
Estimating the Weight of Metric Minimum Spanning
Trees in Sublinear-Time∗

Artur Czumaj

Department of Computer Science
New Jersey Institute of Technology

czumaj@cis.njit.edu

Christian Sohler

Heinz Nixdorf Institute and
Institute for Computer Science

University of Paderborn
csohler@uni-paderborn.de

November 8, 2003

Abstract

In this paper we present a sublinear time(1+ε)-approximation randomized algorithm
to estimate theweight of the minimum spanning tree of ann-point metric space. The
running time of the algorithm is̃O(n/εO(1)). Since the full description of ann-point
metric space is of sizeΘ(n2), the complexity of our algorithm issublinearwith respect to
the input size. Our algorithm is almost optimal as it is not possible to approximate ino(n)

time the weight of the minimum spanning tree to within any factor. Furthermore, it has
been previously shown that noo(n2) algorithm exists thatreturns a spanning treewhose
weight is within a constant times the optimum.

∗Research supported in part by NSF grants CCR-0313219 and CCR-0105701, DFG grant Me 872/8-2, and IST program
of the EU under contract IST-1999-14186 (ALCOM-FT).

1

1 Introduction

In this paper we consider the classical minimum spanning tree problem. Despite extensive investiga-
tions over last few decades, the complexity of the minimum spanning tree problem is not completely
understood. Although an optimal deterministic algorithm is known [16], no tight bounds on the run-
ning time of this algorithm could be obtained. The best upperbound on the running time for a deter-
ministic algorithm was obtained by Chazelle [4] who presented an algorithm that achieves a running
time ofO(|V | + |E| α(|E|, |V |)), whereα is the functional inverse of Ackermann’s function. In turns,
Karger et al. [14] gave an optimalO(|V | + |E|)-time randomized algorithm. A vast of research has
been devoted to study the minimum spanning problem for various classes of graph and for variants of
the problem. For example, the problem of computing the minimum spanning tree of a set of points in a
Euclidean space and related problems have been intensivelystudied (see [8] for a summary of results).
Despite this effort, the fastest algorithm to compute such aminimum spanning tree in theRd requires
O(n2−2/(dd/2e+1)+ε) for an arbitrary small constantε.

In this paper we present another important step towards understanding the minimum spanning tree
problem. We consider the classical variant of theminimum spanning tree problem for metric spaces,
or equivalently, in graphs withweights satisfying the triangle inequality. The input to the problem
consists of ann-point metric space(P, d) and the goal is to estimate theweightof the minimum span-
ning tree ofP. In this paper, we show that even though the full descriptionof ann-point metric space
is of sizeΘ(n2), there exists an algorithm that approximates the weight of the minimum spanning tree
of P to within a(1 + ε)-factor in timeÕ(n/εO(1)) (we useÕ to hide poly-logarithmic factors). This
is the firstsublinear-timealgorithm for this problem. Our algorithm is randomized andit achieves the
promised approximation guarantee with the probability of at least3/4 (using standard techniques the
probability can be amplified if needed). Furthermore, it waspreviously shown in [13] that noo(n2) al-
gorithm exists thatreturns a spanning treewhose weight is within any constant times the weight of the
minimum spanning tree ofP. Therefore, our result shows that one can approximate the weight of the
minimum spanning tree but there is no hope to find awitnessfor that approximation in sublinear time.
Our running time is essentially asymptotically optimal, because it is easy to show that noo(n)-time
algorithm exists that approximates the weight of the minimum spanning tree withinanyfactor.

Our algorithm yields an interesting extension to the growing list of problems solvable in sublinear-
time that are of large demand in massive data sets analysis. Due to the tremendous increase in com-
putational power and interconnectivity during the last decade more and more often we have to deal
with massivedata sets, which are sets of size in the range of several Gigabytes or more. Examples
for such massive data sets are Internet traffic logs, clickstream patterns, sales logs, and call-detail data
records in telecommunication industry. Massive data sets typically cannot be processed by algorithms
requiring more than linear time and often even linear time algorithms may be too slow. This leads to a
natural question which problems of interest (if any) can be solved insublinear time. Some simple re-
sults indicating that it is sometimes possible to solve certain approximation problems in sublinear time
are well-known, for example approximating the median or theaverage value of a set ofn numbers.
More sophisticated results have been obtained in the last few years for a number of more complex
problems, including clustering problems in metric spaces [1, 5, 12, 13, 15], graph problems [6, 9, 11],
geometric problems [5, 7], matrix approximation [10], and edit distance approximation [2].

We notice also that by the well known relationship between minimum spanning trees, travelling
salesman tours, and minimum Steiner trees (see, e.g., [17]), our algorithm for estimating the weight
of the minimum spanning tree immediately yieldssublinear-time(2 + ε)-approximation algorithms

2

for two other classical problems in metric spaces (or in graphs satisfying the triangle inequality):
estimating the weight of the travelling salesman tourand the minimum Steiner tree. No o(n2)-time
algorithms have been known for these problems before. We believe that besides being interesting
by themselves, these approximation results may find applications to bound the quality of solutions
in subproblems used in branch and cut (bound) algorithms to compute the exact solution to these
problems.

1.1 Related work

The problem of approximating the weight of the minimum spanning tree in sublinear time has been
first studied for arbitrary graphs inadjacency listrepresentation in a very recent paper by Chazelle et
al. [6]. In [6], apseudo-sublinearalgorithm is given: if the maximum (or average) degree isD and if
all edge weights are known to be in the interval[1, W], then the algorithm approximates the weight of
the minimum spanning tree to within an(1+ε) factor in timeÕ(D ·W ·ε−3) with probability at least
3/4.

If we apply their algorithm to the metric version of the problem then the running time isO(n ·W ·
ε−3) becauseD = n−1. Therefore, in our setting, their algorithm is sublinear only if the ratio between
the longest and the shortest edgeW is sublinear inn, what certainly does not have to be the case in
general (for example, even in the case when(P, d) corresponds to the set of pointsP in a Euclidean
plane, then it is known thatW must be at leastΩ(

√
n) and hence the running time isΩ(n1.5 · ε−3)).

In [7], the authors consider the problem of estimating the weight of the Euclidean minimum span-
ning tree of a setP of n points in theRd. In this paper it is assumed that the input point set is storedin a
sophisticated data structure that supports two types of access operations, namely, (i) emptiness queries
for axis parallel squares and (ii) approximate nearest neighbor queries for a set of prespecified cones.
Additionally, it is assumed that a smallest axis parallel bounding box ofP is given. In this model the
authors give an algorithm that approximates the weight of the Euclidean minimum spanning tree of
P within a relative error ofε. The algorithm has a running time of̃O(

√
n/εO(1)) assuming that the

dimension is a constant and not counting the time for the access operations to the data structure. The
algorithm uses̃O(

√
n/εO(1)) queries of type (i) and (ii).

1.2 New contribution

In contrast to both of the aforementioned algorithms, our algorithm does not make any assumption
about the input besides the assumption that we can evaluate the distance between any two points in the
metric space in constant time.

The high level approach of our algorithm is similar to that in[6]. We regard the metric space as
a complete graph and we express the weight of its minimum spanning tree by a formula depending
on the number of connected components in certain auxiliary subgraphs. For simplicity of presentation
we assume that all distances are powers of(1 + ε) and that the longest edge in(P, d) has length
W = 2 n/ε (as we will see later, these assumptions do not affect the complexity of the problem). We
denote byG(t) = (P, E(t)) the graph that contains an edge betweenp, q ∈ P if d(p, q) ≤ t. We use a
randomized procedure to approximate the numberc((1+ε)i) of connected components in each subgraph
G((1+ε)i). Using the identityMST = n−W +ε ·

∑log1+ε W−1

i=0 (1+ε)i · c((1+ε)i) we obtain an estimator
with expectationMST.

3

The advantage of our approach is that we have to estimate onlylogW times the number of the
connected components of a certain threshold graph in contrast toW times in [6]. We achieve this at
the cost of an increased variance of the estimator (which makes it impossible to apply this approach
to arbitrary graphs considered in [6]). Instead of approximating the number of connected components
within an additive error ofε n as in [6], we obtain an approximation that either has a multiplicative
error of1+ε or an additive error ofε ·weight(MST). To achieve this result, we introduce an estimator
that is based on a new graph traversal combined with a stochastic procedure to estimate the degree of
a vertex inG((1+ε)i). Our graph traversal explores the triangle inequality to ensure trade-offs between
the number of connected components, the vertex degrees, andthe size of the minimum spanning tree,
which can be used to show that our estimator is sharply concentrated around its expectation.

2 Preliminaries

We consider the problem ofestimating the weight of the minimum spanning tree in a metric space:
given access to then×n distance matrix of a metric space(P, d), |P| = n, approximate the weight of
the minimum spanning tree ofP. Throughout the paper, we denote byMST the weight of the minimum
spanning tree ofP. Our main contribution is an algorithm that iñO(n/ε8) time computes a(1 + ε)-
approximation ofMST, i.e., outputs a valueM such that(1 − ε) · MST ≤ M ≤ (1 + ε) · MST with
probability at least3/4. We will useε as the approximation parameter throughout the paper.

Our result holds for arbitrary metrics(P, d) and assumes only that a constant-time access to the
distance oracle is provided. However, for our analysis we will make two important assumptions that
we justify now.

Our first assumption is that for every pairp, q ∈ P we haved(p, q) ∈ [1, 2 n/ε]. Using standard
transformation, such assumption may introduce an approximation error of at most1+ε. Indeed, Indyk
[13] showed that inO(n) time one can approximate to within factor2 the longest distance in a metric
space. Once we have such an approximationW, we can rescale the distances such thatW = 2 n/ε.
SinceW is a2-approximation of the largest distance, after the scaling all distances are in[0, 2 n/ε].
Furthermore, by the triangle inequality the weight of a minimum spanning tree of a metric space is at
least as large as the weight of the longest distance and sincethe longest distance is at leastW/2, we
haveMST ≥ n/ε. Next, we observe that rounding up every distance smaller than1 to the distance1
will changeMST by an additive term of at mostn − 1 while preserving the triangle inequality. Since
n − 1 ≤ ε · MST, in the so modified metric the weight of a minimum spanning tree is an(1 + ε)-
approximation of the weight of a minimum spanning tree in theoriginal metric.

Furthermore, to simplify the presentation of our algorithmwe assume that all distances are powers
of (1+ε), that is, for everyp, q ∈ P, we haved(p, q) = (1+ε)i for certain integeri ≥ 0. Intuitively,
this assumption is justified by the fact that one can round up all distances to the nearest power of(1+ε)

and such rounding changesMST by a factor of at most(1 + ε). We notice however, that the rounding
may invalidate the triangle inequality and therefore this assumption requires some more comments. At
the end of the paper, in Section 7, we briefly discuss changes that are to be done in order to formally
justify this assumption.

Therefore, from now on, unless stated otherwise, we will assume that all distances are powers of
(1 + ε) and lie in the interval[1, 2 n/ε].

4

2.1 Approximating MST via counting connected components in auxiliary graphs

Our high level approach of approximating the weight of the minimum spanning tree is similar to the
one used in [6]. We express the weight of the minimum spanningtree in terms of the number of
connected components in certain auxiliary graphs. For a given thresholdt ∈ R we say that two points
p, q ∈ P aret-close, if their mutual distance is at mostt. We sayp andq are in the samet-connected
componentif they are in the same equivalence class of the transitive closure of the “t-close” relation
(that is, if there is a sequence of pointsx0, x1, . . . , x` with x0 = p andx` = q such thatxi andxi+1 are
t-close for all0 ≤ i < `).

Let us denote byc(t) the number oft-connected components of(P, d). Then we can write:

MST = n − W + ε ·
log1+ε W−1∑

i=0

(1 + ε)i · c((1+ε)i) , (1)

whereW = 2 n/ε denotes an upper bound for the distances in(P, d) and all distances are powers of
(1 + ε).

Our approach is to compute a randomized estimatorĉ((1+ε)i) for eachc((1+ε)i). Using the estimator
we can phrase now our randomized algorithm:�

�

�

�

METRIC-MST-APPROXIMATION (P, ε)

for i = 0 to log1+ε W − 1 do
Compute estimator̂c((1+ε)i) for c((1+ε)i)

OutputM = n − W + ε ·
∑log1+ε W−1

i=0 (1 + ε)i · ĉ((1+ε)i)

To analyze the performance of the Metric-MST-Approximation algorithm we introduce two pa-
rametersζ andρ. Parameterζ measures the quality of estimating the valuec((1+ε)i) and parameterρ
measures the error probability of the estimator. Our novel contribution is a sublinear-time randomized
algorithm that outputs an estimatorĉ((1+ε)i) that with probability at least1 − ρ satisfies the following
property:

(1 − ζ) · c((1+ε)i) − ζ · MST

ε · (1 + ε)i
≤ ĉ((1+ε)i) ≤ (1 + ζ) · c((1+ε)i) + ζ · MST

ε · (1 + ε)i
. (2)

For our algorithm we will setρ = 1
1+4 log1+ε W

= Θ
(

ε
ln(n/ε)

)
andζ = ε

3+log1+ε W
= Θ

(
ε2

ln(n/ε)

)
.

This implies that with probability(1 − 1
1+4 log1+ε W

)log1+ε W > e−1/4 > 3/4 all estimatorŝc((1+ε)i)

satisfy inequality (2). By basic calculations, this yieldsthe following inequalities that hold with prob-
ability at least3/4:

(1 − ε) · MST ≤ M ≤ (1 + ε) · MST .

In Sections 3 – 6 we describe details of our randomized algorithm that inÕ(n · ζ−3 · ρ−1 · ε−1)

time computes the estimatorĉ((1+ε)i) that satisfies inequality (2). This will conclude the proof of our
main theorem:

Theorem 1 Let0 < ε < 1 be an approximation parameter. Given access to then×n distance matrix
of a metric space(P, d), |P| = n, algorithmMETRIC-MST-APPROXIMATION computes inÕ(n/ε8)

time a valueM such that with probability3/4,

(1 − ε) · MST ≤ M ≤ (1 + ε) · MST .

5

Let us observe that this result is almost optimal since it is easy to see that any constant-factor
algorithm requires timeΩ(n) even in randomized setting (see Theorem 3 in Section 8).

3 Estimating the number c(t) of t-connected components: Main
ideas

In this section we show the main ideas of our algorithm for estimating the numberc(t). We begin with
the definition of thethreshold graphG(t) = (P, E(t)) as the graph with vertex setP that contains an edge
betweenp, q ∈ P if and only if d(p, q) ≤ t; in other words,E(t) = {(p, q) : p, q ∈ P andd(p, q) ≤
t}. Notice that the connected components ofG(t) are thet-connected components of(P, d).

In this section we assume thatt is a power of(1 + ε) and present a high level description of a
randomized process that outputs a valueĉ(t) which is an approximation ofc(t) that satisfies inequality
(2). Our randomized process repeats the following procedure until a certain threshold value is reached,
to ensure that the estimation of the number oft-connected components is with high probability close
to c(t).

• Pick a starting vertexp ∈ P uniformly at random.
• Choose a random integer numberX according to the probability distributionPr[X ≥ k] = 1/k.
• Verify whether the connected component inG(t) containing vertexp has at mostX vertices or it

has more thanX vertices.

With the exception of a minor modification in the probabilitydistribution ofX, the scheme above
has been proposed by Chazelle et al. [6]. We will run this procedure multiple times and in each
repetition of this procedure we outputβi that is the indicator random variable that in theith trial the
connected component has at mostX vertices. That is, if we denote byn(t)

p the size of the connected
component inG(t) containing vertexp, thenβi = 1 if n

(t)
p ≤ X andβi = 0 otherwise. Notice that,

E[βi] =
∑

connected componentC in G(t)

Pr[p ∈ C] · Pr[X ≥ |C|] =
∑

connected componentC in G(t)

|C|

n
· 1

|C|
=

c(t)

n
.

Therefore, if there ares repetitions of the procedure above then we define

ĉ(t) =
n

s
·

s∑

i=1

βi .

Since by the arguments aboveE[ĉ(t)] = c(t), this motivates the use ofĉ(t) as an estimator of the number
of connected components, see [6]. The challenging part required to complete the analysis is to show
that the random variablêc(t) is sharply concentrated around its expectation and to show that it can be
computed efficiently.

4 Towards approximating c(t) — The Clique-Tree Traversal

Our method to verify whether a given connected component inG(t) has the number of vertices smaller
than or equal to certain threshold valueX is to traverse the graphG(t) starting at vertexp. Chazelle et

6

al. [6] used the classical breadth-first search (BFS) traversal algorithm for this purpose. However, in
our setting this algorithm is too slow and the correspondingrandom estimator has too large variance
and therefore we have to develop a new traversal algorithm that is tuned to work well for metric graphs.
The design of such an algorithm and its analysis are the main contributions of our paper.

Before we define our graph traversal we need a few more definitions. We call two verticesp, q ∈ P

twins in G(t), if they have the same neighborhood inP \ {p, q}. While performing a graph traversal the
knowledge that a vertexq is a twin of another previously visited vertexp allows us to do not consider
the outgoing edges ofq in the graph traversal. Since both vertices are twins we knowthat every vertex
reachable fromq is also reachable fromp. The following lemma provides a simple sufficient condition
for two vertices to be twins.

Lemma 4.1 Let t = (1 + ε)i for somei ∈ N and letp, q be two vertices withd(p, q) < ε · t. Then
p, q are twins inG(t).

Proof : By our assumption all distances in(P, d) are powers of(1 + ε). Sincet = (1 + ε)i, there
is no pair of points inP whose distance is larger thant but smaller than(1 + ε) t. If a vertexr is
a neighbor ofp in G(t), then by definitiond(p, r) ≤ t. Sinced(p, q) < ε, the triangle inequality
implies thatd(q, r) < (1 + ε) t and hence,d(q, r) ≤ t. This means thatr is also a neighbor ofq. By
symmetry it follows thatp andq are twins. 2

We are now ready to explain our graph traversal in more details. At the beginning all vertices are
unexplored. Then the starting vertexp is marked asexploredandrepresentative. In the next step all
neighbors ofp that are in distance less thanε t are marked asexplored. Then we proceed similarly
to Prim’s algorithm for the computation of minimum spanningtrees. Among all edges inE(t) that
connect a representative vertex with an unexplored vertex we choose the shortest. This leads us to a
new vertex that is again chosen to beexploredandrepresentative. Then, we repeat all steps above until
the entire connected component inG(t) containing pointp is explored. We call this graph traversal the
Clique-Tree-Traversal.

We give a pseudocode for the Clique-Tree-Traversal below. The setsE, U, andR denote the sets
of explored, unexplored, and representative vertices, respectively.'

&

$

%

Clique-Tree-Traversal (P, p, t, ε)
R = {p}; E = {p}; U = P \ {p}

while there is an edgee = (p, q) ∈ E(t) with p ∈ R andq ∈ U do
let (p, q) be the shortest such edge
E = E ∪ {q}; U = U \ {q}

if d(p, q) ≥ ε t then R = R ∪ {q}

Let us now discuss some properties of the Clique-Tree-Traversal algorithm.
First, it is easy to see that the Clique-Tree-Traversal algorithm can be implemented to run inO(n ·

|R|) time.
Next, we notice that the algorithm explores the entire connected component inG(t) in which the

starting vertexp is located. This is because it considers all edges but the edges connecting to vertices
whose twins have been previously visited. Therefore, in particular, at the end of the algorithm we have
|E| = n

(t)
p .

7

The next important property of the Clique-Tree-Traversal algorithm is that it provides implicitly a
lower bound on the size of the minimum spanning tree of that connected components. To see this, let
us consider all edges that have been used in the algorithm to explore a new representative vertex. We
call these edgesrepresentative edges. It is easy to see that the set of representative edges forms atree.
At the time when the new representative vertex is explored the corresponding representative edge is
a shortest edge connecting the old representative verticesto the new representative vertex. Hence, it
must be contained in a minimum spanning tree of the graph induced by the representative vertices (cf.
Prim’s algorithm). Since the minimum spanning tree of the representative vertices is a Steiner tree of
the vertices of the connected component ofp, it can have at most twice the weight of the minimum
spanning tree of the whole component (cf. [17]). By the fact that every representative edge has length
at leastε t, ε t (|R|− 1)/2 is a lower bound on the size of the minimum spanning tree of theconnected
component ofp.

We summarize our discussion in the following lemma.

Lemma 4.2 The algorithm Clique-Tree-Traversal satisfies the following properties: (1) The algorithm
can be implemented to run in timeO(n · |R|). (2) The explored vertices form exactly the connected
component ofp in G(t). (3) The representative edges form a minimum spanning tree of the graph
induced by the representative vertices. (4) We haveMST ≥ ε t (|R| − 1)/2. ut

In the analysis of our algorithm we will also use the notion ofgraph dispersion. To define this
notion, let us first extend the Clique-Tree-Traversal to a full graph traversal onG(t) in the following
natural way: We start with an arbitrary vertexp and run the Clique-Tree-Traversal with parameters
(P, p, t, ε). If not all vertices are explored at the end of this traversal, we start the Clique-Tree-Traversal
from one of the unexplored vertices (we never start at the same connected component more than once).
We do this until every vertex has been explored.

It is easy to see that the number of representative vertices computed by the full Clique-Tree-
Traversal may depend on the starting vertices. One parameter of particular interest for our analysis
is the so-calleddispersionof the graphG(t), which is the maximum number of representative vertices
L(G(t)) computed by the full Clique-Tree-Traversal for givenP, t, andε (the maximum is taken over
all possible vertex orderings). We will use the dispersion of G(t) together with the property that all
twins form a clique inG(t) to obtain bounds on the density ofG(t). Furthermore, our main use of
L(G(t)) is to obtain a lower bound forMST, as in the next lemma, which follows immediately from the
definition ofL(G(t)) and Lemma 4.2.

Lemma 4.3 If L(G(t)) > 1, thenL(G(t)) ≤ MST/(4 · ε · t). ut

5 Estimating degrees of vertices: Degree-Estimate Algorithm

Let degt(p) denote the degree of vertexp in G(t). For our algorithm we need a procedure to estimate
the degree of a given vertexp in G(t). Note that in our setting finding degt(p) exactlyrequires triv-
ially Ω(n) time. However, we will need toestimatethe degree with high accuracy in time inversely
proportional to the degree.

Our use of estimating the degree is quite simple: in order to detect if the numbern(t)
p of vertices

in the connected component inG(t) containingp is smaller than or equal to a given integerX, we can
first test if degt(p) < X; if degt(p) ≥ X, then we certainly must haven(t)

p > X.

8

The algorithm for estimating the degree of a given vertex follows a standard sampling approach.

Lemma 5.1 Let (P, d) be a metric space with|P| = n and letG(t) be the threshold graph for some
real numbert. Then, there exists an algorithm Degree-Estimate(P, t, p) that with probability at least
1 − 1/n4, runs in timeO(n logn/ degt(p)), and returns valuêD(p) such that1

2
· D̂(p) ≤ degt(p) ≤

2 · D̂(p).

Proof : Let us first suppose that we know the value of degt(p). We choose (with replacement) at
randomN = c · n · logn/ degt(p) vertices for some large enough constantc. Let Γ be the random
variable denoting the number of the chosen vertices that areadjacent top in G(t) (if a vertex is chosen
many times then its multiplicity is counted inΓ). Then, one can easily show (for example, using
Chernoff bound) that with high probability at least1 − 1/n5, we have|n·Γ

N
− degt(p)| ≤ 1

4
degt(p).

Since in general we do not know the value of degt(p), we can estimate it by starting with sample
sizesNi = c · n · logn/2i for integersi = blognc down to0, and stop when we obtain for the first
time |n·Γ

Ni
−2i| ≤ 1

4
·2i. One can easily show that (with probability at least1−1/n4) the value2i is then

an approximation of degt(t) to within a factor of2. Now, once we know an approximation of degt(p)

to within a factor of2 we can easily output the appropriate value ofD̂(v). Finally, it is easy to see that
the running time of such an algorithm isO(n logn/ degt(p)) (with probability at least1 − 1/n4). 2

6 A sublinear time algorithm for estimating c(t)

In this section we describe and analyze ourÕ(n · ζ−3 · ε−1 · ρ−1)-time algorithm for estimating
the number of connected componentsc(t) in G(t). The algorithm combines the sampling approach
from [6], the graph traversal algorithm Clique-Tree-Traversal described in Section 3, and the sampling
algorithm Degree-Estimate used to recognize high degree vertices in the sample.

We present now our algorithm Number-of-Connected-Components (P, t, ζ, ρ, ε).'

&

$

%

Number-of-Connected-Components (P, t, ζ, ρ, ε)
s=0
while running time is less thanT ∗ = Õ(n · ζ−3 · ε−1 · ρ−1) do

s = s + 1; βs = 0

choose a vertexps independently and uniformly at random
choose integerX according toPr[X ≥ k] = 1/k

D̂(ps) = Degree-Estimate(P, t, ps)

if D̂(ps) ≤ 2X then
run Clique-Tree-Traversal(P, ps, t, ε) until one of the following events happens:

(1) more thanX vertices are explored
(2) more than 4

ζ·ε
representative vertices are explored

(3) the entire connected component inG(t) containingps is explored

if event (3) happenedthen βs = 1

output ĉ(t) = n
s
· ∑s

i=1 βi

9

We say algorithm Degree-Estimate(P, t, p) works properlyif it returns a valuêD(p) with 1
2
D̂(p) ≤

degt(p) ≤ 2 D̂(p) and its running time isO(n · logn/ degt(p)). Notice that by Lemma 5.1, every run
of algorithm Degree-Estimate(P, t, p) works properly with probability at least1 − 1/n4. Obviously,
we can assume that the overall running time iso(n2) because otherwise we can simply compute the
minimum spanning tree directly. Therefore, with probability at least1 − 1/n2, all runs of algorithm
Degree-Estimate(P, t, p) incorporated in algorithm Number-of-Connected-Components (P, t, ζ, ρ, ε)

work properly. Hence, from now on, we shall condition on thisfact (that holds with probability at least
1 − 1/n2).

Before we proceed with the analysis of the algorithm, we firstexplain our use of algorithm Degree-
Estimate that is needed to decrease the total running time ofthe algorithm and has no influence on the
output value.

If in the ith iteration of algorithm Number-of-Connected-Components procedure Degree-Estimate
returns a valuêD(p) > 2X then we know that degt(p) > X. If degt(p) > X then we know that
nt

p > X. Hence, our procedure would stop the Clique-Tree-Traversal because of event (1) before event
(3) could happen. This would causeβi = 0. Therefore, we do not have to invoke the Clique-Tree-
Traversal in that case and we can immediately setβi = 0.

For the remaining analysis (besides the running time analysis) we can therefore ignore the proce-
dure Degree-Estimate. We can assume that for every sampled vertexpi, we setβi = 0, if algorithm
Clique-Tree-Traversal(P, t) stops because of event (1) or (2), or we setβi = 1, otherwise.

Our next step is to prove that the expected value ofĉ(t) is close toc(t).

Lemma 6.1 (Expectation bound) If in all calls algorithm Degree-Estimate work properly, then the
random variablêc(t) computed in algorithm Number-of-Connected-Components satisfies the follow-
ing:

c(t) ≥ E
[
ĉ(t)

]
≥ c(t) −

ζ

2 t
· MST .

Proof : Recall that if we ignore events of type (2), then we have already seen in Section 3 that
E
[
ĉ(t)

]
= c(t). Since the introduction of events of type (2) can only decrease the expected value of

ĉ(t), the inequalityc(t) ≥ ĉ(t) follows.
Now, we prove the second inequality, namely,E[ĉ(t)] ≥ c(t) − ζ

2t
· MST. We partition thet-

connected components inP into two types. At-connected componentC is of type (II) if thereexists
a vertexp ∈ C such that the Clique-Tree-Traversal with starting vertexp stops with more than4

ζε

representative vertices. Otherwise, at-connected component is of type (I). The idea behind these two
types is that our algorithms always counts connected components of type (I) but it may not count
connected components of type (II).

Let K denote the number of connected components of type (II). ThenMST ≥ Kεt
2

· 4
ζε

= 2Kt
ζ

, and
henceK ≤ ζ

2t
· MST. We also know that

E[βi] ≥
∑

type (I) connected componentC

Pr[pi ∈ C] · Pr[X ≥ |C|] =
c(t) − K

n
.

Hence,

E[ĉ(t)] ≥ c(t) − K ≥ c(t) −
ζ

2 t
· MST .

2

10

Our next step is to prove a bound on the number of iterations ofalgorithm Number-of-Connected-
Components. Here we will make use of the dispersionL(G(t)) and so our bound will also depend on
this value.

Lemma 6.2 (Sample size)Let0 < ε < 1/2. If in all calls algorithm Degree-Estimate work properly,
then for certainT ∗ = Õ(n ζ−3 ε−1 ρ−1) the number of iterationss of algorithm Number-of-Connected-
Components is at leastn ζ−2 ρ−1/L(G(t)), with probability at least1 − ρ.

Proof : We assume that a counterT is used in the algorithm to count the running time of the algorithm.
Let T (i) denote the value ofT at the end of theith iteration of thewhile-loop in algorithm Number-
Of-Connected-Components. We give an upper bound on the expected increase∆T (i) = T (i+1) − T (i)

of variableT in a single iteration of this loop. We will use a sufficiently large absolute constantα to
avoid the use of the big-Oh notation.

We start our analysis with a partition ofP intoL(G(t)) clustersCj according to the full Clique-Tree-
Traversal. There is exactly one cluster for each representative vertex. If a vertexp is no representative
vertex then it was explored from some representative vertexq. In this case we assignp to the cluster
containingq. We observe that each clusterCj forms a clique inG(t), because the distance between any
two points inCj is at most2 ε t andε < 1/2. For any vertexp, let Cp denote the cluster that contains
p. Notice that degt(p) ≥ |Cp| − 1.

If all calls to algorithm Degree-Estimate work properly then the testD̂(p) < 2 X rejects every
vertexp in a cluster of size greater than2 X. In this case we increaseT by at mostα · n logn/D̂(p),
whereα is a constant used to upper bound the constants hidden in the big-Oh notation of the running
time of Degree-Estimate. We get

∆T (i) = T (i+1) − T (i) = α · n · logn/D̂(p) ≤ 2 · α · n · logn/ degt(p)

≤ 2 · α · n · logn/(|Cp| − 1) ≤ 4 · α · n · logn/|Cp| .

For any vertex that is in a cluster of size smaller than or equal to 2 X, we increaseT by at most
α · n/(ζ ε). Since the number of clusters isL(G(t)), we clearly have at most2 X · L(G(t)) vertices in
a cluster of size at most2 X. Now we observe that in the caseX > n the behavior of our algorithm is
identical to the caseX = n. Therefore, we define a random variableX∗ = X for X < n andX∗ = n

for X ≥ n. We get for fixed value ofX∗,

E
[
∆T (i)

]
≤

∑

p:Cp≤2X∗

Pr[pi = p] · α · n
ζ ε

+
∑

p:Cp>2X∗

Pr[pi = p] · 4 α · n · logn

|Cq|

=
∑

p:Cp≤2X∗

1

n
· α · n

ζ ε
+

∑

p:Cp>2X∗

1

n
· 4 α · n · logn

|Cp|

≤ 2 · α · X∗ · L(G(t))

ζ ε
+ 4 · α

∑

p∈P

1

|Cp|
≤ 6 · α · X∗ · L(G(t)) · logn

ζ ε
.

Since the choice ofX∗ is independent of the other choices, the inequalityE[X∗] ≤ logn implies that

E
[
∆T (i)

]
≤ 6 · α · log2 n · L(G(t))

ζ ε
,

11

and hence also

E
[
T (i)

]
≤ 6 · i · α · log2 n · L(G(t))

ζ ε
.

Thus we can apply Markov inequality to obtain that for anyρ > 0

Pr
[
T (i) ≥ 6 · i · α · log2 n · L(G(t))

ρ ζ ε

]
≤ ρ .

We conclude that forT ∗ = 6 ·n ·α · log2 n · ζ−3 ·ε−1 ·ρ−1 = Θ(n · log2 n · ζ−3 ·ε−1 ·ρ−1) the number
of iterations of thewhile-loop is at leastn · ζ−2 · ρ−1/L(G(t)) with probability at least1 − ρ. 2

Lemma 6.3 (Concentration bound) If in all calls algorithm Degree-Estimate works properly, then
for the random variablêc(t) computed by algorithm Number-of-Connected-Components the following
bound holds:

Pr
[
|ĉ(t) − E

[
ĉ(t)

]
| ≤ ζ · max{c(t),L(G(t))}

]
≥ 1 − 2ρ .

Proof : Similarly to [6], we can upper bound the variance of any singleβi as follows:

Var [βi] ≤ E
[
β2

i

]
≤ E

[
βi

]
≤ c(t)

n
,

where the last inequality follows from our analysis in the proof of Lemma 6.1 and from Section 3. Let
s denote the number of iterations of Number-Of-Connected-Components. Then we have

Var [ĉ(t)] =
(n

s

)2

·
∑

1≤i≤s

Var [βi] ≤
(n

s

)2

· s · c(t)

n
=

n c(t)

s
.

Next, by Chebyshev inequality we obtain,

Pr
[
|ĉ(t) − E

[
ĉ(t)

]
| ≥ ζ · max{c(t),L(G(t))}

]
≤ n · c(t)

s · (ζ · max{c(t),L(G(t))})2
≤ n

s · ζ2 · L(G(t))
.

Conditioned on the event thats ≥ n · ρ−1 · ζ−2/L(G(t)) we obtain,

Pr
[
|ĉ(t) − E

[
ĉ(t)

]
| ≥ ζ · max{c(t),L(G(t))}

]
≤ ρ .

Sinces ≥ n · ρ−1 · ζ−2/L(G(t)) holds with probability1 − ρ, by Lemma 6.2 we finally obtain

Pr
[
|ĉ(t) − E

[
ĉ(t)

]
| ≤ ζ · max{c(t),L(G(t))}

]
≥ 1 − 2 ρ .

2

Now, we can summarize our entire discussion in this section with the following theorem which
immediately implies Theorem 1.

Theorem 2 GivenP, t, ε, ζ andρ ≥ 1/n2, algorithm Number-Of-Connected-Components computes
in Õ(n · ζ−3 · ε−1 · ρ−1) time a valuêc(t) that with probability at least1 − 3 ρ satisfies the following

(1 − ζ) · c(t) − ζ · MST

ε t
≤ ĉ(t) ≤ (1 + ζ) · c(t) + ζ · MST

ε t
.

12

Proof : Let us first assume that all calls of algorithm Degree-Estimate work properly. Lemma 6.1
gives us

c(t) −
ζ

2 · tMST ≤ E
[
ĉ(t)

]
≤ c(t) .

We prove the lemma in two cases, depending on whetherc(t) ≥ L(G(t)) or c(t) < L(G(t)).
Let us first consider the casec(t) ≥ L(G(t)). Then, by Lemma 6.3 we have with probability at least

1 − 2ρ the inequality|ĉ(t) − E
[
ĉ(t)

]
| ≤ ζ · c(t). Hence,

ĉ(t) ≤ E
[
ĉ(t)

]
+ ζ · c(t) ≤ (1 + ζ) · c(t) ,

ĉ(t) ≥ E
[
ĉ(t)

]
− ζ · c(t) ≥ (1 − ζ) · c(t) −

ζ

2 · tMST .

On the other hand, ifc(t) < L(G(t)), then we can use Lemma 4.3 to obtainL(G(t)) ≤ MST/(4 ε t).
This together with Lemma 6.3 imply that with probability at least1 − 2ρ we have

ĉ(t) ≤ E
[
ĉ(t)

]
+ ζ · L(G(t)) ≤ c(t) + ζ · MST

4 · ε · t ,

ĉ(t) ≥ E
[
ĉ(t)

]
− ζ · L(G(t)) ≥ c(t) − ζ · MST

2 · t − ζ · MST

4 · ε · t ≥ c(t) −
ζ

ε · tMST .

Finally, since all calls of algorithm Degree-Estimate workproperly with probability at least1 − 1/n2,
the lemma follows. 2

7 Reducing general case to all distances being powers of(1 + ε)

In all previous analyses we assumed that all distances are powers of(1 + ε). In this section we justify
this assumption and show how our analysis can be extended to the general case when all distances are
arbitrary real numbers in the interval[1, 2 n/ε].

If we have arbitrary distances then our analysis has to be modified because the identity (1) does
not hold anymore and, more importantly, Lemma 4.1 is invalid. The first problem can can be easily
fixed by observing that the use of identity (1) to arbitrary distances introduces at most a(1 + ε)-factor
error term. The other problem is slightly more complex because the set of verticesE explored by
the Clique-Tree-Traversal (1) depends on the starting vertex v and (2) might be different from the
connected componentC

(t)
v containingv in G(t).

Before we show how to deal with this problem let us consider the following modification of the
Clique-Tree-Traversal. In line 2 of the algorithm we consider edges of length(1 + ε) · t instead of
edges of lengtht.'

&

$

%

Clique-Tree-Traversal∗ (P, p, t, ε)
R = {p}; E = {p}; U = P \ {p}

while there is an edgee = (p, q) ∈ E((1+ε)·t) with p ∈ R andq ∈ U do
let (p, q) be the shortest such edge
E = E ∪ {q}; U = U \ {q}

if d(p, q) ≥ ε t then R = R ∪ {q}

13

Now we can easily prove that independent of the starting vertex v the inequalityC(t)
v ⊆ E ⊆

C
((1+ε)·t)
v holds. Using this observation we obtain with small modifications in the proof the following

result to be held with probability at least1 − ρ:

(1 − ζ) · c((1+ε)i) − ζ · MST

ε · (1 + ε)i
≤ ĉ((1+ε)i) ≤ (1 + ζ) · c((1+ε)i+1) + ζ · MST

ε · (1 + ε)i
. (3)

With this inequality we can prove that our estimatorn − W + ε ·
∑log1+ε W−1

i=0 (1 + ε)i · ĉ((1+ε)i) is
a (1+ 3 ε)-approximation ofMST. Adjusting the constants in the proof gives a(1 + ε)-approximation
with Õ(n/ε8) running time.

8 Every approximation algorithm of MST within any factor re-
quires time Ω(n)

It is easy to see that no algorithm witho(n) running time can approximate the cost of the minimum
spanning tree withinanyfactor. For a given approximation factorB let us consider two graphsG1 and
G2. G1 consists of a clique ofn−1 vertices having mutual distance1 and a single outlier with distance
2 B n to each other vertex. In graphG2 the distance between every pair of vertices is1. Clearly, the
minimum spanning tree of graphG2 has costn − 1 while the minimum spanning tree of graphG1 has
costn − 2 + 2 B n. In order to distinguish between the two graph one has to find the single outlier,
what cannot be achieved in timeo(n) with constant confidence probability. This yields the following
easy claim.

Theorem 3 Noo(n)-time algorithm can approximate the weight of the minimum spanning tree within
any factor. ut

References

[1] N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of clustering. Proc. 41st IEEE Symposium on
Foundations of Computer Science (FOCS), pages 240–250, 2000.

[2] T. Batu, F. Ergün, J. Kilian, A. Magen, S. Raskhodnikova, R. Rubinfeld, and R. Sami. A sublinear
algorithm for weakly approximating edit distance.Proc. 35th Annual ACM Symposium on Theory
of Computing (STOC), pages 316–324, 2003.

[3] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with appli-
cations tok-nearest-neighbors andn-body potential fields.Journal of the ACM, 42(1): 67–90,
January 1995.

[4] B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type complexity.
Journal of the ACM, 47(6): 1012–1027, November 2000.

[5] B. Chazelle, D. Liu, and. Magen. Sublinear geometric algorithms. Proc. 35th Annual ACM
Symposium on Theory of Computing (STOC), pages 531–540, 2003.

14

[6] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning tree weight
in sublinear time. Proc. 28th Annual International Colloquium on Automata, Languages and
Programming (ICALP), pages 190–200, 2001.

[7] A. Czumaj, F. Ergün, L. Fortnow, A. Magen, I. Newman, R. Rubinfeld, and C. Sohler. Sublinear-
time approximation of Euclidean minimum spanning tree.Proc. 14th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 813–822, 2003.

[8] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors,Handbook of
Computational Geometry, chapter 9, pages 425–461. Elsevier Science B.V., 1997.

[9] A. Frieze and R. Kannan. The regularity lemma and approximation schemes for dense problems.
Proc. 37th IEEE Symposium on Foundations of Computer Science (FOCS), pages 12–20, 1996.

[10] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding low-rank ap-
proximations.Proc. 39th IEEE Symposium on Foundations of Computer Science (FOCS), pages
370–378, 1998.

[11] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation.Journal of the ACM, 45(4): 653–750, July 1998.

[12] P. Indyk. A sublinear time approximation scheme for clustering in metric spaces.Proc. 39th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 154–159, 1998.

[13] P. Indyk. Sublinear time algorithms for metric space problems.Proc. 31st Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 428–434, 1999.

[14] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to find minimum
spanning trees.Journal of the ACM, 42(2): 321–328, March 1995.

[15] N. Mishra, D. Oblinger, and L. Pitt. Sublinear time approximate clustering.Proc. 12th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 439–447, 2001.

[16] S. Pettie and V. Ramachandran. An optimal minimum spanning tree algorithm.Journal of the
ACM, 49(1): 16–34, 2002.

[17] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, 2001.

[18] A. C. Yao. On Constructing minimum spanning trees ink-demensional spaces and related prob-
lems.SIAM Journal on Computing, 11: 721–736, 1982.

