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Abstract

Property testing is a relaxation of classical decision
problems which aims at distinguishing between functions
having a predetermined property and functions beingfar
from any function having the property. In this paper we
present a novel framework for analyzing property testing al-
gorithms with one-sided error. Our framework is based on a
connection of property testing and a new class of problems
which we callabstract combinatorial programs. We show
that if the problem of testing a property can be reduced to an
abstract combinatorial programof small dimension, then the
property has an efficient tester. We apply our framework to a
variety of classical combinatorial problems. Among others,
we present efficient property testing algorithms forgeomet-
ric clusteringproblems, for thereversal distanceproblem,
for graph and hypergraph coloringproblems. We also prove
that, informally, anyhereditary graph propertycan be effi-
ciently tested if and only if it can be reduced to an abstract
combinatorial program of small size.

Our framework allows us to analyze all our testers in
a unified way and the obtained complexity bounds either
match or improve the previously known bounds. We believe
that our framework will help to better understand the struc-
ture of efficiently testable properties.

1. Introduction

In this paper, we considerProperty Testingproblems,
that is, problems of determining whether a given function
has a predetermined property or is “far” from any function
having the property. A notion of property testing was first
explicitly formulated by Rubinfeld and Sudan [25], who
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were motivated mainly by its connection to program check-
ing. This notion arises naturally in the context of program
verification [7, 25], learning theory, and, in a more theo-
retical setting, in probabilistically checkable proofs [6]. In
[17], the study of property testing forcombinatorial objects
was initiated. In this and other more recent papers (see, the
excellent surveys in [13, 16, 24] and the references therein),
various algorithms have been proposed for testing graph and
hypergraph properties, for testing geometric properties, for
testing properties of metrics and matrices, for testing prop-
erties of regular languages and branching problems, for test-
ing monotonicity, properties of Boolean functions, etc.

A property testing algorithm (property tester) is a ran-
domized algorithm that distinguishes (with low error prob-
ability) between the functions that have a predetermined
property and functions that are “far” from any function hav-
ing the property. A good property tester is one that looks
only at a small fraction of the function values. There are
two error models for property testing algorithms. In this pa-
per we consider only theone-sided errormodel, in which
the tester mustacceptevery function that has the property
and mustreject with probability at least23 every function
that is “far” from having the property. To specify the notion
of being “far” from having a property, one has to define a
distance measure between functions. For a given parameter
ε, afunction isε-far from having a property if it has distance
bigger thanε from any function having the property.

Since property testing is a relaxation of the traditional
decision problem, it is often possible to design algorithms
that are much faster than their “classical” counterparts.
In particular, there exist many property testing algorithms
whose complexity is sublinear, or even independent of the
input size (see, e.g., [13, 16, 24]). This, in turn, resulted
in development ofsublinear-time approximation algorithms
(in the ”traditional” sense) for many classical combinato-
rial problems, including bisection, metric Max-cut, cluster-
ing problems, estimating the cost of the minimum spanning
tree, etc. (see, e.g., [4, 9, 10, 12, 14, 17, 19, 20]).



Although many efficient testing algorithms are known,
most of them have been analyzed using ad-hoc techniques
designed specially for the problem at hand. There is still in-
sufficient methodology and a very few tools that could help
in the analysis of efficient testers for new problems. Gol-
dreichet. al. [17] (see also Theorem 4.3 in [13]) presented
a fairly general framework (for the two-sided-error model;
see [18] for a characterization in a one-sided-error model)
of studying testing of certain graph partitioning problems.
They were able to apply this framework to some graph prob-
lems, including graph coloring, clique, cut, and bisection.
Another general approach, which uses the Szemerédi regu-
larity lemma, has been proposed recently for studying graph
problems and problems on matrices [3, 14, 21]. Even if this
method is very powerful (and in particular, it allowed to
prove that all first order graph properties without a quanti-
fier alternation of type∀∃ have property testers whose com-
plexity is independent of the size of the input graph), there
are still some limitations of this approach. Furthermore,
even though the bounds obtained by using the regularity
lemma lead to the complexity bounds that are often inde-
pendent from the input size, their dependence on the ap-
proximation parameterε is often enormous (see, the “tower”
bounds in [3] and superpolynomial lower bounds in [1]).

1.1. A Framework for Property Testing Problems

The main contribution of this paper is introduction of a
novel framework to analyze property testing algorithms. We
focus on functionspropertiesthat areclosed under taking
restrictions. That is, we consider properties of the follow-
ing form: If a functionf : D → R has a given property,
then so has the functionf|X (function f restricted toX),
for anyX ⊆ D. This class of properties captures a type
of monotonicity which is essential for almost all (if not all
non-trivial) one-sided errorproperty testers and it includes
many natural properties. For properties closed under tak-
ing restrictions, we consider property testing algorithms that
choose a sample of the domainS ⊆ D uniformly at random
and then verify iff|S has the property:�
�

�
�

SAMPLING PROPERTYTESTER

sample a setS of s objects fromD uniformly at random
if f|S has the propertythen acceptelsereject

Property testing algorithms of this kind are simple to im-
plement. The main difficulty with their use is the estimation
of the sample size: what is the right sample sizes (which
is thequery complexityof the tester) so that the algorithm
is a correct property tester? It is easy to see that for prop-
erties closed under taking restrictions, iff has the required
property then the algorithm always acceptsf . Thus, the
challenging part of the analysis is to estimate the value of

s such that iff is far from having the property, thenf will
be rejected with probability at least2

3 . Our framework is
designed to help in the analysis needed in this step.

In order to define our framework, we first introduce
briefly a notion of anabstract combinatorial program
(ACP). An ACP consists of aground set, which is typically
a set of basic objects underlying the property testing prob-
lem, a set ofbases, where each basis is a configuration of a
subset of the ground set, and aviolation functionthat veri-
fies the input constraints and specifies whether an element
violates a given basis or not. We call a basisfeasibleif it is
not violated by any object from the ground set. We investi-
gate a generic problem oftesting feasibility of an ACP, that
is, for a given ACP, we want to distinguish the case when
the ACP has a feasible basis from the case when any basis is
violated by at least anε fraction of objects from the ground
set. We present a sampling theorem (Theorem 1) that gives
a bound for the size of the random sample taken in the sam-
pling property tester when testing feasibility of ACPs. We
show that if a certain monotonicity property is satisfied by
an ACP, then the sample sizes depends only on the maxi-
mum size of the basis in the ACP. Thus, the sample size is
independent of the size of the ground set.

The main idea behind introducing abstract combinato-
rial programs is that for many properties ACPs capture the
structure essential for testing the property. Therefore, in
our framework we reduce property testing of a given prop-
ertyQ to the problem of testing feasibility of related ACPs.
We show that propertyQ (closed under taking restrictions)
can be tested efficiently if thereexistsareductionto abstract
combinatorial programs that satisfies two properties:

• the reduction isdistance preserving, that is, any func-
tion that is far away fromQ is mapped to an ACP in
which each basis is violated by many objects from the
ground set, and
• the reduction isfeasibility preserving, that is, if the

function restricted to a sample setS has propertyQ,
then the subset of the ground set corresponding toS
has a feasible basis in the ACP.

To demonstrate the applicability of our framework, we
show its generality by applying it to a variety of problems.
We illustrate our framework on problems from geometric
optimization, computational biology, and on graphs and hy-
pergraphs. An important feature of the framework is that it
provides a powerful tool that allows to concentrate on the
combinatorial structure of the problem at hand rather than
on probabilistic arguments about sampling. For example,
our analysis of clustering has a similar flavor as the previous
analysis of this problem in [2]. What distinguish our anal-
ysis, however, is that we do not have to deal with the prob-
abilistic analysis of the sampling required by the tester that
actually hides the combinatorial structure of the problem.
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Problem Source Query complexity

k-diameter [2] Ω((1/β)(d−1)/4); Ω(
√
n) for β = 0

clustering [2] Õ(k2 d ε−1 (2/β)2 d); only inL2 metric

in Rd this paper Õ(k ε−1 (1 + 2/β)d); anyLp metric

this paper Õ(k d ε−1 (2/β)d−1); anyLp metric

sorting by reversals this paper O(k/ε)

k-coloring [11] (Õ(k2 `2/ε2))`

of `-uniform [5] (Õ(k`−1/ε2))`

hypergraphs this paper (Õ(k `/ε2))`

Table 1. Summary of selected specific results.

Instead, we can deal with pure combinatorial arguments and
hence, simplify the proof to obtain a stronger bound for the
complexity of the tester. Our tester for hypergraphs color-
ing is also of similar flavor (compare to [4, 5, 11], where
more complicated arguments are used and weaker bounds
are obtained).

In this paper, we first introduce abstract combinatorial
programs and show that they are testable if certain require-
ments are satisfied. Then, we present a simple version of
our main theorem and we illustrate it on the examples of
the diameter clustering problem and the sorting by rever-
sals problem. Then, we present our full framework and dis-
cuss its applicability on the example of hypergraph coloring
problem, in which the new framework leads to compact and
elegant proofs. In the last section, we show that for any
testable hereditary graph property there exists a reduction
to ACPs that proves that the property is testable.

We can apply our framework to some other combinato-
rial problems. However, due to space limitations we only
consider the problems listed in Table 1.

2. Property Testing and Abstract Combinato-
rial Programs

Throughout the paper, we denote byD a finite set called
domainand byR a set calledrange. By F we denote the
set of functions fromD toR and byF∗ be the set of “re-
strictions” of functions inF , that is,F∗ = {f : X → R :
X ⊆ D}. A setQ ⊆ F∗ is called aproperty of F (or
a property defined on the elements ofF∗). A propertyQ
of F is calledclosed under taking restrictionsif f|S ∈ Q
holds for everyf ∈ Q and anyS ⊆ D.

We assume there is given a (problem dependent)distance
measureς : F × F → [0, 1] that measures the distance be-
tween any two functions inF (it is not required forς to be
a metric). Typically, our distance measure will be therel-
ative distance between the functions(see, e.g., [6, Defini-
tion 4.1]), that is, for any two functionsf, g ∈ F , we define
ς(f, g) = Prx∈D[f(x) 6= g(x)], where the probability is
taken according to the uniform probability distribution over

D. Given a real numberε, 0 ≤ ε < 1, we say a function
f ∈ F is ε-far from (having a property)Q if ς(f, g) > ε for
any functiong ∈ Q∩F . An ε-tester for propertyQ is an al-
gorithm that (i) accepts any functionf ∈ Q and (ii) rejects
with probability greater than or equal to23 any function that
is ε-far fromQ.

We assume the access to any functionf ∈ F is given by
anoracle that can access values off . Then the number of
the queries to the values of the input functionf ∈ F is the
query complexityof the property tester.

2.1. Abstract Combinatorial Programs

In this section we describe the notion ofabstract com-
binatorial programs. An abstract combinatorial program
(ACP) is defined by an abstract set of objects, which we call
a ground set, a set ofbases, which consists of some “ba-
sic” configurations of subsets of the ground set, and a set of
constraints described by aviolation function.

Theground setdepends on the problem under consider-
ation (and in all our applications is independent of the input
instance). For example, this may be a vertex set of a graph
or a set of halfspaces describing a linear program.

A set ofbasesconsists of some “basic” configurations of
subsets of the ground set. And so, for example, if the ground
set is a vertex set of a graph, then a basis may be defined as
a subset of vertices, or as a subset of verticesX together
with an associatedk-vertex-coloring ofX. If the ground
set is a set of halfspaces inRd defining a linear program,
then we could take as the set of bases the intersection of
any d halfspaces (which is known to define a point inRd

in a non-degenerated case). Because of technical reasons,
we shall always assume that every basis is defined as a pair
(X, `), whereX is a subset of the ground set and` is an
index describing a configuration ofX (for example, in the
graph-coloring example above, it is a coloring of vertices in
X). Unlike the ground set, the set of bases usually depends
on the input instance.

A violation functionis used to determine which bases are
feasible. Typically, the violation function depends on the
input instance. To define a violation function, for example,
in the linear programming case, we can say that a given
halfspaceH violates a given basis if and only if the basis
determines a pointp which is not contained inH. For the
graph-coloring example above one can define the violation
function such that a vertexv violates a basis (colored vertex
setX) if and only if in the input graph thek-coloring ofX
cannot be extended to a properk-coloring ofX ∪ {v}.

Formally, we define an abstract combinatorial program
in the following way.

Definition 2.1 Let C be a finite set (called aground set).
An abstract combinatorial program(ACP) overC is a pair
(B, $), where
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• B ⊆ {(K, `) : K ⊆ C, ` ∈ N} is a set ofbases, and
• $ : B × C → {true, false} is a function defining

whether a basisb ∈ B is violatedby an elementc ∈ C.

A basisb is feasibleif it is not violated by anyc ∈ C, that is,
if $(b, c) = false for everyc ∈ C.

An abstract combinatorial program isfeasibleif it has a
feasible basis.

We study abstract combinatorial programs in the context of
deciding whether a given ACP isfeasibleor not. In our
framework we shall use also the following definitions.

Definition 2.2 (ACP Dimension) An abstract combina-
torial programA = (B, $) overC hasdimension(δ, %) if
for all b = (K, `) ∈ B it holds that|K| ≤ δ and` ≤ %.

Definition 2.3 (Self-feasible bases) Let (B, $) be an
abstract combinatorial program. We say a basisb =
(K, `) ∈ B is coveredby a subsetC∗ ⊆ C if K ⊆ C∗.
We say that a basisb is feasiblefor a subsetC∗ ⊆ C, if
no c ∈ C∗ violatesb. We say a subsetC∗ ⊆ C contains a
self-feasible basisif there is a basisb that is covered byC∗

and that is feasible forC∗.

Definition 2.4 ((Semi-)monotone ACPs) A feasible ab-
stract combinatorial program(B, $) over C is monotone
if any subsetS ⊆ C contains a self-feasible basis. Lets
be any integer. A feasible abstract combinatorial program
(B, $) overC is s-semi-monotoneif any subsetS ⊆ C with
|S| ≥ s contains a self-feasible basis.

2.2. Testing Abstract Combinatorial Programs

In this section we consider the problem of testing ACPs.
An abstract combinatorial program isε-far from feasibleif
any basis is violated by more thanε · |C| objects from the
ground setC. An ε-testerfor ACPs is an algorithm that (i)
accepts every feasible ACP and (ii) rejects with probability
at least23 any ACP that isε-far from feasible. The following
key theorem characterizes testable ACPs.

Theorem 1 (Testing ACPs)Let C be a finite ground set
and letACP(δ,%)(C) be the set of abstract combinatorial
programs overC of dimension(δ, %). Let s = Θ(ε−1 · (δ ·
ln(δ/ε) + ln %)). Then, the algorithm that takes as its input
an ACPA ∈ ACP(δ,%)(C), samples a setS of s objects from
C uniformly at random, and acceptsA if S contains a self-
feasible basis (and rejects otherwise), satisfies the following
properties:

1. If A is ε-far from feasible, thenA is rejected with prob-
ability at least2

3 .
2. If A is feasible and it is either monotone or iss-semi-

monotone, thenA is accepted. �

3. Simple Reductions to ACPs

Our main motivation to introduce abstract combinatorial
programs was to study their relation to property testing al-
gorithms. In this section, and later in Section 4, we show
how the framework described in Section 2.1 can be applied
to obtain various efficient property testers, where in many
cases the structure of the problems on the first glace does
not seem to fit into the framework of abstract combinato-
rial programs. We present a rather general reduction-based
technique that can be used to prove the correctness of var-
ious property testing algorithms by reductions to abstract
combinatorial programs.

Our approach of using the framework of abstract com-
binatorial programs to study property testers of functions
f ∈ F is to reduce testing off to testing certain ACP. In
the simplest case this reduction is done in a rather easy way,
because there is a one to one correspondence between the
domain off and the ground set of the ACP. A more com-
plicated reduction requires some manipulations with the
ground set, bases, and the violation function. Therefore,
for simplicity of presentation, we first describe the simpler
model and only later, in Section 4, discuss its extensions to
the full framework.

The following theorem describes a simple version of our
framework.

Theorem 2 LetF be a set of functions from a finite setD
to a setR and letQ be a property ofF that is closed un-
der taking restrictions. Let0 < ε < 1. LetACP(δ,%)(D)
be the set of abstract combinatorial programs overD of di-
mension(δ, %). Let s = Θ(ε−1 · (δ · ln(δ/ε) + ln %))). If
for everyf ∈ F there exists an abstract combinatorial pro-
gramAf ∈ ACP(δ,%)(D) such that:

(Distance Preserving) if f is ε-far fromQ thenAf is ε-far
from feasible and

(Feasibility Preserving) for everyS ⊆ D, if S contains no
self-feasible basis thenf|S /∈ Q,

then the following algorithm is anε-tester forQ with the
query complexity ofΘ(ε−1 · (δ · ln(δ/ε) + ln %))) :�
�

�
�

TESTER(f )
Sample a setS of s elements inD uniformly at random
if f|S ∈ Q then acceptf elserejectf

Furthermore, the same algorithm is anε-tester forQ if the
Feasibility Preserving property is replaced by the following
s-semi Feasibility Preservingproperty:

for everyS ⊆ D with |S| ≥ s, if S contains no self-
feasible basis thenf|S /∈ Q.

Proof : We first observe that the query complexity of
TESTER(f ) follows directly from the fact that TESTER(f ) queries
for exactlys values off .
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In order to show that TESTER(f ) is anε-tester forQ, we have
to prove that any function having propertyQ is accepted by the
tester and any function that isε-far from having propertyQ is re-
jected with probability at least2

3
. SinceQ is closed under taking

restrictions, iff ∈ Q then for anyX ⊆ D (and in particular, for
X = S) f|X ∈ Q. This immediately implies that everyf ∈ Q
is accepted by TESTER(f ). Therefore, it remains to prove that if
f is ε-far fromQ, then the algorithm rejects the input with proba-
bility greater than or equal to2

3
. We prove this by relating ACP-

TESTER(Af ) with TESTER(f ) and by applying Theorem 1.
By the Distance Preserving property, iff is ε-far fromQ then

Af is ε-far from feasible. Furthermore, by Theorem 1, ifAf is
ε-far from feasible then ACP-TESTER(Af ) rejectsAf with prob-
ability at least2

3
. Af is rejected by ACP-TESTER(Af ) only if the

chosen sample setS contains no self-feasible basis. But now, ac-
cordingly, either the Feasibility Preserving or thes-semi Feasibil-
ity Preserving property implies that ifS contains no self-feasible
basis thenf|S /∈ Q. Therefore, we can conclude that iff is ε-far
fromQ thenf|S /∈ Q with probability at least2

3
, and hence,f is

rejected by TESTER(f ) with probability at least2
3
. This implies

that TESTER(f ) is a properε-tester forQ. �

Let us mention briefly that the ACP formulation is usu-
ally not equivalent to the problem under consideration: It
is possible that the ACP has a self-feasible basis for a sub-
setS of its ground set butf|S does not have propertyQ.
For example, this is the case for the ACP formulations of
the diameter clustering problem and the hypergraph color-
ing problem presented later in this paper.

3.1. Testing Diameter Clustering

In this section, we demonstrate how to apply our frame-
work of testing ACPs to test the classical problem ofdiam-
eter clusteringin Rd. For a given point setX in Rd, the
diameterof X is the maximum distance between any two
points inX. The (decision version of the)diameter clus-
tering problem (see, e.g., [2] and [15, Problem MS9]) is to
decide if an input point setP inRd can be partitioned intok
sets (calledclusters) such that the diameter of each cluster
is bounded from above by a given real number1. In this
paper, we mainly focus on the problems under theL2 met-
ric (Euclidean), but we show also that our arguments can be
carried over to an arbitraryLp metric,p ≥ 1.

We consider abicriteria relaxation of the diameterk-
clustering problem introduced by Alonet. al. [2]. We use
the following notion (notice that Alonet. al. [2] proved that
without using the bicriteria relaxation, that is, whenβ = 0,
there is noε-tester having the query complexity ofo(

√
n)

even in the most basic case ofk = 1):

Definition 3.1 [2] LetP be a point set inRd andk be a pos-
itive integer. We sayP is (ε, β)-far from beingk-clusterable
if for any partition ofP into setsC0, C1, . . . , Ck satisfying
dist(x, y) ≤ 1 +β for all 1 ≤ i ≤ k andx, y ∈ Ci, it holds
thatC0 > ε · |P |.

With this definition, our goal is to design an efficient
property tester that for givenk, ε andβ > 0 (i) always ac-
cepts any point set that isk-clusterable and (ii) rejects with
probability at least23 any input that is(ε, β)-far from being
k-clusterable.

For any non-empty setX of points in Rd with
dist(x, y) ≤ 1 for everyx, y ∈ X, the kernelkern(X)
ofX is defined as the intersection of unit balls with centers
at the points inX.

Let P be a point set inRd, k a positive integer, andβ
a positive real. LetX1, . . . , Xk be any disjoint subsets of
P . We say a pointp ∈ P is β-coveredby {X1, . . . , Xk}
if for somei and someq ∈ Xi we havep ∈ kern(Xi) and
dist(p, q) ≤ β.

To use the framework from Theorem 2 we define domain
D to be the set{1, . . . , n}, rangeR to be the setRd, set of
functionsF to map the points to their locations inRd (i.e.,
from D to R), and propertyQ to correspond to all func-
tions inF∗ that represent point sets that are clusterable into
at mostk-clusters such that any pair of points in each cluster
is at distance at most1. Now, in order to use our framework
from Theorem 2 we have to describe for any input setP of
n points inRd an ACPAP overD that satisfies the precon-
ditions of the theorem.

The bases inAP are formed byk sets of points (ground
set elements), one set for each cluster. (In the remainder of
this section we assume that a basis is given as a partition of
a set of points intok sets rather than a set of points with an
encoding of such a partition.) The idea of introducing the
sets associated with the clusters is to represent each cluster
by a small set of pointsX for which the kernel will approxi-
mate the kernel in the real clustering. We want to define the
bases such that if the input point setP is k-clusterable, then
there is a basis{X1, . . . , Xk} such that each pointp ∈ P
is β-covered by{X1, . . . , Xk}. On the other hand, we de-
fine the bases such that if anyk-clustering ofP has diam-
eter greater than1 + β, then for any{X1, . . . , Xk} there
is a pointp ∈ P that is notβ-covered by{X1, . . . , Xk}.
These two properties will then be used to distinguish be-
tween point sets that arek-clusterable and those for which
anyk-clustering has diameter greater than1 + β.

Bases for diameter clustering: We recursively define the
set of bases as follows:

• {∅, . . . , ∅} is a basis (where{∅, . . . , ∅} is the set con-
sisting ofk empty sets)
• if b = {X1, . . . , Xk} is a basis then{X1, . . . , Xi−1,
Xi ∪ {p}, Xi+1, . . . , Xk} is also a basis ifp ∈ P is a
point that is notβ-covered byb and (i) eitherXi = ∅
or (ii) p ∈ kern(Xi).

A simple volume argument gives us the following result:
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Lemma 3.1 The ACP defining diameter clustering has di-
mension(k · (1 + (2/β))d, kk·(1+(2/β))d). �

Violation function for diameter clustering: A basis b is
violatedby a point p if p is not β-covered by b.

Now, we show that the Distance Preserving and thes-
semi Feasibility Preserving properties of Theorem 2 are sat-
isfied with s = Θ(k · ε−1 · (1 + (2/β))d · ln(k ε−1 (1 +
(2/β))d)).

Distance Preserving Property: The proof is by contra-
diction. Let us assumeP is (ε, β)-far from being k-
clusterable and suppose there is a basisb = (X1, . . . , Xk)
that is violated by less thanε n points. We delete all points
in P that violateb and letP ∗ be the remaining point set.
Since all the points inP ∗ areβ-covered byb, for each point
p ∈ P ∗ there is anXi with p ∈ kern(Xi) and for which
there existsqp ∈ Xi with dist(p, qp) ≤ β. We assign each
such a pointp to the cluster corresponding toXi. Observe
that all points in the cluster are contained inkern(Xi). Fur-
thermore, for any pointr ∈ kern(Xi) the distance between
p andr is not larger than the distance fromp to qp plus the
distance fromqp to r. Hence, we can conclude that the dis-
tance between two points in the cluster (both of which must
be contained inkern(Xi)) is at most1 + β. This implies
thatP ∗ can be partitioned intok clusters of diameter at most
1 + β each, which is a contradiction.

s-semi Feasibility Preserving Property: Let S be a set
of points with|S| ≥ s that contains no self-feasible basis.
Then, every basisb that is covered byS is violated by cer-
tainp ∈ S. If p violatesb, thenp is either outside the kernel
of every cluster inb or p is in some kernel but the distance
to each other point defining the corresponding cluster is big-
ger thanβ. In the latter case, we can obtain a new basisb′

covered byS by addingp to b. Sinceb′ is also violated
by some point inS and the size of each basis is bounded,
we can conclude inductively that any basisb is violated by
some pointq ∈ S that is outside the kernel of every clus-
ter. But by our discussion about the bases, this implies that
S is not k-clusterable. This yields thes-semi Feasibility
Preserving property.

Now, by our discussion above, we can apply Theorem 2
to obtain a property tester for the diameter clustering prob-
lem under theL2 metric having the query complexity of
Õ(k · ε−1 · (1+(2/β))d). Actually, one can slightly modify
our arguments to obtain even a stronger result that holds for
arbitraryLp metrics.

Theorem 3 There is a property tester for the diameter clus-
tering problem under theLp metric, p ≥ 1, that for any
β, 0 < β ≤ 1/d, always accepts a feasible input, with

probability at least23 rejects any input which is(ε, β)-far
from beingk-clusterable, and has the query complexity of
Õ(k · d · ε−1 · (2/β)d−1). �

3.2. Testing Reversal Distance

The study of genome comparisons and rearrangements is
one of the major topics in modern molecular biology. Math-
ematical analysis of genome rearrangements was initiated
by Sankoff, who introduced thesorting by reversals prob-
lem(see, e.g., [22, Chapter 10]). In sorting by reversals one
asks to compute thereversal distanceof a given permuta-
tion, which is the minimum number ofreversalsneeded to
be performed to transform the permutation into the identity
permutation. Because of its applications in computational
biology, sorting by reversals has been widely studied in the
last years (see, e.g., [22, 23]).

In this paper, we introduce the notion of property testing
in the context of sorting by reversals. We design a property
testing algorithm that verifies if a given permutation has re-
versal distance at mostk or is ε-far from having reversal
distance at mostk. We apply our framework to show that it
has the query complexity of̃O(k/ε).

Let Sn denote the set of all permutations of{1, . . . , n}.
A reversal%〈i, j〉 of an interval [i, j], 1 ≤ i ≤ j ≤
n, is the permutation that for each permutationπ =
(π1, . . . , πn) ∈ Sn, %〈i, j〉 has the effect of reversing the
order of (πi, πi+1, . . . , πj) and transformingπ into π ·
%〈i, j〉 = (π1, . . . , πi−1, πj , πj−1, . . . , πi, πj+1, . . . , πn)
(see, e.g., [22, Chapter 10]). Given a pair of permutations
π, σ ∈ Sn, the reversal distancebetweenπ andσ is the
minimum number of reversals needed to transformπ into σ
(that is, the minimum numberk such that there exists a se-
quence of reversals%1, %2, . . . , %k with π · %1 · %2 · · · %k =
σ). The reversal distance betweenπ and the identity permu-
tation id = (1, 2, . . . , n) is called thereversal distanceof
π. Thesorting by reversalsproblem is for a given permuta-
tion π ∈ Sn to find the reversal distance ofπ.

To apply our framework in the context of sorting by re-
versals, we have to consider also restrictions of permuta-
tions. We sayπ = (π1, . . . , πn) ∈ Sn is a restriction
of a permutationπ′ = (π′1, . . . , π

′
n) ∈ Sn if for each i,

1 ≤ i ≤ n, eitherπi = π′i or πi = undefined. Now, to apply
our framework, we define domainD and rangeR to be both
equal to{1, . . . , n}, and we defineF = Sn andF∗ to be
the set of restrictions of permutations inSn. We extend the
reversal distance to functions inF∗ in the following natural
way: A restriction of a permutationπ ∈ F∗ hasreversal
distanceless than or equal tok if there existk reversals
%1, . . . , %k such that ifπ · %1 · · · %k = σ = (σ1, . . . , σn),
then for any1 ≤ i ≤ n, eitherσi = i or σi = undefined.

We define thek-reversal distance propertyQ to be the
set of all permutationsπ ∈ F∗ that have reversal distance
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smaller than or equal tok. One can easily verify thatQ is
closed under taking restrictions.

In order to design a property testing algorithm we use
the relative distance in our context. We say a permutation
π ∈ Sn is ε-far from having reversal distance smaller than or
equal tok if for any sequence ofk reversals%1, %2, . . . , %k,
permutationπ ·%1 ·%2 · · · %k disagrees with the identity per-
mutation on more thanε · n places.

Theground setC in ACPs used in our framework is iden-
tical with the domain{1, . . . , n} and, for simplicity of no-
tation, we identify eachi ∈ C with πi.

Let us notice that we can encode an interval[i, j] by πi
andπj (using the fact thatπ−1(πi) = i andπ−1(πj) =
j). If we apply a reversal% to π thenπi andπj inducethe
interval[(π·%)−1(πi), (π·%−1)(πj)]. We denote the interval
induced by two elementsπi andπj by [πi, πj ].

We say a reversal%〈r, s〉 splitsan interval[πi, πj ] if ei-
ther i < r ≤ j or if i ≤ s < j. We generalize this notion
to k-reversals: A sequence ofk reversals%1, . . . , %k splits
an interval[πi, πj ] if there exists̀ , 0 ≤ ` < k, such that
%`+1 splits [(π · %1 · · · %`)−1(πi), ((π · %1 · · · %`)−1(πj)]. If
%1, . . . , %k does not split[πi, πj ] then we say%1, . . . , %k is
safefor [πi, πj ]. Notice that if%1, . . . , %k is safe for[πi, πj ],
then each of the reversals%1, . . . , %k either entirely contains
[πi, πj ] or it does not contain anyπs ∈ [πi, πj ]. There-
fore, in this case, after applying%1, . . . , %k the positions of
πi+1, . . . , πj−1 are determined by the position ofπi andπj .

Bases for thek-reversal property: Our goal is to define
a basis as a set of2k + 1 intervals induced by pairs of the
ground set elements of the basis. For each such a set we
then consider only reversals that are safe for these intervals.

Let π = (π1, . . . , πn) ∈ Sn. A setI of 2 k+ 1 intervals
is a valid basis for the reversal distance problem if there is
a sequence%1, . . . , %k of k reversals such that

• (π · %1 · · · %k)−1(πi) = πi and(π · %1 · · · %k)−1(πj) =
πj for each interval[πi, πj ] ∈ I, and
• no interval[πi, πj ] ∈ I is split by%1, . . . , %k.

If the set of intervals is a basisb, then we associate with it
any such ak-reversal%b = %1 · · · %k (ties broken arbitrar-
ily). It is easy to verify that the ACPs constructed this way
have dimension(4k + 2, (4k + 2)4k+2).

Violation function for the k-reversal property: Let b be
a basis and let%b = %1, . . . %k be thek-reversal associated
with b. We sayb is violated by πi ∈ C if (π·%b)−1(πi) 6= πi.

Distance and Feasibility Preserving Property: With the
above definition the Distance Preserving property is triv-
ially satisfied. The difficult part is to prove the Feasibil-
ity Preserving property. LetS ⊆ C be a set of ground

set elements and let% = %1 · · · %k be ak-reversal with
(π · %)−1(πi) = πi for eachπi ∈ S. We show that in
this caseS has a self-feasible basis. Let us consider a max-
imal set of maximal intervals not split by%. We observe
that this set has cardinality at most2k + 1 since a single
reversal can cause splits at no more than 2 places. We
conclude that these intervals form a basisb. It remains to
prove that this basis is not violated (thek-reversal associ-
ated with the basis does not have to be identical with%).
By our construction of the intervals (i.e., by the maximal-
ity of the intervals) eachπi ∈ S is contained in a safe in-
terval. Therefore, its position after applying the reversal is
uniquely determined by the positions of the endpoints of the
interval. LetSI ⊆ S denote the set of endpoints of intervals
of the basisb. Sinceb is a basis there is ak-reversal%b with
(π · %b)−1(πi) = πi = (π · %)−1(πi) for eachπi ∈ SI .
Since the endpoints are mapped to the identical positions
when%b and% are applied toπ, we can conclude that each
other point inS is also mapped to the identical position.
Hence, noπi ∈ S violatesb and the Feasibility Preserving
property is satisfied. We conclude:

Theorem 4 There exists anε-tester for thek-reversal dis-
tance property with query complexitỹO(k/ε). �

4. Full Framework of Testing Algorithms via
Testing ACPs

In Section 3, we described a framework for testing prob-
lems via testing abstract combinatorial programs. The
framework presented in that section has a few unnecessary
assumptions that we want to address now.

The first restriction of the framework described in Sec-
tion 3 is that the ground setC in ACPs is required to be iden-
tical with the domainD of the functions. In order to avoid
this restriction, we introduce the notion ofinterpretation.
An interpretationof C in D is a functionI that maps each
subset of the ground setC to a subset of the domainD of
the functions we consider. For example, when we consider
graph properties we identify the ground set for the ACPs
with the set of vertices of the graph and the interpretation
gives us for each set of vertices the submatrix correspond-
ing to the induced subgraph. Since interpretations affect the
query complexity of the tester we need another notion: We
say that an interpretationI of C in D is g-boundedif for ev-
eryX ⊆ C it holds |I(X)| ≤ g(|X|) whereg is a function
g : N→ N.

We adapt the definition of the property being closed un-
der taking restrictions to interpretations in the following
way: A propertyQ is closed under taking restrictionsof
I, if ∀f ∈ Q, ∀S ⊆ D it holds thatf|I(S) ∈ Q.

The main idea behind introducing these notions is to al-
low a more general analysis of algorithm TESTER(f) from
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Section 3 via analyzing ACPs. As in the proof of Theo-
rem 2, we want to test an input functionf ∈ F via testing a
related ACPAf . SinceAf is allowed to be an ACP over an
arbitrary ground setC, we use the interpretationI of C in D
to link the domains off andAf in the reduction. The notion
of g-bounded functions is used to describe the size of the
random sample in the tester. That is, if the interpretationI
is g-bounded and if in our analysis we requireAf to sample
a setS of s elements inC, then we shall require to sample
setI(S) from the domainD of f , where|I(S)| ≤ g(s).

In Theorem 2 we used the Distance Preserving property
that requires that if a functionf is ε-far from propertyQ
then the ACP isε-far from feasible. In general, however,
one can parameterize this property and require the(ε, λ)-
Distance Preservingproperty: if f is ε-far from property
Q then the ACP is λ-far from feasible.

Summarizing, in the framework defined above, it is easy
to see that Theorem 2 can be generalized to the following
theorem, which describes the main property of our frame-
work in its full generality.

Theorem 5 LetF be the set of functions from a finite setD
to a setR, and letQ be a property ofF . Let0 < ε < 1. Let
C be a finite ground set and letACP(δ,%)(C) be the set of
abstract combinatorial programs of dimension(δ, %) over
C. Let I : 2C → 2D be ag-bounded interpretation ofC in
D such thatQ is closed under taking restrictions ofI. Let
0 < λ ≤ 1 and lets = Θ(λ−1 · (δ · ln(δ/λ) + ln %)).

If for everyf ∈ F there exists an abstract combinatorial
programAf ∈ ACP(δ,%)(C) such that:

((ε, λ)-Distance Preserving) if f is ε-far fromQ then any
basis inAf is λ-far from feasible and

(Feasibility Preserving) for everyS ⊆ C, if S contains no
self-feasible basis thenf|I(S) /∈ Q,

then algorithmTESTER(f ) is an ε-tester forQ with the
query complexity ofg(s) = g(Θ(λ−1 ·(δ · ln(δ/λ)+ln %))).

Furthermore, the same algorithm is anε-tester forQ if
the Feasibility Preserving property is replaced by the fol-
lowing s-semi Feasibility Preservingproperty: for every
S ⊆ C with |S| ≥ s, if S contains no self-feasible basis
thenf|I(S) /∈ Q. �

5. Testing Hypergraph Coloring

In this section we demonstrate our framework from The-
orem 5 to design a very efficientproperty tester for testing
hypergraph coloring. A hypergraphis a pairH = (V,E)
with a finite vertex setV and the edge setE ⊆ 2V . A hyper-
graphH is `-uniform if |e| = ` for all e ∈ E. A k-coloring
of a hypergraphH is an assignmentχ : V → {1, . . . , k}. A
k-coloring isproper if no edge inE is monochromatic, that
is, if for every edgee ∈ E there arev, u ∈ e with χ(v) 6=

χ(u). A hypergraph having a properk-coloring is called
k-colorable. Thek-coloring problem for hypergraphs is to
decide whether a given hypergraph isk-colorable. We as-
sume that à -uniform hypergraph withn vertices is rep-
resented by its̀-dimensional adjacency matrix. We say a
hypergraph isε-far from having a properk-coloring if one
has to change more thanε n` entries in the adjacency matrix
to obtain a hypergraph with a properk-coloring.

To apply our framework to hypergraph coloring, we
identify the ground setC with the set of verticesV of the
input hypergraphH = (V,E). SinceH is represented by its
adjacency matrix, we define the interpretationI to map each
set of vertices to the submatrix induced by these vertices.
That is, for anyW ⊆ V , we haveI(W ) = W × · · · ×W .
Clearly, the interpretation isN `-bounded.

Let 〈S, χ〉 be a pair withS ⊆ V and χ a properk-
coloring of vertices inS. We say a vertexv is i-colorable
with respect to〈S, χ〉 if for every e ∈ E with v ∈ e, either
(i) there exists a vertexu ∈ (S ∩ e) with χ(u) 6= i or (ii)
there exists a vertexw ∈ e \ (S ∪ {v}).

In order to define bases we define a potential function
for partial colorings. The potential function is a measure
for the weighted number of “constraints” on the colors of
the uncolored vertices in the hypergraph. For any integers
i, j, let us define

Λi,j〈S, χ〉 :=
{
X ⊆ V : |X| = `− j & (1)

∃e ∈ E (X ⊆ e & ∀u∈e\X χ(u) = i)
}
.

Then, thepotentialof 〈S, χ〉 is defined as

ΦH(〈S, χ〉) :=
k∑
i=1

`−1∑
j=1

nj−1 · |Λi,j〈S, χ〉| .

Next, we introduce the notion ofconflictandheavyver-
tices. A vertexv ∈ V \ S is a conflict vertexwith re-
spect to〈S, χ〉 if for every i, 1 ≤ i ≤ k, v is not i-
colorable. A vertexv ∈ V \ S is heavywith respect to
〈S, χ〉 if (i) there is an i, 1 ≤ i ≤ k, such thatv is
i-colorable and (ii) for everyi, 1 ≤ i ≤ k, if v is i-
colorable andχ′ is the extension ofχ to S ∪ {v} by col-
oringv with color i then∆ΦH(v, i, 〈S, χ〉) > εn`−1

3 , where
∆ΦH(v, i, 〈S, χ〉) := ΦH(〈S ∪ {v}, χ′〉)− ΦH(〈S, χ〉).

The bases for the ACPs correspond to colorings of sub-
sets of vertices.

Bases fork-coloring:

• {∅, 0} is a basis (where0 is the encoding of the color-
ing of the empty set of vertices) and
• if b = (K,χ) is a basis,v is aheavyvertex forb and
χ∗ is an encoding of the previous coloringχ of K ex-
tended by a proper coloring ofv, then(K ∪ {v}, χ∗)
is a basis.
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Violation function for k-coloring: A basis b = (K,χ) is
violatedby a vertex v ∈ V if either v is a heavy vertex for
〈K,χ〉 or v is a conflict vertex for 〈K,χ〉.

It is easy to prove that the ACPs defined above have di-
mension(3 k `/ε, k3 k `/ε) and that the corresponding reduc-
tion is feasibility preserving. The difficult part is to prove
the distance preserving property:

Lemma 5.1 ((ε, ε/3)-Distance Preserving property) Let
H = (V,E) be a hypergraph that isε-far from being
k-colorable and letS ⊆ V be any set of properlyk-colored
vertices with a proper coloringχ. Then, eitherV has more
thanε n/3 conflict vertices with respect to〈S, χ〉 or V has
more thanε n/3 heavy vertices for〈S, χ〉.

Proof : The proof is by contradiction. Let us assume there are
at mostε n/3 heavy vertices and at mostε n/3 conflict vertices
with respect to〈S, χ〉. Then, we show that it is possible to ex-
tend coloringχ of S to a coloringχ∗ of V that has at mostε n`

monochromatic edges inH. This will yield contradiction.
We defineχ∗ as follows:

χ∗(v) =



χ(v) for anyv ∈ S
1 if v ∈ V \ S andv is either a conflict vertex

or a heavy vertex with respect to〈S, χ〉
i if v ∈ V \ S is i-colorable with respect to〈S, χ〉

andi minimizes (over all possible choices of
proper coloringi) the increase in potential,
i.e.,∆ΦH(v, i, 〈S, χ〉) ≤ ∆ΦH(v, j, 〈S, χ〉)
for any proper coloringj of v

Now, we give an upper bound on the number of monochromatic
edges in coloringχ∗ ofH. Let us first consider heavy and conflict
vertices. By our assumption, the number of such vertices is up-
per bounded by2

3
ε n. Therefore, the number of edges incident to

these vertices is upper bounded by2
3
ε n`. Hence, it is sufficient to

show that there are at most1
3
ε n` monochromatic edges inH that

are not incident to heavy or conflict vertices.
Let us fix a vertexv that is neither heavy nor conflict. We show

that there are at most1
3
ε n`−1 monochromatic edges incident to

v in H, which by our arguments above will complete the proof.
Vertexv is colored inχ∗ with color i such that (i)v is i-colorable
with respect to〈S, χ〉 and (ii) the potential function satisfies

∆ΦH(v, i, 〈S, χ〉) ≤ 1

3
ε n`−1 . (2)

Let χ′ be the extension of coloringχ to S ∪ {v} by coloring
v with color i. Notice that in order for an edgee incident tov to
be monochromatic in coloringχ∗, for every vertexu ∈ (e ∩ S) it
must holdχ(u) = i. This motivates us to define the following set

Evi,j〈S, χ〉 := {e ∈ E : v ∈ e, |e \ S| = `− j, ∀u∈e∩Sχ(u) = i}.

Thus, an edgee incident tov may be monochromatic in color-
ing χ∗ only if e ∈

⋃`−2
j=0 E

v
i,j〈S, χ〉 (notice thatχ∗ ensures that

Evi,`−1〈S, χ〉 = ∅). We show that
∣∣∣⋃`−2

j=0 E
v
i,j〈S, χ〉

∣∣∣ ≤ 1
3
ε n`−1,

which implies that there are at most1
3
ε n`−1 monochromatic

edges incident tov inH, and hence, yields the proof of the lemma.

Let us consider the subsets of vertices that belong toΛr,j〈S, χ〉
or toΛr,j〈S ∪ {v}, χ′〉, for certainr andj. From (1), it is easy to
see that ifX ∈ Λr,j〈S, χ〉, thenX ∈ Λr,j〈S ∪ {v}, χ′〉 too. On
the other hand, ifX /∈ Λr,j〈S, χ〉, thenX ∈ Λr,j〈S ∪ {v}, χ′〉
if and only if (i) |X| = ` − j, (ii) r = i, (iii) v /∈ X, and (iv)
there existse ∈ E with X ∪ {v} ⊆ e such that every vertex
u ∈ e \ (X ∪ {v}) hasχ(u) = i. Therefore, if we define

Υv,i
j (〈S, χ〉) :=

{
X ⊆ V : |X| = `− j & v /∈ X &

∃e ∈ E :
(
X ∪ {v} ⊆ e & ∀u∈e\(X∪{v}) χ(u) = i

)}
,

then
∆ΦH(v, i, 〈S, χ〉) =

`−1∑
j=1

nj−1 ·
∣∣∣Υv,i

j (〈S, χ〉)
∣∣∣ . (3)

Next, let us observe that ife ∈ Evi,j〈S, χ〉, thenX = e \ (S ∪
{v}) must belong toΥv,i

j+1(〈S, χ〉). Furthermore, for a setX ∈
Υv,i
j+1(〈S, χ〉), there can be at most

(|S|
j

)
≤ nj edgese such that

X = e\(S∪{v}). Therefore,
∣∣Evi,j〈S, χ〉∣∣ ≤ nj ·∣∣Υv,i

j+1(〈S, χ〉)
∣∣.

Hence, we can combine this inequality with inequality (2) and with
equation (3), to conclude that∣∣∣∣∣
`−2⋃
j=0

Evi,j〈S, χ〉

∣∣∣∣∣ =

`−2∑
j=0

∣∣Evi,j〈S, χ〉∣∣ ≤ `−2∑
j=0

nj
∣∣∣Υv,i

j+1(〈S, χ〉)
∣∣∣

= ∆ΦH(v, i, 〈S, χ〉) ≤ 1

3
ε n`−1 .

Therefore, by our arguments above, we have proven that if a
vertexv is neither heavy nor conflict, not more than1

3
ε n`−1 edges

incident tov may be monochromatic in coloringχ∗. Since there
are at mostn such vertices, we get an upper bound of1

3
ε n` for

the number of monochromatic edges in coloringχ∗ that are not
incident to heavy or conflict vertices. This implies that the to-
tal number of monochromatic edges in coloringχ∗ of H is upper
bounded byε n`. This in turn, implies that the hypergraphH is
not ε-far from beingk-colorable. This yields contradiction. �

The above results and our framework from Theorem 5
imply the following result.

Theorem 6 There is anε-tester for the hypergraphk-
colorability with the query complexitỹO((k `/ε2)`). �

6. Hereditary Graph Properties and ACPs

In this section we considerhereditary graph properties.
A graph propertyΠ is any family of graphs that is preserved
under graph isomorphism (that is, ifG satisfies propertyΠ
andG′ is a graph isomorphic toG thenG′ has propertyΠ
too). A graph propertyΠ is hereditaryif it is closed under
taking induced subgraphs, that is, if for every graphG hav-
ing propertyΠ every induced subgraph ofG has property
Π too (see, e.g., [8]). We call a graph propertyΠ strongly-
testable[1] if for every ε > 0 there exists a (one-sided error)
ε-tester forΠ whose query complexity is bounded only by
a function ofε, which is independent of the size of the input
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graph. We consider the standard adjacency matrix model
(see the previous section for the more general definition for
hypergraphs).

In the previous section we gave a reduction from hyper-
graph coloring to ACPs that satisfies the requirements of
our framework which proves that hypergraph coloring can
be tested efficiently. We observe that the constructed ACPs
are not equivalent to the hypergraph coloring problem in the
following sense: There might be a subsetS of vertices such
that the subgraph induced byS does not have a proper col-
oring but the corresponding ACP has a self-feasible basis.
Nevertheless, the bases of the ACPs have a nice interpre-
tation on the corresponding hypergraph: each basis corre-
sponds to a coloring of a certain subset of vertices. Two
natural questions arise of whether it is possible to apply our
framework to other graph properties and, if this is possi-
ble, whether there is a nice interpretation of bases for these
properties. We answer the first question by showing that we
can apply our framework to any testable hereditary graph
property. The second question remains open.

We show that ahereditary graph propertycan be tested
efficiently in the adjacency matrix model if and only if there
is a reduction to ACPs. Although it is known [3, 18] that
a testable hereditary graph propertyΠ can be tested by a
canonical tester (a tester that samples a set of vertices and
accepts if and only if the induced subgraph has property
Π) the straightforward reductions to ACPs either violate the
distance preserving or the feasibility preserving property.

Theorem 7 Let Π be a hereditary graph property. Let0 <
ε < 1. Let G be the set of all graphs on the vertex set
V = {1, . . . , n}. For anyδ, % ∈ N, letACP(δ,%)(V ) be the
set of abstract combinatorial programs of dimension(δ, %)
over V . Then,Π is strongly-testableif and only if there
are δ = δ(ε), % = %(ε), andλ = λ(ε), such that for ev-
eryG ∈ G there exists an abstract combinatorial program
AG ∈ ACP(δ,%)(V ) satisfying the following two properties:

((ε, λ)-Distance Preserving) if G is ε-far from Π then any
basis inAG is λ-far from feasible, and

(Feasibility Preserving) for anyS ⊆ V , if the subgraph
GS satisfies propertyΠ then there is a self-feasible ba-
sis forS in AG. �
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