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Abstract

We define and study the notion of min-wise independent families of per-
mutations. We say that F ⊆ Sn is min-wise independent if for any set X ⊆ [n]
and any x ∈ X, when π is chosen at random in F we have

Pr(min{π(X)} = π(x)) =
1

|X| .

In other words we require that all the elements of any fixed set X have an
equal chance to become the minimum element of the image of X under π.

Our research was motivated by the fact that such a family (under some
relaxations) is essential to the algorithm used in practice by the AltaVista web
index software to detect and filter near-duplicate documents. However, in the
course of our investigation we have discovered interesting and challenging
theoretical questions related to this concept – we present the solutions to
some of them and we list the rest as open problems.
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1 Introduction

The classic analysis of hashing schemes often entails the assumption that the hash
functions used are random. More precisely, the assumption is that keys belonging
to a universe U are hashed into a table of size M by choosing a function h uniformly
at random among all the functions U → [M ]. (The notation [M ] stands for the set
{0, . . . , M−1}. This is slightly non-standard, but convenient for our purposes.) This
assumption is impractical since just specifying such a function requires |U| log(M)
bits1, which usually far exceeds the available storage.

Fortunately in most cases heuristic hash functions behave very closely to the ex-
pected behavior of random hash functions; but there are cases when rigorous prob-
abilistic guarantees are necessary. For instance, various adaptive hashing schemes
presume that a hash function with certain prescribed properties can be found in
constant expected time. This holds if the function is chosen uniformly at random
from all possible functions until a suitable one is found but not necessarily if the
search is limited to a smaller set of functions.

This situation has led Carter and Wegman [13] to the concept of universal hash-
ing. A family of hash functions H is called weakly universal if for any pair of distinct
elements x1, x2 ∈ U , if h is chosen uniformly at random from H then

Pr(h(x1) = h(x2)) ≤
1

|M | (1)

and is called (strongly) universal or pair-wise independent if for any pair of distinct
elements x1, x2 ∈ U and arbitrary y1, y2 ∈ [M ]

Pr(h(x1) = y1 and h(x2) = y2) =
1

|M |2 . (2)

It turns out that in many situations the analysis of various hashing schemes can
be completed under the weaker assumption that h is chosen uniformly at random
from a universal family, rather than the assumption that h is chosen uniformly at
random from among all possible functions. In other words, limited randomness
suffices. Furthermore, there exist universal families of size O(|M |2) that can be
easily implemented in practice. Thus, universal hash functions are very useful in
the design of adaptive hash schemes (see e.g. [12, 16]) and are actually used in
commercial high-performance products (see e.g. [24]). Moreover, the concept of

1We use log for log
2

throughout.
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pairwise independence has important theoretical applications. (See the excellent
survey by Luby and Wigderson [22].)

It is often convenient to consider permutations rather than functions. Let Sn be
the set of all permutations of [n]. We say that a family of permutations F ⊆ Sn is
pair-wise independent if for any {x1, x2, y1, y2} ⊆ [n] with x1 6= x2 and y1 6= y2,

Pr(π(x1) = y1 and π(x2) = y2) =
1

n(n − 1)
. (3)

In a similar vein, in this paper, we say that F ⊆ Sn is exactly min-wise inde-
pendent (or just min-wise independent where the meaning is clear) if for any set
X ⊆ [n] and any x ∈ X, when π is chosen at random in F we have

Pr(min{π(X)} = π(x)) =
1

|X| . (4)

In other words we require that all the elements of any fixed set X have an equal
chance to become the minimum element of the image of X under π. Unless otherwise
stated we shall assume that π is chosen uniformly at random in F ; otherwise, we
shall say π is chosen with a biased distribution µ. Uniform distributions are natural
in this setting, since in practice they are simple to represent.

As explained below, this definition is motivated by the fact that such a family
(under some relaxations) is essential to the algorithm currently used in practice
by the AltaVista Web indexing software [23] to detect and filter near-duplicate
documents.

The Web [5] has undergone exponential growth since its birth, and this has lead
to the proliferation of documents that are identical or near identical. Experiments
indicate that over 20% of the publicly available documents on the web are dupli-
cates or near-duplicates. These documents arise innocently (e.g. local copies of
popular documents, mirroring), maliciously (e.g., “spammers” and “robot traps”),
and erroneously (spider mistakes). In any case they represent a serious problem for
indexing software for two main reasons: first, indexing of duplicates wastes expen-
sive resources; and second, users are seldom interested in seeing documents that are
“roughly the same” in response to their queries.

This informal concept does not seem to be well captured by any of the stan-
dard distances defined on strings (Hamming, Levenshtein, etc.). Furthermore the
computation of these distances usually requires the pairwise comparison of entire
documents. For a very large collection of documents this is not feasible, and a
sampling mechanism per document is necessary.
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It turns out that the problem can be reduced to a set intersection problem by
a process called shingling. (See [7, 11] for details.) Via shingling each document D
gets an associated set SD. For the purpose of the discussion here we can view SD

as a set of natural numbers. (The size of SD is about equal to the number of words
in D.) The resemblance r(A, B) of two documents, A and B, is defined as

r(A, B) =
|SA ∩ SB|
|SA ∪ SB|

.

Experiments seem to indicate that high resemblance (that is, close to 1) captures
well the informal notion of “near-duplicate” or “roughly the same”.

To compute the resemblance of two documents it suffices to keep for each docu-
ment a relatively small, fixed size sketch. The sketches can be computed fairly fast
(linear in the size of the documents) and given two sketches the resemblance of the
corresponding documents can be computed in linear time in the size of the sketches.

This is done as follows. Assume that for all documents of interest SD ⊆ {1, . . . , n}.
(In practice n = 264.) Let π be chosen uniformly at random over Sn, the set of per-
mutations of [n]. Then

Pr(min{π(SA)} = min{π(SB)}) =
|SA ∩ SB|
|SA ∪ SB|

= r(A, B). (5)

Hence, we can choose say, 100 independent random permutations π1, . . . , π100. For
each document D, we store the list

S̄A = (min{π1(SA)}, min{π2(SA)}, . . . , min{π100(SA)}).

Then we can readily estimate the resemblance of A and B by computing how many
corresponding elements in S̄A and S̄B are common. (For a set of documents, we
avoid quadratic processing time, because a particular value for any coordinate is
usually shared by only a few documents. For details see [7, 8, 11].)

In practice, as in the case of hashing discussed above, we have to deal with
the sad reality that it is impossible to choose π uniformly at random in Sn. We
are thus led to consider smaller families of permutations that still satisfy the min-
wise independence condition given by equation (4), since min-wise independence is
necessary and sufficient for equation (5) to hold.

In practice we can allow certain relaxations. First, we can accept small relative
errors. We say that F ⊆ Sn is approximately min-wise independent with relative
error ε (or just approximately min-wise independent, where the meaning is clear) if
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for any set X ⊆ [n] and any x ∈ X, when π is chosen at random in F we have

∣

∣

∣

∣

∣

Pr(min{π(X)} = π(x)) − 1

|X|

∣

∣

∣

∣

∣

≤ ε

|X| . (6)

In other words we require that all the elements of any fixed set X have only an
almost equal chance to become the minimum element of the image of X under π.
The expected relative error made in evaluating resemblance using approximately
min-wise independent families is less than ε.

Second, the sets of interest are usually much smaller than n. (For the situation
discussed above the typical set has size 1000 while n = 264.) We say that F ⊆ Sn

is restricted min-wise independent for sets up to size k (or just restricted min-wise
independent where the meaning is clear) if for any set X ⊆ [n] with |X| ≤ k and
any x ∈ X, when π is chosen at random in F we have

Pr(min{π(X)} = π(x)) =
1

|X| , |X| ≤ k. (7)

Of course we can consider families that are both restricted and approximately min-
wise independent.

Third and finally, it turns out that whether the distribution on the family F is
uniform or not leads to qualitatively different results.

Ultimately we are interested in practical families of permutations. Hence we first
study what is the minimum size of a family that satisfies various combinations of
requirements. Clearly if the minimum size is exponential no practical solution exists.
It turns out that the exact min-wise property generally necessitates exponential size
but that the approximate property can be satisfied by polynomial size families. The
complete synopsis of our results is given in Table 1. The entries for which we have
no bounds beyond those implied by other entries in the table are marked “?” and
the entries for which we have no non-trivial bounds are marked “???”.

Starting from the opposite end we study how good is the performance provided
by various families that are easily implementable in software. We consider pair-wise
independent families, for which there are numerous practical implementations. In
particular we are interested in linear transformations, since they are used in the
AltaVista implementation and are known to perform better in some situations than
other pair-wise independent families (see [1]).

The way we evaluate this performance is to consider a set X and study the
distribution of the minimum of the image of X. It suffices to examine the two
elements that are respectively most likely and least likely to become the minimum
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Family type Upper bound Lower bound

Exactly min-wise, uni-
form distrib on F 4n en−o(n)

Exactly min-wise, bi-
ased distrib on F n2n−1 − 1 Ω

(√
n 2n)

Exactly min-wise, re-
stricted, uniform dis-
trib on F

? ek−o(k)

Exactly min-wise, re-
stricted, biased distrib
on F

∑

j≤k

j

(

n

j

)

Ω

(

k2k/2 log

(

n

k

))

Approx min-wise, uni-
form distrib on F

O
(

n2/ε2
)

(existential)

??? (constructive)
n2
(

1 −
√

8ε
)

Approx min-wise, bi-
ased distrib on F ??? max

r≥1

(n − r)
(n
r

)

1 + ε
(n
r

)

Approx min-wise, re-
stricted, uniform dis-
trib on F

O

(

k2 log(n/k)

ε2

)

(existential)

24k+o(k)k2 log(log n/ε) (constructive)

?

Approx min-wise, re-
stricted, biased distrib
on F

?

Ω

(

min

(

k2k/2 log(n/k),

log (1/ε) (log n − log log(1/ε))

ε1/3

)

)

Table 1: Synopsis of results – minimum size of families

since all the other elements will become the minimum with a probability in between
the extremal values. We consider two situations: when X is chosen to be the worst
set (farthest from uniform) with regard to the property of interest; and when X is
chosen uniformly at random, in which case we look for the expected value of the
bound over the random choices of X. The synopsis of our answers is given in Table
2, where we follow the same convention as before regarding the use of “?” and “???”.

Finally, we note that while our definition of min-wise independence and our
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Family type
Bounds on the most

probable element

Bounds on the least

probable element

Upper Lower Upper Lower

Pairwise independent –
worst set

O

(

1√
k

)

? ???
1

2(k − 1)

Linear – worst set ?
3

π2

ln k

k

12 ln 2

π2 k
?

Pairwise independent –
random set

1 + 1/
√

2

k
??? ??? ?

Linear – random set ? ??? ??? ?

Table 2: Synopsis of results – quality of approximation

subsequent results appear novel, similar ideas have appeared in the literature. For
example, the property of min-wise independence appears to be a key feature of the
monotone ranged hash functions described in [19]. Cohen uses the properties of the
minimum element of a random permutation to estimate the size of the transitive
closure, as well as to solve similar related problems [14]. Given these connections,
as well as the history of the development of pairwise independence, we expect that
the concept of min-wise independence will prove useful in many future applications.

A preliminary version of this work has appeared in [9]. Since then new con-
structions have been proposed by Indyk [18] and others [25]. The use of min-wise
independent families for derandomization is discussed in [10].

2 Exact Min-Wise Independence

In this section, we provide bounds for the size of families that are exactly min-wise
independent. We begin by determining a lower bound, demonstrating that the size
of the family F must grow exponentially with n.

Theorem 1 Let F be min-wise independent. Then |F| is at least as large as the
least common multiple (lcm) of the numbers 1, 2, . . . n, and hence |F| ≥ en−o(n).
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Proof: Let X be a subset of [n] with |X| = j. Each element of X must be the
minimum under the family F the same number of times, so j must divide |F|. This
holds for every j ∈ {1, 2, . . . n}, so the lcm of {1, 2, . . . n} must divide |F|. That the
lcm of the first n numbers has size en−o(n) is a well known fact of number theory [4,
p. 76]. 2

Remark 1 This proof also gives a lower bound of ek−o(k) for restricted min-wise
independent families. Also, note that the proof does not require that the members
of F be distinct. Hence the theorem holds even if F contains duplicates of some
permutations.

We now describe a min-wise independent family of size less than 4n, which is
significantly smaller than the trivial bound of n! and of the same form as the lower
bound given above.

Theorem 2 There exists a min-wise independent family F of size less than 4n.

Proof: We initially assume for convenience, that n = 2r for some r. We construct
the family of permutations recursively in stages. In the first stage, we divide the set
[n] into two equal halves, the top and the bottom. At the first stage, there are

(

n
n/2

)

ways to partition the set. Each of these can be described by an n bit string with
exactly n/2 ones in it. Element i goes in the top half if and only if the bit string
has a 1 in the ith position. We proceed to partition each half. Again this can be
done by choosing a n/2 bit string with n/4 ones in it. There are

(

n/2
n/4

)

such strings.
Importantly, we use the same string for each half. At the ith stage, we have the set
divided into 2i−1 parts each of size n/2i−1. We partition each part into two halves
by choosing a n/2i−1 bit string with n/2i ones and using this string to define the
partition for each of the 2i−1 parts. We continue in this way until each part has
size 1. This process produces a permutation of the set in a natural way, with the
topmost element receiving the smallest number in the permutation.

The property that each element is the minimum with the correct probability
can be verified directly by calculation. More intuitively, when we split [n] into two
halves, every element of X has an equal chance to go to the upper half or to the
lower half; furthermore, all elements of X now in the top half are equally likely
to eventually become the topmost element of X (by induction). If no elements of
X are in the top half, then all lie in the bottom, and again (by induction) all are
equally likely to become eventually the topmost.
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The number of permutations in this family is

log n
∏

i=1

(

n/2i−1

n/2i

)

.

A simple calculation shows that the size of this family is 4n−O(log2 n).
We now explain how to remove the assumption that n is a power of 2. Earlier,

we used the fact that a j bit string with j/2 ones defines a partition of a set of size
j into two equal halves. We now use the that fact a j bit string with l ≥ j/2 ones
defines a partition of any set of size r ≤ j into two parts such that each is of size at
most l. We construct the permutations in stages as before. At the beginning of the
ith stage, we have partitioned the set into 2i−1 parts, each of size at most d n

2i−1 e.
We continue by choosing a string of length d n

2i−1 e with d n
2i e ones. We use this to

partition each of the 2i−1 parts into two, such that the maximum size of the parts
produced is at most d n

2i e. We perform this partition for dlog ne stages, giving us a
min-wise independent permutation of [n]. The number of possible permutations is2

dlog ne
∏

i=1

(

d n
2i−1 e
d n

2i e

)

,

and hence the size of this family is also less than 4n. 2

Remark 2 It is worth noting that this family has much stronger properties than
what we actually require. For example, if instead of looking at just the minimum
element, we look at the unordered set of the smallest j elements for any j ≤ |X|,
this unordered set is equally likely to be any subset of X of size j.

2.1 Exact problem with non-uniform distribution

Although we focus on results for uniform distributions, we demonstrate here an
interesting result: the lower bound of Theorem 1 can be beaten by using non-
uniform distributions.

Theorem 3 There is a family F of size at most n2n−1 − 1, such that F with an
associated distribution µ is min-wise independent.

2Proving directly that this number is a multiple of lcm(1, . . . , n) is an amusing exercise, at least
for certain people.
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Proof: We can write a linear program to find a F and µ satisfying the theorem.
We have a variable xπ for each of the permutations π ∈ Sn, where xπ represents the
weight of π according to µ. For every X ⊂ [n] and for every x ∈ X, we express the
condition that Pr(min{π(X)} = π(x)) = 1

|X|
as a linear equation in the variables

xπ. We have a total of
∑n

k=1 k ·
(

n
k

)

= n2n−1 − 1 constraints. This system clearly

has a feasible solution (choose an element of Sn uniformly at random; that is, put
xπ = 1/n! for all π ∈ Sn), and hence it has a basic feasible solution with at most
n ·2n−1−1 non-zero variables. This solution yields a family satisfying the conditions
of the theorem. 2

Remark 3 Although Theorem 3 beats the lower bound of Corollary 1, the size of
the family is still exponential in n, and we will prove an almost tight lower bound
in Section 3.4. Also, for restricted min-wise independence, this same construction
gives an upper bound of

∑k
j=1 j ·

(

n
j

)

.

3 The Approximate Problem

As the exact problem requires exponential sized families, we turn our attention to
the approximate problem. In this section, we prove some existential upper bounds
and constructive upper bounds as well as derive lower bounds for the approximate
problem.

3.1 Existential Upper Bounds

We obtain existential upper bounds on the sizes of approximately min-wise inde-
pendent families via the probabilistic method [3], by simply choosing a number of
random permutations from Sn.

Theorem 4 There exist families of size O(n2

ε2
) that are approximately min-wise

independent and there exist families of size O(k2 ln(n/k)
ε2

) that are approximately and
restricted min-wise independent.

Proof: Assume 0 ≤ ε ≤ 1. We apply a straightforward probabilistic argument.
Suppose we pick f permutations uniformly at random from Sn. Consider a set
X and an element x ∈ X. For a permutation π chosen uniformly at random,
Pr(π(x) = min π(X)) = 1

|X|
. Let A(x, X) be the number of permutations for which

π(x) = min π(X). Note that A(x, X) has the binomial distribution Bin(f, 1
|X|

).
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Then E[A(x, X)] = f
|X|

. Let B(x, X) be the event |A(x, X) − f
|X|

| > ε f
|X|

. The

event B(x, X) is considered a bad event for the pair (x, X). We will be interested in
bounding the probability of bad events. Applying Chernoff bounds (see for example
[3]), we have

Pr(B(x, X)) < 2e−
fε2

3|X| ≤ 2e−
fε2

3n .

This must hold for all pairs (x, X) such that x ∈ X ⊆ [n]. There are n2n−1 such
pairs. Hence the probability that at least one bad event B(x, X) occurs is at most

n2ne−
fε2

3n . For f > 3n(n ln 2+ln n)
ε2

, this probability is less than 1. Hence for this large
an f with non-zero probability no bad event occurs, and therefore there is some
family of permutations that is approximately min-wise independent with relative
error ε.

For the restricted case where |X| ≤ k, the same argument holds, except now

Pr(B(x, X)) < 2e−
fε2

3|X| ≤ 2e−
fε2

3k .

Again his must hold for all suitable pairs (x, X), but as |X| ≤ k, there are only
∑k

i=1 i ·
(

n
i

)

<
∑k

i=0 i ·
(

n+i
i

)

=
(

n+k+1
k

)

such pairs. Hence the probability that at least

one bad event B(x, X) occurs is at most 2
(

n+k+1
k

)

e−
fε2

3k . For

f >
3k

ε2
ln

(

n + k + 1

k

)

+ ln 2,

this probability is less than 1, and this implies the second part of the theorem. 2

Remark 4 Of course the above argument can also be used to show that selecting
O(n2

ε2
) permutations uniformly at random yields an approximately min-wise indepen-

dent family with high probability. Moreover, the permutations need not be chosen
uniformly at random from Sn, but could instead be chosen from any family that yields
exact min-wise independence, such as the family given in Theorem 2. Although this
would appear to provide a suitable solution for the document similarity problem dis-
cussed in the introduction, in practice, this result does not help us. The problem is
that one cannot conveniently represent a random permutation from Sn. Recall that a
random permutation on n elements requires on average Ω(n log n) bits to represent,
and in practice n = 264. This leads us to consider simple linear permutations in
Section 4.
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3.2 Constructive Upper Bounds

Although the techniques of the last section show that sufficiently large families
chosen at random will be approximately and restricted min-wise independent with
high probability, they do not appear to provide a way to explicitly construct a
suitable family. In fact, we do not even know of an efficient procedure to check that
a randomly chosen family is approximately and restricted min-wise independent for
given families of k and ε. Hence here we provide an explicit construction.

Theorem 5 There exists an approximately and restricted min-wise independent

family F of size 24k+o(k)k2 log log n
ε .

Proof: The idea, similar to that in Theorem 2, is to split the set up into groups.
Instead of initially splitting the set [n] into two equal groups, however, we instead
split the set [n] into r random groups for a suitable r using a k-wise independent
hash function. Since we are concerned with sets X of size at most k, it is likely that
a k-wise independent hash function will divide the elements of X so that no more
than k/2 fall in any hash bucket. We then continue recursively.

Our construction of these hash functions is based on the explicit construction
of almost k-wise independent distributions on N bit binary strings. We use the
following result from [2]:

Proposition 1 We can construct a family of N bit strings which are δ away (in the
L1 norm) from k-wise independence, such that log |F| is at most k+2 log(k log N

2δ
)+2.

We use this proposition to construct an almost k-wise independent family of hash
functions from [n] to [r], where we choose a suitable value of r later. A hash function
mapping [n] to [r] can be described by a string of length N = n log r bits, using log r
bits to determine the image of each of the n elements in the domain. Further, if the
family of N bit strings is k log r-wise independent, the family of hash functions is
k-wise independent. Each hash function h defines a permutation σh ∈ Sn as follows:
for a hash function h, we sort all the elements of [n] in the order (h(x), x), i.e. x1

occurs before x2 if either h(x1) < h(x2) or h(x1) = h(x2) and x1 < x2. The sorted
order defines the permutation σh.

Suppose temporarily that our family of hash functions were exactly k-wise in-
dependent. Fix a set X of size k. We consider a hash function to be good if all
the elements of X are hashed to distinct locations, and bad otherwise. Since the
family of hash functions is k-wise independent, for any two elements x1, x2 of X,
the probability that h(x1) = h(x2) is 1/r. The probability that two elements of
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X hash to the same location is thus at most k2

2r
, and therefore the fraction of bad

hash functions is at most k2

2r
. Thus, for the family of permutations obtained, the

probability of any element being the minimum deviates from the mean by at most
k2

2r
. If the bit strings used to construct the hash functions are actually δ away (in

the L1 norm) from being k log r-wise independent, the deviation from the mean is
at most δ + k2

2r
. Choosing δ = ε

2k
and r = k3

ε
yields a deviation at most ε

k
as desired.

We obtain a smaller family by breaking the process of hashing [n] to [r] into
several steps, again in the spirit of Theorem 2. We use t hash functions hi, 1 ≤ i ≤ t,
such that hi hashes [n] to [ri], and now r =

∏t
i=1 ri. We can view h1 as selecting

the most significant bits of the hash value of each element, h2 as selecting the next
most significant bits, and so on. Although we need h1 to be k-wise independent, we
can use less independence with each successive hi, yielding a smaller family.

For our construction, we will choose hi to be almost ki-wise independent, where
k1 = k and ki+1 = ki/2. We choose ri so that hi maps any set of size ki into
[ri] in such a way so that no bucket has size greater than ki+1 with probability at
least 1 − ε

2dlog ke
. We choose the hi close enough to ki-wise independent so that the

difference adds an error probability ε
2dlog ke

per level. For convenience we replace

dlog ke by log k in the derivation below; the difference is absorbed in the order
notation.

If hi were exactly ki-wise independent, the probability of having more than ki/2
elements hashed to any location would be

ki
∑

l=ki/2+1

(

ki

l

)

(

1

ri

)l (

1 − 1

ri

)ki−l

≤ 2ki

(

1

ri

)ki/2

.

For this to be less than ε
2 log k

requires

log ri ≥ 2 +
2

ki

(

log
2

ε
+ log log k

)

or

ki log ri ≥ 2ki + 2
(

log
2

ε
+ log log k

)

Hence, to generate hi, we need an almost ki log ri- wise independent distribution
on n log ri bits, where the distribution should be ε

2 log k
close to independent. From

Proposition 1, this requires

bi = ki log ri + 2 log

(

ki log ri log(n log ri) log k

ε

)

+ 2 bits.
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Summing and ignoring lower order terms, we need 4k + 2(log k) log( log k log n
ε

) total

bits, yielding a suitable constructible family of size 24k+o(k)k2 log( log n
ε

). 2

3.3 Lower Bound for Uniform Families

We will prove a lower bound of n2(1 −
√

8ε) for families with the uniform proba-
bility distribution. This shows that the n2 term in the existential upper bound of
Theorem 4 cannot be improved.

Theorem 6 Let F be an approximate min-wise independent family. Then |F| ≥
n2(1 −

√
8ε).

Proof: Let |F| = f . There must be some element a such that π(a) = 1 (that is,
a is the second smallest after the permutation) for at least f/n permutations of F .
Fix such an a and consider z ≤ f/n such permutations. We will choose a value for
z later. Let Z be the set of elements which occur as the smallest element in these
z permutations (that is, b ∈ Z iff π(b) = 0 for at least one of these z permutations)
and let S = [n] − Z. Clearly a ∈ S and |S| ≥ n − z. Consider for how many
permutations π ∈ F it is the case that π(a) is the smallest element of π(S). This
happens at least whenever π(a) = 0 and also for the z permutations discussed above,
where π(a) = 1 but an element not in S has image 0 under π. But π(a) = 0 for at
least f

n
(1 − ε) permutations, because F is an approximately min-wise independent

family; and for the same reason, π(a) can be the minimum element of S for at most
f
|S|

(1 + ε) ≤ f(1+ε)
n−z

permutations. Hence

f(1 − ε)

n
+ z ≤ f(1 + ε)

n − z
.

Solving this equation for f and (almost) optimizing for z (z =
√

2εf/n) yields

f ≥ n2 1 −
√

2ε

1 +
√

2ε − ε
.

Simplifying the above yields a lower bound of n2(1 −
√

8ε) on |F|. 2
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3.4 Lower Bound for Non-Uniform Families

We will prove a lower bound on the size of any approximately min-wise independent
family, even non-uniform families with an associated probability distribution µ.
Our lower bound proof also yields a lower bound for non-uniform exactly min-wise
independent families that is very close to the upper bound of n2n−1 − 1 obtained in
Section 2.1.

Theorem 7 Let F be an approximate min-wise independent family, possibly with

an associated probability distribution µ. Then |F| ≥ (n−r)(n
r)

1+ε2r(n
r)

, for any r < n.

Proof: Fix an element a and a set Z = {x1, x2, . . . xr} ⊆ [n] with a /∈ Z. Let us
say that the pair (Z, a) is satisfied if there is a permutation π in F that has all the
elements of π(Z) as the r smallest elements of π in any order (that is, π(Z) = [r])
and has a as the (r + 1)st smallest element (that is, π(a) = r + 1). We will show
that most pairs (Z, a) must be satisfied for F to be an approximately min-wise
independent family, and that in fact all pairs (Z, a) must be satisfied for F to be an
exactly min-wise independent family,

Let Y = [n] − Z. By definition a ∈ Y . We consider the sets Yi = Y ∪ xi and
count how often π(a) is the smallest element of π(Yi). Let BS be the event that a is
the minimum of π(S) when we choose a permutation from F under the distribution
µ. Let B =

⋃r
i=1 BYi. Then B ⊆ BY , and hence Pr(BY − B) = Pr(BY ) − Pr(B).

On the other hand, the event BY − B is precisely the event that (Z, a) is satisfied.
We now use the inclusion-exclusion principle to calculate Pr(B) = Pr(

⋃r
i=1 BYi).

It is helpful to note the following facts. First if a ∈ S2 ⊆ S1 then BS1
⊆ BS2

and
if a ∈ S1 ∩ S2 then BS1

∩ BS2
= BS1∪S2

. Second, by the definition of approximate
min-wise independence, 1−ε

|S|
≤ Pr(BS) ≤ 1+ε

|S|
. We will abbreviate this by saying

that Pr(BS) = 1±ε
|S|

, where the meaning is clear. Third, the union of i distinct Yi’s
has size n − r + i. Hence

Pr(B) = Pr(BY1
) + Pr(BY2

) + · · · − Pr(BY1
∩ BY2

) − · · ·+ Pr(BY1
∩ BY2

∩ BY3
) + · · ·

= Pr(BY1
) + Pr(BY2

) + · · · − Pr(BY1∪Y2
) − · · ·+ Pr(BY1∪Y2∪Y3

) + · · ·

=
r
∑

i=1

(−1)i+1

(

r

i

)

1 ± ε

n − r + i
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Hence

Pr(BY − B) =
1 ± ε

n − r
−

r
∑

i=1

(−1)i+1

(

r

i

)

1 ± ε

n − r + i

=
r
∑

i=0

(−1)i

(

r

i

)

1 ± ε

n − r + i

=
r
∑

i=0

(−1)i

(

r

i

)

1

n − r + i
± ε

r
∑

i=0

(

r

i

)

1

n − r + i

To evaluate the first term in the expression above, note that it equals Pr(BY − B)
when ε is 0. That is, the term is the probability that (Z, a) is satisfied for an exactly
min-wise independent family. Note that it depends only on n and r, and not on
the family under consideration! In particular, we calculate it easily by computing
the probability that (Z, a) is satisfied for the family Sn, which is 1

(n−r)(n
r)

. (Thus we

obtain the combinatorial identity

r
∑

i=0

(−1)i

(

r

i

)

1

n − r + i
=

1

(n − r)
(

n
r

) .

The hint for its algebraic derivation is [21, equation 1.2.6.24].)
The magnitude of the coefficient of ε is at most 2r

n−r
. Hence

1

(n − r)
(

n
r

) + ε
2r

n − r
≥ Pr(BY − B) ≥ 1

(n − r)
(

n
r

) − ε
2r

n − r
(8)

Since Pr(BY − B) ≤ 1

(n−r)(n
r)

+ ε 2r

n−r
, the total probability mass of the permu-

tations that satisfy any given pair (Z, a) is at most p = 1

(n−r)(n
r)

+ ε 2r

n−r
. Hence the

number of distinct pairs (Z, a) which have some permutation satisfying them must
be at least 1/p. But every permutation satisfies exactly one (Z, a) pair. This means
that there must be at least 1/p permutations, that is, the size of the family is at

least
(n−r)(n

r)
1+ε2r(n

r)
. 2

Corollary 1 Let F be exact min-wise independent family, possibly with an associ-
ated probability distribution µ. Then |F| ≥ dn

2
e
(

n
bn/2c

)

.

Proof: Plug ε = 0 and r = bn
2
c in the result of Theorem 7. 2
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Remark 5 Actually, Theorem 7 proves an even stronger corollary: Equation (8)

shows that the probability that (Z, a) is satisfied is positive as long as ε < 1/2r
(

n
r

)

.

Hence, for any approximate min-wise independent family with such an ε, all
(

n
r

)

(n−
r) possible pairs (Z, a) are satisfied, and hence there are at least this many permu-
tations. This is maximized for r = bn

2
c, and hence the bound of Corollary 1 also

holds for approximate families with an exponentially small ε.

3.5 Lower Bound for Restricted Families

The lower bound of Theorem 7 holds for exactly min-wise independent families. Of
course a similar lower bound can also be given for restricted min-wise independent
families. For suppose we want the min-wise property to hold for sets of size up to
k. Then certainly the property must hold for the set [k], and we may think of all
the permutations in our family as acting only on [k]. Hence by replacing the value
n by k in Theorem 7 we have an appropriate lower bound for restricted min-wise
independent families.

Using similar ideas, however, we may achieve better lower bounds on the size of
restricted min-wise independent families. Suppose we want the min-wise property
to hold for sets of size up to k, and consider any set X such that |X| ≤ k. For every
X ′ ⊂ X, a ∈ X − X ′, some permutation σ ∈ F must induce a permutation on X
which satisfies (X ′, a). This means that for some permutation, the only elements of
X which occur before a are the elements of X ′. Stating this differently, if we split X
into disjoint sets X1,{a}, and X2, then there must be some permutation σ ∈ F such
that all the elements of X1 occur before a and all the elements of X2 occur after a.
Such a permutation is said to satisfy the triple (X1, a, X2). A triple (X1, a, X2) such
that |X1|+ |X2|+1 ≤ k, a 6∈ X1, a 6∈ X2, and X1 ∩X2 = ∅, is said to be admissible.
For a restricted min-wise independent family for sets up to size k, every admissible
triple must have some permutation satisfying it. This fact is what we use to obtain
a lower bound on the number of permutations in the family.

We will focus on admissible triples (X1, a, X2) for a fixed a ∈ [n] and for
|X1| = |X2| = bk−1

2
c. Let s = bk−1

2
c. We call such triples symmetric a-triples.

For convenience, assume a = n − 1. Then X1, X2 ∈
(

[n−1]
s

)

, where this notation

denotes that X1 and X2 are subsets of size s of the set [n − 1].
To obtain our lower bound, we will show that many permutations are needed

to satisfy all admissible symmetric a-triples. We do this by associating the set of
all symmetric a-triples with the edges of large graph Ga. Similarly, we associate
all symmetric a-triples satisfied by a permutation σ with the edges of another,
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smaller graph Gσ,a. We then show, using the concept of graph entropy introduced
by Körner [20], that many smaller graphs Gσ,a are required to cover the edges of the
larger graph Ga. This argument will lead to our lower bound.

We now formally define the graphs Ga and Gσ,a. Let V (Ga) = V (Gσ,a) =
(

[n−1]
s

)

;
that is, the vertex set contains a vertex corresponding to every s element subset of
[n−1]. Two vertices are adjacent in Ga if the corresponding sets are disjoint. Every
edge in Ga corresponds to a symmetric a-triple. The edge set of Gσ,a is defined as

follows. For X1, X2 ∈
(

[n−1]
s

)

, the edge (X1, X2) is present in Gσ,a if and only if the

permutation σ satisfies the triple (X1, a, X2). Since every symmetric a-triple must
be satisfied by some permutation, for every symmetric a-triple (X1, a, X2), the edge
(X1, X2) must be present in some graph Gσ,a where σ ∈ F . That is,

⋃

σ∈F Gσ,a = Ga,
where here the union is over the edges of the graphs. This fact allows us to obtain
a lower bound on the size of F using graph entropy.

We review briefly the basic facts about graph entropy. We begin with some
standard concepts from information theory (see [15].) Note that in what follows
we will use X to be a random variable, and not a set as previously, for notational
convenience.

Definition 1 (Entropy) Given a random variable X with a finite range, its en-
tropy is given by

H(X) = −
∑

x

Pr[X = x] log Pr[X = x]

Definition 2 (Mutual Information) If X and Y are random variables with finite
ranges, then their mutual information is given by

I(X ∧ Y ) = (H(X) − H(X | Y )) = H(X) + H(Y ) − H((X, Y )).

The following definition and results about graph entropy are taken from Körner [20].

Definition 3 (Graph Entropy) Let G = (V, E) be a graph. Let P be a probability
distribution on the vertex set V . Let A(G) denote the set of all independent sets of
G. Let P(G), the set of admissible distributions, be the set of all distributions QXY

on V ×A(G) satisfying

1. QXY (v, A) = 0 if v 6∈ A, and

2.
∑

A QXY (v, A) = P (v) for all vertices v ∈ V .
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The graph entropy H(G, P ) is defined by

H(G, P ) = min{I(X ∧ Y )|QXY ∈ P(G)}

To clarify, in the definition above, X is a random variable representing a vertex
of G, and Y is a random variable representing an independent set of G.

Lemma 1 (Sub-additivity of graph entropy) If G and F are graphs with V (G) =
V (F ), and P is a distribution on V (G), then H(F ∪G, P ) ≤ H(F, P ) + H(G, P ).

In our discussion, P will always be assumed to be the uniform distribution and
will be omitted from our notation for graph entropy. It is easy to see that under
this condition, the entropy of the complete graph on n vertices is log n. The entropy
of the empty graph is 0. Lemma 1 is central to our lower bound proof. Recall that
⋃

σ∈F Gσ,a = Ga. Thus H(Ga) ≤ ∑

σ∈F H(Gσ,a). We will show that the entropy of
the graphs Gσ,a is small compared to that Ga. This will give us a lower bound on
the size of F .

Lemma 2 (Additivity of Graph Entropy) Let {Gi}i∈I be the set of connected
components of a graph G. Then

H(G) =
∑

i∈I

|V (Gi)|
|V (G)| H(Gi).

We state a simple result about the entropy of a complete bipartite graph that
we will need later.

Lemma 3 Let G be a complete bipartite graph on V1 and V2, |V1| = n1 and |V2| =
n2. Then

H(G) ≤ p1 log
1

p1
+ p2 log

1

p2
,

where p1 = n1

n1+n2
and p2 = n2

n1+n2
.

Proof: Let X be a random variable which is uniformly distributed over V (G) =
V1 ∪ V2. Let Y be a random variable such that Y = V1 when X = v for v ∈ V1 and
Y = V2 when X = v for v ∈ V2. With probability p1, Y = V1 and with probability
p2, Y = V2. Then H(X) = H((X, Y )) = log(n1 + n2). Hence,

H(G) ≤ H(X) + H(Y ) − H((X, Y )) = H(Y ) = p1 log
1

p1
+ p2 log

1

p2
.

2
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We now compute bounds on the entropies of the graphs Ga and Gσ,a defined
previously.

Lemma 4

H(Ga) ≥ log
n − 1

s

Proof: H(Ga) = H(X) − H(X|Y ), where X and Y minimize I(X ∧ Y ) as in the
definition of graph entropy. Recall that X is a random variable that ranges over
V (Ga) and Y is a random variable that ranges over A(Ga), the set of independent
sets of Ga. Since the distribution of X is uniform on V (Ga), H(X) = log |V (Ga)| =

log
(

n−1
s

)

. Let amax be the maximum size of an independent set in Ga. By the

Erdős-Ko-Rado theorem (see, for example, [6, Chapter 7]), the maximum size is
achieved by the set of vertices corresponding to s element subsets of [n − 1] all of

which contain some fixed element. Thus amax =
(

n−2
s−1

)

. Now,

H(X|Y ) =
∑

A∈A(G)

H(X|Y = A)Pr(Y = A).

For a particular value of Y , say A ∈ A(Ga), X is constrained to range over vertices
v ∈ A. Thus H(X|Y = A) ≤ log |A| ≤ log amax. Therefore, H(X|Y ) ≤ log amax =

log
(

n−2
s−1

)

. This yields

H(Ga) ≥ log

(

n − 1

s

)

− log

(

n − 2

s − 1

)

= log
n − 1

s
.

2

Lemma 5

H(Gσ,a) ≤
1

2s−1

Proof: Recall that the graph Ga,σ has an edge (X1, X2) for every symmetric a-triple
(X1, a, X2) satisfied by the permutation σ. Let S1 be the set of elements that occurs
before a in σ and let S2 be the set of elements that occurs after a in σ. Let |S1| = n1

and |S2| = n2, n1 +n2 = n−1. Then Gσ,a has an edge between every set in
(

S1

s

)

and
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every set in
(

S2

s

)

. Thus Gσ,a has a single connected component B of size
(

n1

s

)

+
(

n2

s

)

.
Further, B is a complete bipartite graph and the sizes of its two independent sets
are

(

n1

s

)

and
(

n2

s

)

. By Lemma 3, we have

H(B) =
1

(

n1

s

)

+
(

n2

s

)





(

n1

s

)

log





(

n1

s

)

+
(

n2

s

)

(

n1

s

)



+

(

n2

s

)

log





(

n1

s

)

+
(

n2

s

)

(

n2

s

)









By Lemma 2, we get

H(Gσ,a) =
|V (B)|
|V (Gσ,a)|

H(B)

=
1

(

n−1
s

)





(

n1

s

)

log





(

n1

s

)

+
(

n2

s

)

(

n1

s

)



+

(

n2

s

)

log





(

n1

s

)

+
(

n2

s

)

(

n2

s

)









We provide an upper bound for the expression above. The expression above is equal
to x log(1 + y/x) + y log(1 + x/y) for x =

(

n1

s

)

/
(

n−1
s

)

and y =
(

n2

s

)

/
(

n−1
s

)

. As the

function f(x, y) = x log(1 + y/x) + y log(1 + x/y) is increasing in both x and y,

we upper bound H(Gσ,a) by f(x′, y′) where x′ =
(

n1

n−1

)s
and x′ =

(

n2

n−1

)s
. Now

substituting n1 = (1+α)
2

(n − 1) and n2 = (1−α)
2

(n − 1) yields

H(Gσ,a) ≤
(

1 + α

2

)s

log
(

1 +
(

1 − α

1 + α

)s)

+
(

1 − α

2

)s

log
(

1 +
(

1 + α

1 − α

)s)

(9)

The right hand side is maximized for α = 0, i.e. for n1 = n2 = n−1
2

. Hence the
maximum possible value of H(Gσ,a) is 1/2s−1. 2

Since Ga =
⋃

σ∈F Gσ,a, by Lemma 1 H(Ga) ≤
∑

σ∈F H(Gσ,a). Hence |F| ≥ H(Ga)
maxσ H(Gσ,a)

≥
2s−1 log

(

n−1
s

)

.
The above argument used symmetric a-triples for a fixed value of a. We can give

a more careful argument that looks at symmetric a-triples for all values of a. We
define auxiliary graphs Ga and Gσ,a as before. This time, we consider all values of
a ∈ [n]. Observe that for each a, Ga =

⋃

σ∈F Gσ,a and hence H(Ga) ≤
∑

σ∈F H(Gσ,a).
Summing over all a, we get

∑

a∈[n]

H(Ga) ≤
∑

a∈[n]

∑

σ∈F

H(Gσ,a)

=
∑

σ∈F

∑

a∈[n]

H(Gσ,a).
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All the graphs Ga are isomorphic and Lemma 4 gives a bound on their entropy.
However, for a particular permutation σ, the graphs Gσ,a are not isomorphic. The
proof of Lemma 5 shows that H(Gσ,a) depends on the position of a in permutation
σ. It is maximized when a is the middle element of σ and decreases as the distance
of a from the middle element increases. The previously computed lower bound used
the fact that the maximum entropy of the graphs Gσ,a is 1

2s−1 . From the bound
on H(Gσ,a) in (9) of Lemma 5, we can show that for any fixed permutation σ, the

average entropy of the graphs Gσ,a is O
(

1
s2s

)

. (Here the average is computed over

all elements a ∈ [n].) This yields a lower bound of Ω(s2s log(n
s
)) on the size of F .

Recall that s = bk−1
2
c. Thus we obtain the following theorem.

Theorem 8 Let F be any restricted min-wise independent family. Then, |F| ≥
Ω(k2

k
2 log(n

k
)).

Also, this entire argument goes through for any approximate, restricted min-wise
independent family for sufficiently small ε. In fact, we need ε < 1

2s(k
s)

(see Remark 5),

and hence ε < 1
23k/2 suffices. Thus we have a lower bound of Ω(k2

k
2 log(n

k
)) for any

approximate, restricted min-wise independent family for ε < 1
23k/2 , i.e. for k <

2
3
log(1

ε
). In general, for given k and ε, we take the lower bound for the maximum

set size k′ such that k′ < 2
3
log(1

ε
) and k′ ≤ k. This gives the following lower bound.

Theorem 9 Let F be any approximate,restricted min-wise independent family. Then
the size of F is at least

Ω

(

min

(

log(1
ε
)(log n − log log(1

ε
))

ε
1
3

, k2
k
2 log

(

n

k

)

))

.

4 Linear and Pairwise Independent Families

We now focus on the behavior of permutations most likely to be used in practice,
linear transformations. In particular, we focus on the situation where the universe
of elements is [p] for some prime p, and the family of permutations is given by
all permutations of the form π(x) = ax + b mod p (with a 6= 0). Linear transfor-
mations are easy to represent and efficiently calculable, making them suitable for
real applications. Our results suggest that although this family of permutations is
not min-wise independent, its performance should be sufficient in many practical
situations.
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4.1 General Upper and Lower Bounds

As the results for linear permutations require significant calculations, we do not
provide proofs for all the results here. We begin with a simple lower bound that
holds not just for linear transformations but for any pairwise independent family of
permutations; many of our results have this form.

Theorem 10 For any X ⊆ [n] with |X| = k and for any x ∈ X,

Pr(min{π(X)} = π(x)) >
1

2(k − 1)

if π is chosen from a pairwise independent family of permutations.

Proof: Consider a set X = {x0, . . . xk−1}. We will show that π(x0) is the smallest
element of π(X) as often as required by the theorem. Suppose that π(x0) = z. If π
is chosen from a pairwise independent family, then Pr(π(xi) < z|π(x0) = z) = z/n.
Since the probability that π maps xi to something smaller than π(x0) is z/n, the
probability that π maps any element of X to something smaller than π(x0) is at
most (k− 1)z/n, and hence π(x0) is the minimum of π(X) with probability at least
1 − (k − 1)z/n. This is non-negative for 0 ≤ z ≤ b n

k−1
c. Hence

Pr(min{π(X)} = π(x0)) ≥
1

n

bn/(k−1)c
∑

z=0

(

1 − (k − 1)z

n

)

>
1

2(k − 1)

2

We have an upper bound on Pr(min{π(X)} = π(x)) for all pairwise independent
families of permutations that is O(1/

√
k), based on a linear programming formu-

lation of the problem. Subsequent to our original proof, Piotr Indyk suggested a
simpler proof for this bound [18], so we do not present it here.

4.2 Linear Families, Upper and Lower Bounds

We derive further bounds by considering specifically linear transformations. For
instance, we show that the family of linear transformations is not even approximately
min-wise independent for any constant ε.
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Theorem 11 Consider the set Xk = {0, 1, 2 . . . k}, as a subset of [p]. As k, p → ∞,
with p � k,

Pr(min{π(X)} = π(0)) ∼ 3

π2

ln k

k

when π is a randomly chosen linear transformation of the form π(x) = ax+b mod p
(with a 6= 0).

Proof: The proof will use some basic facts about Farey series. We first remind the
reader of the definition and some basic facts regarding Farey series; more information
can be found in most standard number theory texts.

Definition 4 The Farey series of order k consists of all irreducible fractions less
than 1 with denominator at most k, in increasing order.

If n1

d1
and n2

d2
are two consecutive fractions in the order k Farey series then

1. n2d1 − n1d2 = 1.

2. (d1, d2) = 1.

3. The first fraction inserted between n1

d1
and n2

d2
in a higher order Farey series is

n1+n2

d1+d2
.

To compute the fraction of time that π(0) is the minimum element of {π(Xk)},
let us first consider all transformations π with multiplier a. Let za = mini=1,...,k{−a ·
i mod p}. Then π(0) is minimal only for those π = ax+ b mod p where b < za (note
that za is positive!), since for the other values of b the image of the minimal element
will lie behind π(0) = b.

Hence, to find the fraction of the time that 0 is the minimum element of {π(Xk)},
it suffices to find the expected value of 1

p
mini=1,...,k{−a·i mod p}, which conveniently

is also the expected value of 1
p
mini=1,...,k{a · i mod p}. We concentrate on the latter

expression.
Consider what happens to the numbers {a · i mod p|i = 1 . . . k} as we increase

the value of the multiplier a from 1 to p − 1. It is useful to think of the numbers
0, . . . , p−1 as arranged clockwise around a circle. Consider k tokens, corresponding
to the numbers 1, . . . , k from the set Xk. For each i, we view a · i mod p as the
position of the ith token at time a. Token i starts in position i. As we increase
the value of the multiplier a from 1 to p − 1 all tokens move around the circle in
clockwise direction but at different speeds: token i moves i steps for every time tick.
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If p is sufficiently larger than k, we can think of this motion as being continuous.
That is, we scale the circle so that its circumference is 1. Let f = a

p
. Then the

distance of token i from the origin along the circle when the multiplier is a is the
fractional part of fi. Henceforth we think of this motion of the tokens as being
continuous, with the “time” f increasing uniformly from 0 to 1. We need to compute
the average distance of the token closest to the origin as f increases uniformly from 0
to 1, where distance here is measured as clockwise distance along the circumference.
This average distance is (asymptotically) 1

p
mini=1,...,k{a · i mod p}, the term we wish

to compute. (Asymptotically this approximation yields the correct answer, as the
approximation affects only lower order terms.)

The token closest to the origin changes whenever a token reaches the origin. This
happens whenever the value of f is n

d
for integers n and d with 1 ≤ n < d ≤ k, as

at that point the token with speed d reaches the origin. Thus the times where the
token closest to the origin changes are precisely the proper (less than 1) fractions
of denominator at most k, that is, the terms of the Farey sequence of order k.
Let n1

d1
and n2

d2
be two consecutive fractions in the Farey sequence of order k. For

n1

d1
≤ f ≤ n2

d2
, the token with speed d1 is closest to the origin. This time interval has

length n2

d2
− n1

d1
= 1

d1d2
. During this time interval, the token starts at the origin and

moves with a speed of d1. Thus the average distance of this token from the origin
during this interval is 1

2
· d1 · 1

d1d2
= 1

2d2
.

To obtain the average distance over the entire interval, it suffices to take the
appropriate weighted sum over all pairs of consecutive Farey fractions. By the
above, the contribution from each interval [n1

d1
, n2

d2
] is 1

d1d2
· 1

2d2
= 1

2d1d2
2

.

To find a simple form for the resulting sum, we build up, starting the appropriate
sum for X1 = {0, 1} and building up to the set Xk. Alternatively, we may think
of how the sum changes as we build up from the order j − 1 Farey series to the
order j Farey series and use this to derive the appropriate sum for the order k Farey
series. The order j Farey series is derived from the order j − 1 Farey series by
adding all fractions of the form a

j
with (a, j) = 1 in their proper position. (Note

we use the standard shorthand (a, j) for gcd(a, j).) Correspondingly, this changes
the contribution to the summation in all intervals where a new fraction is inserted.
Suppose a fraction is inserted between n1

d1
and n2

d2
. Then the inserted fraction must

be n1+n2

d1+d2
, where d1 + d2 = k. Before the insertion, the contribution of this interval

was 1
2d1d2

2

. After the insertion, the contribution becomes 1
2d1(d1+d2)2

+ 1
2(d1+d2)d2

2

. Thus

the change is

1

2d1(d1 + d2)2
+

1

2(d1 + d2)d2
2

− 1

2d1d2
2
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=
d2

2 + d1(d1 + d2) − (d1 + d2)
2

2d1(d1 + d2)2d2
2

= − 1

2(d1 + d2)2d2

Note that d1 + d2 = j. Further (j, d2) = 1. In fact, for every a such that (a, j) = 1,
there exists two consecutive Farey fractions n1

d1
and n2

d2
such that d1 + d2 = j and

d2 = a. Thus the change in the summation caused by building up from order j − 1
to order j Farey sequences is − 1

2j2

∑

(a,j)=1,1≤a≤j
1
a
. For the order 1 Farey sequence,

the value of the appropriate summation is obviously 1
2
. Thus the value for the order

k Farey sequence is

1

2



1 −
k
∑

j=2

1

j2

∑

(a,j)=1,1≤a≤j

1

a



 (10)

From here one must simply evaluate the value of this expression asymptotically
to obtain the theorem. This evaluation, unfortunately, requires some work, which
we now detail.

First we note that
∞
∑

j=2

1

j2

∑

(a,j)=1,1≤a≤j

1

a
= 1.

This follows from the fact that the value for the order k Farey sequence given in
(10) must go to 0 as k goes to infinity, since the probability any random point will
be the closest to the origin converges to 0. Hence (10) is equivalent to

1

2

∞
∑

j=k+1

1

j2

∑

(a,j)=1,1≤a≤j

1

a
=

1

2

∞
∑

j=k+1

1

j3

∑

(a,j)=1,1≤a≤j

j

a
.

We now employ a common transformation known as Möbius inversion (see, for
example, the standard number theory text by Hardy and Wright [17, 16.6.3]). The
Möbius inversion yields

1

2

∞
∑

j=k+1

1

j3

∑

(a,j)=1,1≤a≤j

j

a
=

1

2

∞
∑

j=k+1

1

j3

∑

r|j

µ
(

j

r

)

∑

1≤a≤r

r

a

From here we may proceed with straightforward algebraic manipulation. In
what follows, we use approximations (≈) in place of equality in expressions where
we disregard lower order terms, and we use H(j) = 1 + 1/2 + . . . + 1/j:
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1

2

∞
∑

j=k+1

1

j3

∑

r|j

µ
(

j

r

)

rH(r) =
1

2

∞
∑

j=k+1

1

j3

∑

d|j

µ(d)
j

d
H
(

j

d

)

=
1

2

∞
∑

d=1

µ(d)
∑

j≥k+1,d|j

1

j3

j

d
H
(

j

d

)

=
1

2

∞
∑

d=1

µ(d)

d3

∞
∑

i=dk+1
d

e

H(i)

i2

≈ 1

2

∞
∑

d=1

µ(d)

d3

∫ ∞

k/d

ln y

y2
dy

≈ 1

2

∞
∑

d=1

µ(d)

d3

ln(k/d)

(k/d)

≈ ln k

2k

∞
∑

d=1

µ(d)

d2

=
ln k

2k

∞
∑

d=1

∏

q prime

(

1 − 1

q2

)

=
ln k

2k

∞
∑

d=1

1
∑∞

m=1
1

m2

=
ln k

2k

6

π2
=

3

π2

ln k

k
2

Theorem 11 shows that it is possible to find sets for which some element is mini-
mal for Ω( ln k

k
) of the time when random linear transformations are used. Similarly,

under linear transformations there is a set X ′
k with k + 1 elements such that π(0) is

the minimum element of π(X ′
k) with probability approximately 12 ln 2

π2k
≈ 0.843

k
. This

result provides an example of how much less often than 1
k+1

of the time an element
can be minimal when random linear transformations are used.

Theorem 12 Consider the set X ′
k = {−k/2, . . . , 0, . . . k/2}, where k is even, as a

subset of [p]. As k, p → ∞, with p � k,

Pr(min{π(X)} = π(0)) ∼ 12 ln 2

π2k

when π is a randomly chosen linear transformation of the form π(x) = ax+b mod p
(with a 6= 0).
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Proof: As before, we think of the numbers as points moving around the circle at
different speeds. Here, we have points moving clockwise with speed i for 1 ≤ i ≤ k/2,
as well as points moving counterclockwise with speed i, for 1 ≤ i ≤ k/2. We want
to determine the average distance of the point closest to the origin in the clockwise
direction; this average distance corresponds to the fraction of the time that π(0) is
the minimal element of π(X ′

k).
For a given multiplier a, let f = a

p
. Let n1

d1
and n2

d2
be two consecutive Farey

fractions of order k/2. During the interval n1

d1
≤ f ≤ n2

d2
, the point moving clockwise

with speed d1 is closest to the origin during the beginning of the interval. It remains
so until the time it meets the point moving counterclockwise with speed d2; this point
then remains closest to the origin at the end of the interval. The two points meet
at a distance 1

d1+d2
from the origin. The average value distance of the point closest

to the origin during this interval is therefore 1
d1d2

is 1
2(d1+d2)

. Hence the contribution

of this interval to the overall average value of the minimum is 1
2d1d2(d1+d2)

.
As in Theorem 11, to find a simple form for the resulting average distance,

we build up by considering the change when we move from the order j − 1 Farey
sequence to the order j Farey sequence. When the fraction n1+n2

d1+d2
is inserted between

two consecutive Farey fractions n1

d1
and n2

d2
, the change in the contribution of the

interval [n1

d1
, n2

d2
] is

1

2

[

1

d1(d1 + d2)(2d1 + d2)
+

1

d2(d1 + d2)(d1 + 2d2)
− 1

d1d2(d1 + d2)

]

=
d2(d1 + 2d2) + d1(2d1 + d2) − (2d1 + d2)(d1 + 2d2)

2d1d2(d1 + d2)(2d1 + d2)(d1 + 2d2)

= − 3

2(d1 + d2)(d1 + 2d2)(2d1 + d2)

= − 3

2(d1 + d2)((d1 + d2) + d2)(2(d1 + d2) − d2)

Note that d1 + d2 = j and (d2, j) = 1. Hence the change in the average value in
moving from j − 1 to j is

− 3

2j

∑

(a,j)=1,1≤a≤j

1

(j + a)(2j − a)

The value for the order 1 Farey sequence is 1
4
.
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Hence the average distance determined by the order k/2 Farey sequence is

3

2





1

6
−

k/2
∑

j=2

1

j

∑

(a,j)=1,1≤a≤j

1

(j + a)(2j − a)



 .

Using algebraic manipulation similar to that of Theorem 11, one can compute
that this summation asympotitically becomes 12 ln 2

π2k
. 2

Despite the seemingly bad worst-case behavior of linear transformations, we be-
lieve that in practice they are suitable for applications, because they perform well on
random sets. For a set X = {x0, . . . , xk−1} of size k, let F (X) be maxi

|{π | min{π(X)}=π(xi)}|
p(p−1)

.

That is, F (X) is the fraction of the permutations for which the most likely element
to be the minimum is actually the minimum. (And we have just seen that F (X) can
asymptotically reach 3

π2
ln k
k

in the worst case.) We now prove that the expected value
of F (X) when X is chosen uniformly at random from all sets of size k as k, p → ∞
can be bounded by (1 + 1/

√
2)/k + O(1/k2). In this sense, linear transformations

are approximately min-wise independent with respect to random sets.

Theorem 13 As k, p → ∞, with p � k2, EX [F (X)] is bounded above by (1 +
1/
√

2)/k + O(1/k2).

Proof: We define

fi(X) =
|{π | min{π(X)} = π(xi)}|

p(p − 1)
,

and

gi(z, X) =
|{π | min{π(X)} = π(xi) and π(xi) = z · p}|

p − 1
,

That is, consider the subset of permutations that map the ith element to zp. Then
gi is the fraction of these permutations for which the the ith element is minimal.

Hereafter we suppose that the universe size p is sufficiently large that we may
think of z as varying continuously on the unit circle from 0 to 1, instead of jumping
discretely by 1/p. This simplification allows us to dismiss many lower order terms.
Similarly, we will suppose that p is sufficiently large compared to k so that we may
suppose that the k values of X are chosen with replacement, and the results will
be equivalent asymptotically. Also, in our calculations, we will find it convenient to
replace the p − 1 term by p in the definitions of fi(X) and gi(z, X). Since we are
interested in asymptotics as p → ∞, this does not change our results.
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The value we wish to bound is

F (X) = EX [ max
i=0,...,k−1

fi(X)],

where we use EX to denote that the expectation is over the random choice of the
set X. Note also that we have the following relation:

fi(X) =
∫ 1

0
gi(z, X)dz.

Let the fi(X) have mean µ and variance σ2. (Note the mean and variance are the
same for all fi.) To bound F (X), we make use of a simple bound on the expected
value of the maximum of several identically distributed random variables.

Lemma 6 Let X1, X2, . . . , Xk be identically distributed random variables with mean
µ and variance σ2. Then

E[ max
i=1,...,k

Xi] ≤ µ + σ
√

k.

Proof: We show equivalently that

(

E[ max
i=1,...,k

Xi − µ]
)2

≤ kσ2.

(

E[ max
i=1,...,k

Xi − µ]
)2

≤ E

[

( max
i=1,...,k

Xi − µ)2
]

≤ E

[

max
i=1,...,k

(Xi − µ)2
]

≤ E





∑

i=1,...,k

(Xi − µ)2





=
∑

i=1,...,k

E[(Xi − µ)2]

= kσ2

2
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Clearly, by symmetry EX [fi(X)] = 1/k. Hence, to find an upper bound on F ,
we just have to bound σ2, the variance of fi(X). Specifically, we bound the variance
of f0(X).

We define some helpful notation. Let πa,z denote the unique linear permutation
such that ax0+b = z ·p mod p. That is, πa,z is the linear permutation with multiplier
a that maps x0 to z · p. Let Ma(z, X) be an indicator random variable that is 1 if
min{πa,z(X)} = πa,z(x0). Thus, g0(z, X) = 1

p

∑

a Ma(z, X). Now the variance of f0

is just

σ2 = EX

[

(f0(X) − EX [f0(X)])2
]

= EX

[

(∫ 1

0
g0(z, X)dz − EX

[∫ 1

0
g0(z, X)dz

])2
]

= EX

[

(∫ 1

0
(g0(z, X) − EX [g0(z, X)]) dz

)2
]

=
1

p2 EX

[

(∫ 1

0

(

∑

a

Ma(z, X)

− EX

[

∑

a

Ma(z, X)
])

dz
)2
]

=
1

p2 EX

[

(∫ 1

0

∑

a

(

Ma(z, X)

− EX

[

Ma(z, X)
])

dz
)2
]

Let µa(z) = EX [Ma(z, X)]. From this definition, it is apparent that µa(z) =
(1 − z)k−1, as each of the images of the other randomly chosen k − 1 elements has
probability 1 − z of being greater than z · p.

Hence, continuing from the last line above,

σ2 =
1

p2 EX

[(∫ 1

0

∑

a

(Ma(z, X) − EX [Ma(z, X)])dz
)2]

=
1

p2 EX

[∫ 1

z=0

∫ 1

y=0

(

∑

a1,a2

(Ma1
(z, X) − µa1

(z))

× (Ma2
(y, X)− µa2

(y))
)

dy dz
]

=
1

p2

∫ 1

z=0

∫ 1

y=0

(

∑

a1,a2

(

EX [Ma1
(z, X)Ma2

(y, X)]
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− µa1
(z)µa2

(y)
)

)

dy dz

(11)

We now bound the last term. This will in turn bound the variance and yield the
theorem. In order to do this, we derive an alternative expression for EX [Ma1

(z, X)Ma2
(y, X)]

that can be be appropriately bounded.
Let

qa1,a2
(z, y) = Prx∈[p](πa1,z(x) > z · p and πa2,y(x) > y · p).

Then

EX [Ma1
(z, X)Ma2

(y, X)] = (qa1,a2
(z, y))k−1 ,

again since the other k − 1 terms of X are chosen uniformly at random.
We thus have expressed the value we wish to bound as the sum of the (k − 1)st

powers of qa1,a2
terms. The next lemma shows that the sum of these qa1,a2

terms is
fixed. As the maximum possible value of the sum of the (k−1)st powers is achieved
when the terms in the sum take on extremal values, together these results will allow
us to bound

∑

a1,a2 EX [Ma1
(z, X)Ma2

(y, X)].

Lemma 7
∑

a1,a2

qa1,a2
(z, y) = p2(1 − z)(1 − y).

Proof: Consider the following experiment. We choose three values a1, a2, x ∈ [p]
independently and uniformly at random. The experiment succeeds if both πa1,z(x) >
z · p and πa2,y(x) > y · p. Clearly, the probability of success is (1 − z)(1 − y). The
summation

∑

a1,a2
p · qa1,a2

(z, y) is simply the number of the p3 triples (a1, a2, x) for
which the experiment succeeds. The lemma follows. 2

Since the total sum of the terms qa1,a2
is fixed, the sum

∑

a1,a2 EX [Ma1
(z, X)Ma2

(y, X)]
is maximized when the qa1,a2

terms take on extremal values. Let us assume that
z ≥ y. Then qa1,a2

(z, y) ∈ [1 − z − y, 1 − z]. (Of course qa1,a2
(z, y) ≥ 0, and hence

the above range may not be correct if z + y > 1.) A simple calculation then yields
the following bound (for z + y ≤ 1):

∑

a1,a2

EX [Ma1
(z, X)Ma2

(y, X)]

≤ p2
(

z(1 − z)k−1 + (1 − z)(1 − z − y)k−1
)

.
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We will use this bound for the range z ≤ 1/2. For z > 1/2, we have qa1,a2
(z, y) ≤

1 − z ≤ 1/2. Hence,

∑

a1,a2

EX [Ma1
(z, X)Ma2

(y, X)] ≤ p2(1/2k−1).

Substituting this bound in (11), we get:

σ2 =
1

p2 EX

[∫ 1

z=0

∫ 1

y=0

(

∑

a1,a2

(

Ma1
(z, X)Ma2

(y, X)

− µa1
(z)µa2

(y)
)

)

dy dz
]

=
2

p2

∫ 1

z=0

∫ z

y=0

(

∑

a1,a2

EX

[

Ma1
(z, X)Ma2

(y, X)

− µa1
(z)µa2

(y)
]

)

dy dz

≤ 2
∫ 1/2

z=0

∫ z

y=0

(

z(1 − z)k−1 + (1 − z)(1 − z − y)k−1

− (1 − z)k−1(1 − y)k−1
)

dy dz

+ 2
∫ 1

z=1/2

∫ z

y=0

1

2k−1
dy dz

To prove Theorem 1, we need merely to compute this integral thus bounding the
variance. This calculation is easily performed, yielding

σ2 ≤ 1

2k3
+ O(1/k4).

This proves Theorem 13. 2

Simulations suggest that in fact the behavior of families of linear transformations
on a random set X is much better than this. We conjecture that the expected value
of F (X) converges to 1/k asymptotically.

Also, we note that Theorem 13 actually generalizes quite straightforwardly to
all pairwise independent families. The notation becomes slightly more difficult, as
one must take care to index variables and summations appropriately, but the proof
follows the same course.
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