Estimating the Weight of Metric Minimum Spanning
Trees in Sublinear-Time

Artur Czumaj Christian Sohler

Department of Computer Science Heinz Nixdorf Institute and
New Jersey Institute of Technology Institute for Computer Science
czumaj@cis.njit.edu University of Paderborn
csohler@uni-paderborn.de

November 8, 2003

Abstract

In this paper we present a sublinear tifier- €)-approximation randomized algorithm
to estimate thaveight of the minimum spanning tree of am-point metric space. The
running time of the algorithm i©(n/e®"). Since the full description of an-point
metric space is of siz®(n?), the complexity of our algorithm isublinearwith respect to
the input size. Our algorithm is almost optimal as it is nadgible to approximate ia(n)
time the weight of the minimum spanning tree to within anytdac Furthermore, it has

been previously shown that rngn?) algorithm exists thateturns a spanning treahose
weight is within a constant times the optimum.

*Research supported in part by NSF grants CCR-0313219 and@@G&701, DFG grant Me 872/8-2, and IST program
of the EU under contract IST-1999-14186 (ALCOM-FT).

1 Introduction

In this paper we consider the classical minimum spannirggreblem. Despite extensive investiga-
tions over last few decades, the complexity of the minimuangiing tree problem is not completely
understood. Although an optimal deterministic algoritlenkmown [16], no tight bounds on the run-
ning time of this algorithm could be obtained. The best ugymemd on the running time for a deter-
ministic algorithm was obtained by Chazelle [4] who presdrdn algorithm that achieves a running
time of O(|V| + |E| «(|E|, |V])), wherex is the functional inverse of Ackermann’s function. In tyrns
Karger et al. [14] gave an optim&(|V| + |E|)-time randomized algorithm. A vast of research has
been devoted to study the minimum spanning problem for uaradasses of graph and for variants of
the problem. For example, the problem of computing the mimmspanning tree of a set of points in a
Euclidean space and related problems have been intenstuelied (see [8] for a summary of results).
Despite this effort, the fastest algorithm to compute sunfiimum spanning tree in the< requires
O(n?%/[d/21+1)+€) for an arbitrary small constaiat

In this paper we present another important step towardsrstaheling the minimum spanning tree
problem. We consider the classical variant of th@imum spanning tree problem for metric spaces
or equivalently, in graphs witlwveights satisfying the triangle inequalityrhe input to the problem
consists of am-point metric spacéP, d) and the goal is to estimate theightof the minimum span-
ning tree ofP. In this paper, we show that even though the full descripbioan n-point metric space
is of size®(n?), there exists an algorithm that approximates the weight@htinimum spanning tree
of P to within a (1 + €)-factor in timeO(n/e®") (we useO to hide poly-logarithmic factors). This
is the firstsublinear-timealgorithm for this problem. Our algorithm is randomized @rathieves the
promised approximation guarantee with the probabilitytdéast3/4 (using standard techniques the
probability can be amplified if needed). Furthermore, it wassiously shown in [13] that no(n?) al-
gorithm exists thateturns a spanning treehose weight is within any constant times the weight of the
minimum spanning tree d. Therefore, our result shows that one can approximate thghivef the
minimum spanning tree but there is no hope to fivdtaessfor that approximation in sublinear time.
Our running time is essentially asymptotically optimalcéese it is easy to show that nén)-time
algorithm exists that approximates the weight of the minimgpanning tree withianyfactor.

Our algorithm yields an interesting extension to the grawist of problems solvable in sublinear-
time that are of large demand in massive data sets analysis.t®the tremendous increase in com-
putational power and interconnectivity during the lastatkcmore and more often we have to deal
with massivedata sets, which are sets of size in the range of several @ggmbr more. Examples
for such massive data sets are Internet traffic logs, cliekst patterns, sales logs, and call-detail data
records in telecommunication industry. Massive data gpisally cannot be processed by algorithms
requiring more than linear time and often even linear tingmathms may be too slow. This leads to a
natural question which problems of interest (if any) candlged insublinear time Some simple re-
sults indicating that it is sometimes possible to solveaterpproximation problems in sublinear time
are well-known, for example approximating the median oraherage value of a set of numbers.
More sophisticated results have been obtained in the lasy&ars for a number of more complex
problems, including clustering problems in metric spade$[12, 13, 15], graph problems [6, 9, 11],
geometric problems [5, 7], matrix approximation [10], awmiit eistance approximation [2].

We notice also that by the well known relationship betweenimum spanning trees, travelling
salesman tours, and minimum Steiner trees (see, e.g., @] algorithm for estimating the weight
of the minimum spanning tree immediately yiekisblinear-time(2 + e)-approximation algorithms

2

for two other classical problems in metric spaces (or in lgsagatisfying the triangle inequality):
estimating the weight of the travelling salesman tandthe minimum Steiner treeNo o(n?)-time
algorithms have been known for these problems before. Weueethat besides being interesting
by themselves, these approximation results may find agicato bound the quality of solutions
in subproblems used in branch and cut (bound) algorithmoitopecite the exact solution to these
problems.

1.1 Related work

The problem of approximating the weight of the minimum spagnree in sublinear time has been
first studied for arbitrary graphs edjacency listepresentation in a very recent paper by Chazelle et
al. [6]. In [6], apseudo-sublineaalgorithm is given: if the maximum (or average) degreBiand if

all edge weights are known to be in the interMalW], then the algorithm approximates the weight of
the minimum spanning tree to within @h+ €) factor in timeO(D - W - ¢ 3) with probability at least
3/4.

If we apply their algorithm to the metric version of the preinl then the running time ®@(n- W -
e3) becaus® = n—1. Therefore, in our setting, their algorithm is sublinealyafthe ratio between
the longest and the shortest eddeis sublinear inn, what certainly does not have to be the case in
general (for example, even in the case wliBnd) corresponds to the set of poiritsn a Euclidean
plane, then it is known thad must be at leagd (/1) and hence the running time@(n'?> - ¢ 3)).

In [7], the authors consider the problem of estimating theggteof the Euclidean minimum span-
ning tree of a seP of n points in theR<. In this paper it is assumed that the input point set is stiorad
sophisticated data structure that supports two types @ssagperations, namely, (i) emptiness queries
for axis parallel squares and (ii) approximate nearesthimigqueries for a set of prespecified cones.
Additionally, it is assumed that a smallest axis parallalding box ofP is given. In this model the
authors give an algorithm that approximates the weight efghclidean minimum spanning tree of
P within a relative error ok. The algorithm has a running time 6((vn/e®M) assuming that the
dimension is a constant and not counting the time for thesacoperations to the data structure. The
algorithm use®)((v/n/e®M) queries of type (i) and (ii).

1.2 New contribution

In contrast to both of the aforementioned algorithms, ogoathm does not make any assumption
about the input besides the assumption that we can evahetikstance between any two points in the
metric space in constant time.

The high level approach of our algorithm is similar to thaféh We regard the metric space as
a complete graph and we express the weight of its minimumrspgriree by a formula depending
on the number of connected components in certain auxilivgiaphs. For simplicity of presentation
we assume that all distances are powerslof- €) and that the longest edge iR, d) has length
W = 2n/e (as we will see later, these assumptions do not affect thelexity of the problem). We
denote byG® = (P, E) the graph that contains an edge betwpeq € P if d(p,q) < t. We use a
randomized procedure to approximate the nunaiére)”) of connected components in each subgraph
G((1+9") | Using the identityisT =n—W+e- 5 23+« W71 4 ¢)t. ¢+ we obtain an estimator
with expectatiormsT.

3

The advantage of our approach is that we have to estimatela@ply’ times the number of the
connected components of a certain threshold graph in Girtr&V times in [6]. We achieve this at
the cost of an increased variance of the estimator (whichesi@kkmpossible to apply this approach
to arbitrary graphs considered in [6]). Instead of apprating the number of connected components
within an additive error ot n as in [6], we obtain an approximation that either has a miidagive
error of 1 4 € or an additive error o€ - weigh{ MST). To achieve this result, we introduce an estimator
that is based on a new graph traversal combined with a sticipagcedure to estimate the degree of
a vertex inG("*¢)") Our graph traversal explores the triangle inequality tsuee trade-offs between
the number of connected components, the vertex degreeth@asde of the minimum spanning tree,

which can be used to show that our estimator is sharply cdrated around its expectation.

2 Preliminaries

We consider the problem @&stimating the weight of the minimum spanning tree in a meajpace
given access to the x n distance matrix of a metric spa€B, d), |P| = n, approximate the weight of
the minimum spanning tree & Throughout the paper, we denotengT the weight of the minimum
spanning tree oP. Our main contribution is an algorithm that M(n/e®) time computes &1 + ¢)-
approximation ofvsT, i.e., outputs a valudl such that(1 —e) - MST < M < (1 + €) - MST with
probability at leasB /4. We will usee as the approximation parameter throughout the paper.

Our result holds for arbitrary metrid®, d) and assumes only that a constant-time access to the
distance oracle is provided. However, for our analysis wemake two important assumptions that
we justify now.

Our first assumption is that for every pairq € P we haved(p, q) € [1,2n/e]. Using standard
transformation, such assumption may introduce an appmtamerror of at most+ €. Indeed, Indyk
[13] showed that iD(n) time one can approximate to within factbthe longest distance in a metric
space. Once we have such an approximaWgrwe can rescale the distances such iat 2n/e.
SinceW is a2-approximation of the largest distance, after the scallhdistances are if0, 2 n/¢€].
Furthermore, by the triangle inequality the weight of a minim spanning tree of a metric space is at
least as large as the weight of the longest distance and findengest distance is at ledst/2, we
havemMsT > n/e. Next, we observe that rounding up every distance smaléer tho the distancé
will changeMsT by an additive term of at most — 1 while preserving the triangle inequality. Since
n —1 < e - MST, in the so modified metric the weight of a minimum spanning iean(1 + ¢€)-
approximation of the weight of a minimum spanning tree indhginal metric.

Furthermore, to simplify the presentation of our algoritweassume that all distances are powers
of (1+¢€), thatis, for everyp, q € P, we haved(p, q) = (1+ €)* for certain integei > 0. Intuitively,
this assumption is justified by the fact that one can roundlufisdances to the nearest power{df+€)
and such rounding changeisT by a factor of at mostl + €). We notice however, that the rounding
may invalidate the triangle inequality and therefore tlsisuamption requires some more comments. At
the end of the paper, in Section 7, we briefly discuss charnggste to be done in order to formally
justify this assumption.

Therefore, from now on, unless stated otherwise, we williamsthat all distances are powers of
(14 €) and lie in the intervall, 2n/¢€].

4

2.1 Approximating MST via counting connected components in auxiliary graphs

Our high level approach of approximating the weight of th@imium spanning tree is similar to the
one used in [6]. We express the weight of the minimum spantreg in terms of the number of
connected components in certain auxiliary graphs. Foreangireshold € R we say that two points
P, q € P aret-close if their mutual distance is at most We sayp andq are in the samé-connected
componentf they are in the same equivalence class of the transitivguck of the t-close” relation
(that s, if there is a sequence of poists x1, . . ., x¢ With xo = p andx, = q such thak; andx,; are
t-close for all0 < i < {).

Let us denote byt the number ot-connected components @, d). Then we can write:

logy . W—1
MST = n—W+e- Z (14 e)t-cl+e) @)
i=0
whereW = 2n/e denotes an upper bound for the distance@inl) and all distances are powers of
(1+¢).
Our approach is to compute a randomized estimgitéte)) for eachc!('+<)"). Using the estimator
we can phrase now our randomized algorithm:

METRIC-MST-APPROXIMATION (P, €)
fori=0tolog,,.W—1do
Compute estimatat!('+¢)") for ¢((1+€)")

OutputM =n —W + ¢ - Z'Og‘+ew "1 4 e)t. elO+el

To analyze the performance of the Metric-MST-Approximatalgorithm we introduce two pa-
rameters, andp. Parametet, measures the quality of estimating the vafié*<)") and parametep
measures the error probability of the estimator. Our nowetrdbution is a sublinear-time randomized
algorithm that outputs an estimat®yf'+¢)") that with probability at least — p satisfies the following
property:

) MST MST

1— ((+e)l) _ .20 el+e)l) (7 L ~((0+e)Y) . - 2
(1—0)-c ¢ cger = ¢ < (14+0-c +¢ AR (@)
. . 1 62
For our algorithm we will sep = THTog, W = C) (m oA) and(= m =0 <m>
This implies that with probability(1 — m)'ogwe > e 4 > 3/4 all estimatorst(('*

satisfy inequality (2). By basic calculations, this yiettle following inequalities that hold with prob-
ability at least3/4:
(1—¢€)-MST < M < (1+¢€)-MST.

In Sections 3 — 6 we describe details of our randomized dlyarthat in(5(n (3.pt-e™)
time computes the estimatét’+<)") that satisfies inequality (2). This will conclude the probbar
main theorem:

Theorem 1 Let0 < e < 1 be an approximation parameter. Given access tathen distance matrix
of a metric spacéP, d), |P| = n, algorithmMETRIC-MST-APPROXIMATION computes irO(n/e?)
time a valueM such that with probability /4,

(1—€e)-MST < M < (T+¢€)-MST.

5

Let us observe that this result is almost optimal since itasyeto see that any constant-factor
algorithm requires tim€)(n) even in randomized setting (see Theorem 3 in Section 8).

3 Estimating the number ¢!t of t-connected components: Main
ideas

In this section we show the main ideas of our algorithm foinesting the numbet®. We begin with
the definition of thehreshold graptG¥ = (P, EV)) as the graph with vertex sBthat contains an edge
betweenp, q € P ifand only if d(p, q) < t; in other wordsE® = {(p,q) : p,q € P andd(p, q) <
t}. Notice that the connected component&é? are thet-connected components @%, d).

In this section we assume thiais a power of(1 + €) and present a high level description of a
randomized process that outputs a vattiewhich is an approximation af(¥ that satisfies inequality
(2). Our randomized process repeats the following proaedntil a certain threshold value is reached,
to ensure that the estimation of the numbet-abnnected components is with high probability close
toc,

e Pick a starting vertex € P uniformly at random.

e Choose arandom integer numbéaccording to the probability distributid?r[X > k] = 1/k.

e Verify whether the connected componentdft) containing vertex has at mosk vertices or it
has more thaiX vertices.

With the exception of a minor modification in the probabiliigtribution ofX, the scheme above
has been proposed by Chazelle et al. [6]. We will run this @doce multiple times and in each
repetition of this procedure we outpfit that is the indicator random variable that in title trial the
connected component has at m¥stertices. That is, if we denote byl(,” the size of the connected

component irGY containing vertex, thenp; = 1 if nl(,” < X andp; = 0 otherwise. Notice that,

IC| 1 cW
ElBid = Prip e C]-PriX > |C|]] = —_ = = — .
[E | [p € Cl-PriX>IC]] E | TS -
connected componend in G(t) connected componend in G(t)

Therefore, if there are repetitions of the procedure above then we define

S

. n

et — E-Z]Bi.
1=

Since by the arguments abdg& ()] = ¢V, this motivates the use 6f! as an estimator of the number
of connected components, see [6]. The challenging parinetjto complete the analysis is to show
that the random variablg!¥ is sharply concentrated around its expectation and to shatittcan be
computed efficiently.

4 Towards approximating ¢! — The Clique-Tree Traversal

Our method to verify whether a given connected compone@tihhas the number of vertices smaller
than or equal to certain threshold valés to traverse the grap@t starting at vertey. Chazelle et

6

al. [6] used the classical breadth-first search (BFS) teateigorithm for this purpose. However, in
our setting this algorithm is too slow and the correspondargiom estimator has too large variance
and therefore we have to develop a new traversal algoritamghuned to work well for metric graphs.
The design of such an algorithm and its analysis are the nuaitributions of our paper.

Before we define our graph traversal we need a few more defisit\e call two vertices, g € P
twinsin GV, if they have the same neighborhoodPii {p, q}. While performing a graph traversal the
knowledge that a vertex is a twin of another previously visited vertgxallows us to do not consider
the outgoing edges af in the graph traversal. Since both vertices are twins we kihatvevery vertex
reachable frong is also reachable from. The following lemma provides a simple sufficient condition
for two vertices to be twins.

Lemma 4.1 Lett = (1 + €)' for somei € N and letp, q be two vertices withl(p, q) < € - t. Then
P, g are twins inGM.

Proof : By our assumption all distances (R, d) are powers of1 + €). Sincet = (1 + €)%, there
is no pair of points inP whose distance is larger tharbut smaller thar{1 + €) t. If a vertexr is
a neighbor ofp in G, then by definitiond(p,r) < t. Sinced(p, q) < e, the triangle inequality
implies thatd(q,) < (1 + €) t and henced(q, r) < t. This means thatis also a neighbor of. By
symmetry it follows thap andq are twins. O

We are now ready to explain our graph traversal in more detail the beginning all vertices are
unexplored Then the starting vertex is marked agxploredandrepresentative In the next step all
neighbors ofp that are in distance less thart are marked asxplored Then we proceed similarly
to Prim’s algorithm for the computation of minimum spanninges. Among all edges B that
connect a representative vertex with an unexplored vertexhwoose the shortest. This leads us to a
new vertex that is again chosen todloredandrepresentativeThen, we repeat all steps above until
the entire connected componentGit containing poinp is explored. We call this graph traversal the
Cligue-Tree-Traversal

We give a pseudocode for the Clique-Tree-Traversal beldve Sets, U, andR denote the sets
of explored, unexplored, and representative verticepeas/ely.

Cligue-Tree-Traversal (P, p, t, €)
R={p}; E={pl U=P\{p}
while there is an edge = (p, q) € EW withp € Randq € U do
let (p, q) be the shortest such edge
E=Eu{qh U=U\{q}
if d(p,q) > etthenR =RU{q}

Let us now discuss some properties of the Clique-Tree-Tsalalgorithm.

First, it is easy to see that the Clique-Tree-Traversalrdlyn can be implemented to run i(n -
IR|) time.

Next, we notice that the algorithm explores the entire cotetecomponent it V) in which the
starting vertex is located. This is because it considers all edges but thessttgnnecting to vertices
whose twins have been previously visited. Therefore, iti@dar, at the end of the algorithm we have
E| =nlY.

7

The next important property of the Clique-Tree-Traversgbathm is that it provides implicitly a
lower bound on the size of the minimum spanning tree of thaheoted components. To see this, let
us consider all edges that have been used in the algorithrptore a new representative vertex. We
call these edge®presentative edge# is easy to see that the set of representative edges fotras.a
At the time when the new representative vertex is explorecctirresponding representative edge is
a shortest edge connecting the old representative vettdbe new representative vertex. Hence, it
must be contained in a minimum spanning tree of the graptcediby the representative vertices (cf.
Prim’s algorithm). Since the minimum spanning tree of th@resentative vertices is a Steiner tree of
the vertices of the connected componenpoft can have at most twice the weight of the minimum
spanning tree of the whole component (cf. [17]). By the fhat every representative edge has length
atleaste t, e t (|R|—1)/2is a lower bound on the size of the minimum spanning tree oftmmected
component op.

We summarize our discussion in the following lemma.

Lemma 4.2 The algorithm Clique-Tree-Traversal satisfies the follogyproperties: (1) The algorithm
can be implemented to run in tin@(n - [R]). (2) The explored vertices form exactly the connected
component op in GV, (3) The representative edges form a minimum spanning tréleeograph
induced by the representative vertices. (4) We hase > et (|[R| —1)/2. O

In the analysis of our algorithm we will also use the notiorgodiph dispersion To define this
notion, let us first extend the Clique-Tree-Traversal tolbdtaph traversal orG V) in the following
natural way: We start with an arbitrary vertexand run the Clique-Tree-Traversal with parameters
(P,p, t, €). If not all vertices are explored at the end of this traversalstart the Clique-Tree-Traversal
from one of the unexplored vertices (we never start at theesamnected component more than once).
We do this until every vertex has been explored.

It is easy to see that the number of representative vertioegpuoted by the full Clique-Tree-
Traversal may depend on the starting vertices. One paramieparticular interest for our analysis
is the so-calledlispersionof the graphG Y, which is the maximum number of representative vertices
L(G®) computed by the full Cliqgue-Tree-Traversal for givent, ande (the maximum is taken over
all possible vertex orderings). We will use the dispersibiG6’ together with the property that all
twins form a clique inG'Y to obtain bounds on the density 6fY. Furthermore, our main use of
L(GY) is to obtain a lower bound fonsT, as in the next lemma, which follows immediately from the
definition of £(GY) and Lemma 4.2.

Lemma 4.3 If £L(GY) > 1,thenl(GY) < MST/(4- € - 1). O

5 Estimating degrees of vertices: Degree-Estimate Algohim

Let deg(p) denote the degree of vertexin G*). For our algorithm we need a procedure to estimate
the degree of a given vertgxin G). Note that in our setting finding dg@) exactlyrequires triv-
ially Q(n) time. However, we will need testimatethe degree with high accuracy in time inversely
proportional to the degree.

Our use of estimating the degree is quite simple: in ordertedt if the numben](}) of vertices
in the connected component@(Y containingp is smaller than or equal to a given integérwe can
firsttest if deg(p) < X; if deg,(p) > X, then we certainly must ha\teg) > X.

8
The algorithm for estimating the degree of a given vertelofed a standard sampling approach.

Lemma 5.1 Let (P, d) be a metric space witfP| = n and letG® be the threshold graph for some
real numbert. Then, there exists an algorithm Degree- Estlmate p) that with probablllty at least
1—1/n% runsintimeO(n logn/deg(p)), and returns valueD() such that1 D(p) < deg(p) <

2-D(p).

Proof : Let us first suppose that we know the value of deg. We choose (with replacement) at
randomN = ¢ - n - logn/deg(p) vertices for some large enough constantetI" be the random
variable denoting the number of the chosen vertices thaidjeeent tg in G (if a vertex is chosen
many times then its multiplicity is counted i). Then, one can easily show (for example, using
Chernoff bound) that with high probability at ledst- 1/n°, we havgZl — deg (p)| < %deg(p).
Since in general we do not know the value of deg, we can estlmate it by starting with sample
sizesN = c¢-n-logn/2" for integersi = |logn| down to0, and stop when we obtain for the first
time|% —27 < ‘ -2%. One can easily show that (with probability at lekst1/n?) the valuet is then
an apprOX|mat|on of degt) to within a factor of2. Now, once we know an approximation of dgg)
to within a factor of2 we can easily output the appropriate valué)cﬁfa). Finally, it is easy to see that
the running time of such an algorithm@@n logn/ deg(p)) (with probability at least — 1/n%). O

6 A sublinear time algorithm for estimating c!

In this section we describe and analyze @lm - (3 - ¢ - p~')-time algorithm for estimating
the number of connected componeats in G, The algorithm combines the sampling approach
from [6], the graph traversal algorithm Clique-Tree-Tnaa described in Section 3, and the sampling
algorithm Degree-Estimate used to recognize high degmnie@g in the sample.

We present now our algorithm Number-of-Connected-Comptn@, t, ¢, p, €).

/ Number-of-Connected-Components¥®, t, ¢, p, €) \
s=0
while running time is less thafi* = O(n- ¢ 3- e '-p~") do

s=s+1;,ps=0

choose a verteg, independently and uniformly at random

choose integeX according tdPr[X > k] = 1/k

ﬁ(ps) = Degree-Estimaté®, t, p;)

if D(ps) < 2X then

run Clique-Tree-TraversdP, p,, t, €) until one of the following events happens:

(1) more tharX vertices are explored
(2) more than(:‘,‘—e representative vertices are explored
(3) the entire connected componentdfi) containingp; is explored

if event (3) happenetthen 3, =1

\output =251 B)

9

We say algorithm Degree-EstiméRet, p) works properlyif it returns avaluef)(p) with % D (p) <

deg(p) < Zﬁ(p) and its running time i€ (n - logn/ deg(p)). Notice that by Lemma 5.1, every run
of algorithm Degree-EstimatB, t, p) works properly with probability at leadt— 1/n*. Obviously,

we can assume that the overall running time (ia2) because otherwise we can simply compute the
minimum spanning tree directly. Therefore, with probapitt leastl — 1/n?, all runs of algorithm
Degree-Estimat®, t, p) incorporated in algorithm Number-of-Connected-Compdt®éR t, ¢, p, €)
work properly. Hence, from now on, we shall condition on fa (that holds with probability at least
1—1/n?).

Before we proceed with the analysis of the algorithm, we éxgtiain our use of algorithm Degree-
Estimate that is needed to decrease the total running tirtree@flgorithm and has no influence on the
output value.

If in the ith iteration of algorithm Number-of-Connected-Composgnbcedure Degree-Estimate
returns a valud(p) > 2X then we know that degp) > X. If deg,(p) > X then we know that
n; > X. Hence, our procedure would stop the Clique-Tree-Travbeszause of event (1) before event
(3) could happen. This would cauge = 0. Therefore, we do not have to invoke the Clique-Tree-
Traversal in that case and we can immediatelyset 0.

For the remaining analysis (besides the running time aisly&e can therefore ignore the proce-
dure Degree-Estimate. We can assume that for every sameitezky;, we setp; = 0, if algorithm
Clique-Tree-TraversdlP, t) stops because of event (1) or (2), or we3et 1, otherwise.

Our next step is to prove that the expected valu@dfis close toc*.

Lemma 6.1 (Expectation bound) If in all calls algorithm Degree-Estimate work properly.eth the
random variablec® computed in algorithm Number-of-Connected-Componeriisfigs the follow-
ing: .
(t) Alt) t _ = .

¢ > E[E"] > ¢ ZtMST.
Proof : Recall that if we ignore events of type (2), then we have dyeseen in Section 3 that
E[¢™] = c¢(. Since the introduction of events of type (2) can only deseethe expected value of
¢, the inequalitye™ > ¢ follows.

Now, we prove the second inequality, namef¢'] > ¢V — L . MsT. We partition thet-
connected components hinto two types. At-connected componefitis of type (Il) if thereexists
a vertexp € C such that the Clique-Tree-Traversal with starting vetestops with more thar{‘—€
representative vertices. Otherwise-eonnected component is of type (1). The idea behind these tw
types is that our algorithms always counts connected coemgsrof type (1) but it may not count
connected components of type (II).

Let K denote the number of connected components of type (I1). Msan> Ket. é = 2Kt and

t
2 C
henceK < i - MST. We also know that

W —K

ER: > > Prlpie Cl-PriX>|[Cl] =

type (I) connected componefit

Hence,
E[eY] > ¢V —-K > C(t)—%~MST .

10

Our next step is to prove a bound on the number of iteratioadgairithm Number-of-Connected-
Components. Here we will make use of the dispergio6) and so our bound will also depend on
this value.

Lemma 6.2 (Sample~size)|_et0 < e < 1/2. Ifin all calls algorithm Degree-Estimate work properly,
then for certainl* = O(n (3 e~ p~ ') the number of iterationsof algorithm Number-of-Connected-
Components is at least (2 p~'/L£(GY), with probability at least — p.

Proof: We assume thata counters used in the algorithm to count the running time of the atban.
Let TV denote the value of at the end of théth iteration of thewhile-loop in algorithm Number-
Of-Connected-Components. We give an upper bound on the®gacreas@ TV = T+ — TH)
of variableT in a single iteration of this loop. We will use a sufficientyrdge absolute constantto
avoid the use of the big-Oh notation.

We start our analysis with a partition Bfinto £(G ")) clustersC; according to the full Clique-Tree-
Traversal. There is exactly one cluster for each represeatzertex. If a vertex is no representative
vertex then it was explored from some representative veyidr this case we assignto the cluster
containingq. We observe that each clustgyforms a clique inrG™", because the distance between any
two points inC; is at mos e t ande < 1/2. For any vertex, let C,, denote the cluster that contains
p. Notice that degp) > |C,| — 1.

If all calls to algorithm Degree-Estimate work properly nhihe testD (p) < 2X rejects every
vertexp in a cluster of size greater tharX. In this case we increaseby at mostx - nlog n/ﬁ(p),
wherex is a constant used to upper bound the constants hidden ingf@rbnotation of the running
time of Degree-Estimate. We get

AT = TED_TO — «.n.logn/D(p) < 2-«-n-logn/deg(p)
< 2-a-n-logn/(|Cyl—1) < 4-a-n-logn/|C, .

For any vertex that is in a cluster of size smaller than or etua X, we increasel by at most
o - n/(Ce). Since the number of clustersf$Gt)), we clearly have at mogtX - £(G™) vertices in
a cluster of size at mo2tX. Now we observe that in the caXe> n the behavior of our algorithm is
identical to the cas& = n. Therefore, we define a random varialle= X for X < n andX* = n
for X > n. We get for fixed value oK*,

E[AT(”} < Z Pr[pi:p]_oc-n+ Z Pr[pi:p]‘4oc.n.logn

Pp:Cp<2X* C€ p:Cp>2X* |Cq|
1 o 1 4a-n-lo
-y leny oy ldcnen
Pp:Cp<2X* n C € p:Cp>2X* n p
co - XF - (t) co- X* - (1) .
SZocX E(G)‘|‘4'°‘Z] SG(XX [Z(G)Iogn.
Ce = Gyl Ce

Since the choice oX* is independent of the other choices, the inequdif¥*] < logn implies that

6-«-logn- L(GW)

(i
E[ATY] < Te :

11

and hence also
6-i-a-log’n - L(GW)

Ce
Thus we can apply Markov inequality to obtain that for any 0

E[TV] <

) Ao lod?n - (t)
Pr[T“) > 6-i-ax-logn-L(G)} <.
pCe

We conclude thatfof* =6-n-«-log°n-¢>-e - p ' =0O(n-log?n-3-e'-p~ ') the number
of iterations of thewhile-loop is at leasty - (2 - p~'/£(G) with probability at least — p. O

Lemma 6.3 (Concentration bound) If in all calls algorithm Degree-Estimate works properljien
for the random variablé'¥ computed by algorithm Number-of-Connected-Componeat®tiowing
bound holds:

Prle®™ —E[e™]| < ¢-maxXc™, £(GY)}] > 1—-2p .

Proof : Similarly to [6], we can upper bound the variance of any sfylas follows:

Var[p] < E[Bf] < E[B:] < — ,

where the last inequality follows from our analysis in thegfrof Lemma 6.1 and from Section 3. Let
s denote the number of iterations of Number-Of-Connectedy@ments. Then we have

)

e < () 3 v = (7)o e
1<i<s

Next, by Chebyshev inequality we obtain,

n.ct n
= S make®, LIGU))? = 5 02 L(G0)

Pr(le" —E[¢M]| > ¢- maxc™™, £(GM))]

Conditioned on the event that>n - p~' - (2/L£(GY) we obtain,

Pr{je® — E[¢V]| > ¢-maxc™, £(GY))] < p .

Sinces > n - p~ ' (2/L£(GWY) holds with probabilityl — p, by Lemma 6.2 we finally obtain
Prle®™ —E[e"]| < ¢-maXc™, £(GY)}] > 1-2p .
O

Now, we can summarize our entire discussion in this sectiin the following theorem which
immediately implies Theorem 1.

Thgorem 2 GivenP, t, €, andp > 1/n?, algorithm Number-Of-Connected-Components computes
iNnOMm-¢3-e ' p 1) time a valuet™ that with probability at leasl — 3 p satisfies the following

MST MST
— <MW <4+ MYyrg— .

0.
I=0er=cp s e s et

12

Proof : Let us first assume that all calls of algorithm Degree-Edimeork properly. Lemma 6.1

gives us
W_ G et < Ef6M] <
c Z-tMT_[C]_C'
We prove the lemma in two cases, depending on whetlier £(GY) orc® < £(GW).
Let us first consider the cas&’ > £(GY). Then, by Lemma 6.3 we have with probability at least

1 — 2p the inequalityie™ — E[¢™]| < ¢ - ¢™. Hence,

o>
=
IN

E[eV] +¢-c < (140)-cY,
¢

W > E[M] —¢-c™ > (1 —C)~c(t)—ﬂMST .

On the other hand, % < £(GW), then we can use Lemma 4.3 to obt&IiGY)) < MST/(4 € t).
This together with Lemma 6.3 imply that with probability eaktl — 2p we have

MST

4.¢-t’

MST MST C
— - > c¢Y— —_msT .
2-t ¢ 4.e-t — €-t

eW < E[Y]+¢-£(GY) < Wt

/C\(t) > E[é\(t)} —C-E(G(t)) > C(t)_C.

Finally, since all calls of algorithm Degree-Estimate wprkperly with probability at least — 1/n?,
the lemma follows. 0

7 Reducing general case to all distances being powers(df+ ¢)

In all previous analyses we assumed that all distances arerpof(1 + €). In this section we justify
this assumption and show how our analysis can be extendbd tgeneral case when all distances are
arbitrary real numbers in the internvdl 2 n/e].

If we have arbitrary distances then our analysis has to bafraddecause the identity (1) does
not hold anymore and, more importantly, Lemma 4.1 is invalitie first problem can can be easily
fixed by observing that the use of identity (1) to arbitrargtdnces introduces at mostla+ €)-factor
error term. The other problem is slightly more complex beeathe set of verticeE explored by
the Clique-Tree-Traversal (1) depends on the startingexertand (2) might be different from the
connected componet” containingv in G,

Before we show how to deal with this problem let us considerftilowing modification of the
Clique-Tree-Traversal. In line 2 of the algorithm we comsiddges of lengtlil + €) - t instead of
edges of length.

Cligue-Tree-Traversal* (P, p, t, €)
R={p}; E={pk U=P\{p}
while there is an edge = (p, q) € E{("*¢)Y withp € Randq € U do
let (p, q) be the shortest such edge
E=Eu{q}; U=U\{q}
if d(p,q) > etthenR =RU{q}

13

Now we can easily prove that independent of the startingexertthe inequalitny,” CEC
c"< holds. Using this observation we obtain with small modifwas in the proof the following
result to be held with probability at leabt- p:

- MST : - MST
1—0).clt+e) _ ¢, < plirel) < el Ty o 3
(1=¢)-c ¢ e-(]—I—e)l_C s (1+¢)-c e e-(1+e)t ®)
With this inequality we can prove that our estimator W + ¢ -) '{’f(‘)”w_](l +e)t.el+el s

a(l + 3 e)-approximation osT. Adjusting the constants in the proof giveflat e)-approximation
with O(n/e®) running time.

8 Every approximation algorithm of MST within any factor re-
guires time Q(n)

It is easy to see that no algorithm witin) running time can approximate the cost of the minimum
spanning tree withianyfactor. For a given approximation factBrlet us consider two graph®; and
G;. G, consists of a clique aii — 1 vertices having mutual distan¢eand a single outlier with distance
2B n to each other vertex. In graph, the distance between every pair of vertice$.ilearly, the
minimum spanning tree of grapgh, has cost — 1 while the minimum spanning tree of graph has
costn — 2 + 2B n. In order to distinguish between the two graph one has to fircsingle outlier,
what cannot be achieved in tins¢n) with constant confidence probability. This yields the faliog
easy claim.

Theorem 3 Noo(n)-time algorithm can approximate the weight of the minimuansying tree within
any factor. 0

References

[1] N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of clustgriProc. 41st IEEE Symposium on
Foundations of Computer Science (FOQ&ges 240-250, 2000.

[2] T.Batu, F. Ergun, J. Kilian, A. Magen, S. RaskhodnikpRaRubinfeld, and R. Sami. A sublinear
algorithm for weakly approximating edit distané&oc. 35th Annual ACM Symposium on Theory
of Computing (STOC)pages 316—-324, 2003.

[3] P. B. Callahan and S. R. Kosaraju. A decomposition of iditensional point sets with appli-
cations tok-nearest-neighbors andbody potential fields.Journal of the ACM42(1): 67-90,
January 1995.

[4] B. Chazelle. A minimum spanning tree algorithm with irse-Ackermann type complexity.
Journal of the ACM47(6): 1012-1027, November 2000.

[5] B. Chazelle, D. Liu, and. Magen. Sublinear geometricoaltpms. Proc. 35th Annual ACM
Symposium on Theory of Computing (STQ#2)ges 531-540, 2003.

14

[6] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approxinmatithe minimum spanning tree weight
in sublinear time. Proc. 28th Annual International Colloquium on Automatanbaages and
Programming (ICALP)pages 190-200, 2001.

[7] A. Czumaj, F. Erglin, L. Fortnow, A. Magen, I. Newman, Rubinfeld, and C. Sohler. Sublinear-
time approximation of Euclidean minimum spanning tréeoc. 14th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODAages 813-822, 2003.

[8] D. Eppstein. Spanning trees and spanners. In J.-R. Satk.aUrrutia, editorsiHandbook of
Computational Geometrghapter 9, pages 425-461. Elsevier Science B.V., 1997.

[9] A. Frieze and R. Kannan. The regularity lemma and appnation schemes for dense problems.
Proc. 37th IEEE Symposium on Foundations of Computer Sei@f0CS) pages 12—20, 1996.

[10] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Cddoridhms for finding low-rank ap-
proximations.Proc. 39th IEEE Symposium on Foundations of Computer Sei@f@CS) pages
370-378, 1998.

[11] O. Goldreich, S. Goldwasser, and D. Ron. Propertyngséind its connection to learning and
approximationJournal of the ACM45(4): 653—750, July 1998.

[12] P. Indyk. A sublinear time approximation scheme forstéuing in metric spacesProc. 39th
IEEE Symposium on Foundations of Computer Science (FQiaggs 154159, 1998.

[13] P. Indyk. Sublinear time algorithms for metric spacelpems.Proc. 31st Annual ACM Sympo-
sium on Theory of Computing (STQ@ages 428-434, 1999.

[14] D.R. Karger, P. N. Klein, and R. E. Tarjan. A randomiziggkhr-time algorithm to find minimum
spanning treesJournal of the ACM42(2): 321-328, March 1995.

[15] N. Mishra, D. Oblinger, and L. Pitt. Sublinear time appimate clusteringProc. 12th Annual
ACM-SIAM Symposium on Discrete Algorithms (SOapes 439-447, 2001.

[16] S. Pettie and V. Ramachandran. An optimal minimum spantree algorithm.Journal of the
ACM, 49(1): 16-34, 2002.

[17] V. V. Vazirani. Approximation AlgorithmsSpringer-Verlag, Berlin, 2001.

[18] A. C. Yao. On Constructing minimum spanning treekidemensional spaces and related prob-
lems. SIAM Journal on Computind.1: 721-736, 1982.

