈ Vblue that is not heavy do
χ(v) = blue
remove all edges that cause new constraints

for each v ∈ Vfree that is not heavy do
if coloring v red causes fewer new constraints than coloring v blue then

χ(v) = red
else

χ(v) = blue
remove all edges that cause new constraints

In what follows we prove that the so obtained hypergraph H′ is properly 2-
colored by χ and that it is obtained from H by deleting less than ε n3 edges. It
is easy to see that the algorithm maintains the invariant that the constraints for
the colors of the remaining vertices do not change. Indeed, if coloring a certain
vertex creates new constraints, then all edges that cause these constraints are
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deleted from the hypergraph. Thus at any time, coloring a vertex in Vred (Vblue)
red (blue) does not create any monochromatic edges in the current hypergraph.
Coloring heavy and conflict vertices obviously is correct because all incident
edges are deleted. And finally, coloring a vertex in Vfree either red or blue again
does not create any monochromatic edges because of the invariant. Therefore,
the obtained hypergraph H′ is properly 2-colored by χ.

It remains to show that the number of deleted edges is less than ε n3.
We remove at most n2 edges incident to any heavy vertex or a vertex in

Vconflict. Since we know that there are less than ε n/10 heavy vertices as well
as less than ε n/10 vertices in Vconflict, the loop over these two sets of vertices
(that removes all incident edges) will delete less than 2 ε n3/10 edges.

All remaining vertices are not heavy. Thus, coloring any such a vertex will
create less than ε n/10 new constraints in Vred, Vblue, and Vconflict and less than
ε n2/10 new constraints in Gred and Gblue (cf. Definition 2.1). Each of the new
constraints in Vred, Vblue, and Vconflict can cause at most n edges to become new
constraints. Since there are at most n vertices in Vred ∪ Vblue ∪ Vfree, the last
three loops delete at most 5 ε n3/10 edges from H.

Thus, overall, the hypergraph H′ is obtained from H by deleting less than
7 ε n3/10 edges. This yields a contradiction, because on one hand we have as-
sumed that H is ε-far from 2-colorable, but on the other hand we have just shown
that there is a 2-colorable hypergraph H′ that is obtained from H by deletion of
less than ε n3 edges. ut

2.3 Proof of Theorem 2.1

Now we are ready to formulate our strategy in details and to complete the proof
of Theorem 2.1. We consider only the case that H is ε-far from 2-colorable. We
want to show that for any strategy of the adversary, we win with probability at
least 2/3. Then, Claim 2.1 would imply the proof of Theorem 2.1.

Observe that there are at most 2100/ε strategies of the adversary, each one
corresponding to a binary string of length 100/ε such that if the ith bit is 1 (or 0,
respectively), then the adversary colors vertex v ∈ Ui red (or blue, respectively).
Let us fix any strategy of the adversary Υ . Then, in round i we may assume we
know the current status of the game (the coloring of the vertices in P chosen
prior to round i). We further may assume that the set Ui is chosen at random.
Then we choose the next vertex v ∈ Ui to be colored by the adversary as follows:
If there is a vertex in Ui that belongs also to Vconflict then we choose one such a
vertex and win the game. If there is no vertex in Ui ∩Vconflict, then we choose a
heavy vertex if one exists in Ui. If there is no heavy vertex in Ui, then we choose
an arbitrary vertex from Ui.

Now, let us observe that since Ui is a randomly chosen set of vertices of size
40/ε, from Lemma 2.1 we may conclude that in round i

Pr
[
v is neither heavy nor belongs to Vconflict | Υ

] ≤ (1 − ε/10)40/ε ≤ e−4 .
(1)
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Now, let us recall that the coloring by the adversary of any heavy vertex either
inserts at least ε n2/10 new edges to one of Gred or Gblue, or inserts at least
ε n/10 new vertices to one of the sets Vred, Vblue, or Vconflict. Furthermore, if a
vertex v is chosen that is neither heavy nor belongs to Vconflict, then the number
of constraints does not decreases. Therefore, since each of the sets Vred, Vblue,
or Vconflict may have at most n vertices, and each of the graphs Gred or Gblue

may have at most n2 edges, we can conclude that a heavy vertex may be chosen
at most 50/ε times.

For a given strategy of the adversary Υ and for a given round i, 1 ≤ i ≤ 100/ε,
let X Υ

i be the indicator random variable of the event that for the strategy of the
adversary Υ (1) we have neither won in round j < i, (2) nor the vertex v chosen
in round i either is heavy or belongs to Vconflict. Let X Υ =

∑100/ε
i=1 X Υ

i . Observe
that by our arguments above, if X Υ < 50/ε, then we win! Therefore, our goal
now is to estimate the probability that X Υ ≥ 50/ε.

By (1), for every Υ and every i, we have Pr[X Υ
i = 1 | Υ ] ≤ e−4. Therefore,

we can conclude that for every Υ and every t ∈ R it holds that2 Pr[X Υ ≥ t] ≤
Pr[B(100/ε, e−4) ≥ t], where B(N, p) is a binomially distributed random variable
with parameters N and p, that is, Pr[B(N, p) = k] =

(
N
k

)
pk(1− p)N−k for every

0 ≤ k ≤ N . Given this majorization result, we can use basic calculations to
estimate the probability that X Υ ≥ 50/ε. Let N = 100/ε and p = e−4.

Pr[X Υ ≥ 50/ε] ≤ Pr[B(N, p) ≥ N/2] =
N∑

k=N/2

(
N

k

)
· pk · (1 − p)N−k

≤
N∑

k=N/2

(
e N

k

)k

· pk =
N∑

k=N/2

(
e N p

k

)k

≤
N∑

k=N/2

(2 e p)k

≤
∑

k≤N/2

(2 e p)k =
(2 e p)N/2

1 − 2 e p
=

(2/e3)50/ε

1 − 2/e3 ≤ 1
3

· 2−100/ε .

Thus, we have shown that for a given strategy Υ the adversary wins with prob-
ability upper bounded by (1/3) · 2−100/ε. Now, we can incorporate the union
bound to obtain an upper bound for the probability that there is a strategy Υ
for which the adversary wins:

Pr
[∃Υ X Υ ≥ 50/ε

] ≤
∑
Υ

Pr[X Υ ≥ 50/ε] ≤ 2100/ε · ((1/3) · 2−100/ε) ≤ 1/3 .

Hence, we have proven that we win for all strategies with probability greater
than or equal to 2/3. By Claim 2.1, this implies the proof of Theorem 2.1. ut

3 Testing `-Colorability of k-Uniform Hypergraphs

In this section we briefly describe how to generalize the result from Section 2
to `-colorability of k-uniform hypergraphs and prove Theorem 1.1. Our analysis
2 This is a standard fact on majorization in probability theory, see, e.g., [4, Lemma 3.1].
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follows roughly the same approach as the proof of Theorem 2.1 and we will
frequently refer to that proof for some details.

Let us fix s = 1600 k2 `2 ln `/ε2 and consider Tester(s, `). Since it is easy to
see that any `-colorable hypergraph is accepted by the tester, it is sufficient to
prove that any hypergraph that is ε-far from `-colorable is rejected by Tester(s, `)
with probability at least 2/3.

Our goal is to show that we win the game against the adversary who is now
allowed to use ` colors instead of 2 as in Section 2. We partition the sample set
S into 20 k2 `2/ε sets Ui, 1 ≤ i ≤ 20 k2 `2/ε of size 80 ln `/ε each.

We obtain the general result by adjusting our constraint modeling from Sec-
tion 2 to `-coloring of k-uniform hypergraphs. We model the constraints by a
set of ` j-uniform hypergraphs Hi,j for each 1 ≤ i ≤ ` and 1 ≤ j ≤ k − 1. The
Hi,2 are graphs and the Hi,1 are sets. Again, we also have the sets Vcolored, and
Vconflict.

Hi,j contains an edge between vertices v1, . . . , vj , if and only if there is an
edge {v1, . . . , vj , vj+1, . . . , vk} in H such that vj+1, . . . , vk are colored with color
i. Thus an edge {v1, . . . , vj} in the hypergraph Hi,j means that coloring vertices
v1, . . . , vj with color i will create a monochromatic edge. Also, note that the
meaning of the sets Hi,1 is different from the meaning of Vred and Vblue in
Section 2 in the sense that Hi,1 contains all vertices that may not be colored
with color i.

Definition 3.1. Let H = (V, E) be a k-uniform hypergraph. Let Vcolored be a
subset of V that is properly l-colored by χ : Vcolored → {1, . . . , `}. A vertex
v ∈ V − Vcolored is called heavy for (Vcolored, χ) if at least one of the following
two conditions is satisfied after extending χ by any proper coloring of v:

– there are at least ε nj/(10 k `) new edges between vertices in Hi,j for some
i, j

– there are at least ε n/10 new vertices in the set Vconflict.

Using similar arguments (though technically more involved) as those used in
Section 2, we can prove the following main technical result.

Lemma 3.1. Let H = (V, E) be a k-uniform hypergraph and let Vcolored be a
subset of its vertices that is properly `-colored by χ : Vcolored → {1, . . . , `}. Then,
one of the following conditions hold:

– there are at least ε n/10 heavy vertices for (Vcolored, χ),
– |Vconflict| ≥ ε n/10,
– H is not ε-far from `-colorable. ut

Once we have Lemma 3.1, we can proceed similarly as in Subsection 2.3 to
prove that we win the game with probability greater than or equal to 2/3 no
matter which strategy is chosen by the adversary.

This implies the proof of Theorem 1.1. ut



504 A. Czumaj and C. Sohler

References

1. N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large
graphs. In Proc. 40th FOCS, pages 656–666, 1999.

2. N. Alon, P. Kelsen, S. Mahajan, and H. Ramesh. Coloring 2-colorable hypergraphs
with a sublinear number of colors. Nordic Journal of Computing, 3:425–439, 1996.

3. N. Alon and M. Krivelevich. To appear in SIAM Journal on Discrete Mathematics.
4. Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM

Journal on Computing, 29(1):180–200, September 1999.
5. J. Beck. An algorithmic approach to the Lovász local lemma. I. Random Structures

and Algorithms, 2(4):343–365, 1991.
6. M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications

to numerical problems. Journal of Computer and System Sciences, 47(3):549–595,
December 1993.

7. M. A. Bender and D. Ron. Testing acyclity of directed graphs in sublinear time.
In Proc. 27th ICALP, pages 809–820, 2000.

8. H. Chen and A. Frieze. Coloring bipartite hypergraphs. In Proc. 5th IPCO, pages
345–358, 1996.

9. A. Czumaj and C. Scheideler. An algorithmic approach to the general Lovász Local
Lemma with applications to scheduling and satisfiability problems. In Proc. 32nd
STOC, pages 38–47, 2000.

10. A. Czumaj and C. Scheideler. Coloring non-uniform hypergraphs: A new algorith-
mic approach to the general Lovász Local Lemma. In Proc. 11th SODA, pages
30–39, 2000.

11. A. Czumaj, C. Sohler, and M. Ziegler. Property testing in computational geometry.
In Proc. 8th ESA, pages 155–166, 2000.
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