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ABSTRACT 1. INTRODUCTION

For a boolean formula ¢ on n variables, the associated prop-
erty P, is the collection of n-bit strings that satisfy ¢. We
prove that there are 3CNF properties that require a lin-
ear number of queries, even for adaptive tests. This con-
trasts with 2CNF properties that are testable with O(y/n)
queries [7]. Notice that for every bad instance (i.e. an as-
signment that does not satisfy ¢) there is a 3-bit query that
witnesses this fact. Nevertheless, finding such a short wit-
ness requires a linear number of queries, even for assign-
ments that are very far from satisfying.

We provide sufficient conditions for linear properties to be
hard to test, and in the course of the proof include a couple
of observations which are of independent interest.

1. In the context of linear property testing, adaptive 2-

sided error tests have no more power than non-adaptive
1-sided error tests.

. Random linear LDPC codes with linear distance and

constant rate are very far from being locally testable.
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1.1 Property Testing

Property testing deals with a relaxation of decision prob-
lems where one must determine whether an input belongs
to a particular set, called property, or is far from it. “Far”
usually means that many characters of the input have to be
modified to obtain an element in the set. Property testing
was first formulated by Rubinfeld and Sudan [16] in the con-
text of linear functions and applied to combinatorial objects,
especially graphs, by Goldreich, Goldwasser and Ron [10].
This has recently become quite an active research area, see
[15, 5] for surveys on the topic.

One of the important questions in property testing is char-
acterizing properties that can be tested with a sub-linear
number of queries into the input. A series of works identified
classes of properties testable with constant query complex-
ity. Goldreich et al. [10] found many such properties. Alon
et al. [2] put all regular languages in that category. Their re-
sult was extended by Newman [14] to properties that can be
computed by oblivious read-once constant-width branching
programs. Fischer and Newman [8] demonstrated a prop-
erty computable by a read-twice constant-width branching
program which required super-constant query complexity,
thus showing that Newman’s result does not generalize to
read-twice branching programs. Several papers [1, 6] worked
on the logical characterization of graph properties testable
with a constant number of queries.

1.2 Testing kCNF Properties

Every property over the binary alphabet can be repre-
sented as a Boolean formula, which in turn can be converted
to a CNF form. Thus, testing a property over the binary al-
phabet can be viewed as testing whether a given assignment
to Boolean variables is close to one that satisfies a fixed CNF
formula. Since we know that there exist properties over the
binary alphabet which require testing algorithms to read a
linear portion of the input [10], testing assignments to gen-
eral CNF formulae is hard. A natural question is whether
restricting CNF formulae to have a constant number of vari-
ables k per clause allows for faster testers. At first glance
there is hope for obtaining good testers in this case, because
for any assignment that does not satisfy the formula there
exists a set of k queries that witnesses this fact. Moreover,
reading all the input easily decides the problem. Indeed,
Fischer et al. [7] prove that properties expressible as sets of
satisfying assignments to 2CNF formulae are testable with



O(y/n) queries, where n is the length of the input. This
work left open the question of property testing of kKCNF's
for k > 2.

1.3 Our Results

In this paper we show that testing some properties defined
by 3CNF formulae requires a linear number of queries. Thus,
we present a gap between 2CNFs and 3CNFs. We show the
existence of families of 3CNF formulae which require a linear
number of queries. Our lower bound applies to adaptive
tests, i.e. tests where queries might depend on the answers
to previous queries. This gives a class of properties which
are easy to decide exactly (linear time), but are hard to test.

Each hard 3CNF property we use is a vector space V' C
{0,1}™ that can be expressed as the set of solutions to a
homogeneous 3LIN formula. While proving the lower bound,
we show that every adaptive 2-sided error test for checking
membership in a vector space can be converted to a non-
adaptive 1-sided error test with the same query complexity
and essentially identical parameters.

This allows us to consider only 1-sided error non-adaptive
tests. In order to prove our lower bound, we need to find for
every such test T', a bad vector b € {0,1}" (that is far from
V), such that T accepts b with significant probability (i.e.,
T fails to reject b, as it should). Yao’s minimax principle
allows us to switch the quantifiers. In other words, in order
to prove our lower bound, it suffices to present a distribution
B over bad vectors such that any deterministic test fails to
reject a random b (selected according to the distribution B)
with significant probability.

We can now give a rough picture of how to get a vector
space V that is hard to test. Take a basis A for V* and
define B to be the uniform distribution over all vectors in
{0,1}™ that falsify exactly one constraint of A (and satisfy
the rest). It turns out that for good random Low Density
Parity Check Codes (LDPC codes), one can pick a basis A
such that the resulting distribution is only over vectors that
are far from V. Observe that a 1-sided error test 1" rejects b
only when T detects that b falsifies some constraint in V. If
T is non-adaptive and deterministic, it is completely deter-
mined by the set of variables it queries. If this set is small,
T only checks low-weight constraints in V. We prove that
for random LDPC codes checking low-weight constraints in
V= allows to check only a small fraction of constraints in
A. Therefore, with significant probability, T fails to reject b,
selected according to distribution B. This happens for any
deterministic T of low query complexity, so by Yao’s mini-
max principle there is no test of small query complexity for
the property V.

Our results shed some light on the question of optimal
locally testable codes. An infinite family of codes {C}, is
called locally testable if the property C, is testable with con-
stant query complexity. These codes are in the center of
PCP constructions, and are of fundamental importance in
theoretical computer science. Recently Goldreich and Su-
dan proved the existence of such codes which achieve linear
distance and near linear rate [12], resulting in better PCP
constructions.

The vector spaces we use (which are hard to test) are
built upon random (c, d)-regular LDPC codes. These codes,
introduced by Gallager [9], are known to achieve constant
rate and linear minimal distance. We show that this im-
portant class of codes is not locally testable by a long shot.
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Moreover, the property that makes random codes so good in
terms of minimal distance, namely expansion, is also behind
the poor testability of these codes. This sheds some light
on the question of optimal locally testable codes. The exis-
tence of such optimal codes that achieve (i) constant rate;
(i3) linear distance; and (i13) are locally testable remains an
interesting open problem.

1.4 Earlier Work

We shortly discuss the connection of this paper to other re-
sults. There are two published linear lower bounds for prop-
erty testing. One is the generic bound due to Goldreich et al.
[10] and the other is for testing 3-coloring in bounded degree
graphs due to Bogdanov, Obata and Trevisan [3]. There is a
simple and elegant unpublished linear lower bound observed
by Sudan [Personal Communication]. His property consists
of polynomials over F,, of degree at most n/2 where each
polynomial is given by its evaluation on all elements of the
field. It is not hard to see that every non-adaptive 1-sided
error test for this property requires linear query complexity.
Since the property of low-degree polynomials is linear, our
reduction from general to non-adaptive 1-sided error tests
implies a linear lower bound for adaptive 2-sided tests for
this property. Observe that this property is easy to decide
once all the input is read, but is not expressible by a family
of 3CNF formulae.

Both linear lower bounds of Sudan and Bogdanov et. al [3]
capitalize on the existence of inputs that are far from hav-
ing the property, yet any local view of a constant fraction
of them can be extended to an element having the prop-
erty'!. But if the property is defined by a kCNF ¢ this
cannot happen. For, clearly, any string that does not have
the property must falsify at least one clause of ¢. Thus,
there is some view of the input of size k, that proves the
input does not have the property. Our result shows that in
certain cases, finding such a falsified clause requires reading
a constant fraction of the input, even if the assignment is far
from any satisfying one. Another relevant result is the lower
bound of Goldreich and Ron on testing bipartiteness in 3-
regular, n-vertex graphs [11]. They showed a lower bound of
Q(4/n) on the query complexity, yet short witnesses of non-
bipartiteness do exist, in the form of odd cycles of length
poly(logm). Our result strengthens this finding, since in our
case the query complexity is linear whereas the witness size
is constant.

1.5 Paper Organization

After definitions (section 2), we present a self contained
proof of the main result in section 3. The proofs of the
claims needed for the proof follow in sections 4-7.

2. DEFINITIONS

Property testing

A property is a collection of strings of a fixed size n. A
property is linear if it forms a vector space. In this paper,
strings are over binary alphabet unless mentioned otherwise.
The distance dist(z,P) of a string = to a property P is

'E.g. in Sudan’s example any evaluation of a polynomial on
d points can be extended to an evaluation of a polynomial of
degree d’ > d. Thus, seeing n/2—1 values of the polynomial
still does not mean the polynomial has degree n/2.



min,: ¢p dist(z,z'), where dist(z,z') denotes the Hamming
distance between the two strings. The relative distance of x
to P is its distance to P divided by n. A string is e-far from
P if its relative distance to P is at least ¢.

A test for property P with distance parameter €, complete-
ness ¢, soundness s and query complexity q is a probabilistic
algorithm that queries at most g bits of the input, accepts
strings in P with probability at least ¢ and accepts strings
that are e-far from P with probability at most s, for some
0 <s<c<1. A testis said to have error pif ¢ > 1—p
and s < p (for p < 1).% If a test T accepts input z, we say
T(x) = 1. Otherwise, we say T'(z) = 0. A test with distance
parameter £ and error p is referred to as an (e, p)-test. A
property is (g, u, q)-testable if it has an (e, p)-test that asks
at most ¢ queries on every input.

A couple of special classes of tests are of interest. An
algorithm is mon-adaptive if it asks all queries in advance,
before getting the answers. Namely, a query may not depend
on the answers to previous queries. An algorithm has 1-sided
error if it always accepts an input that has the property.

CNF and linear formulae

Recall that a Boolean formula is in conjunctive normal form
(CNF) if it is a conjunction of clauses, where every clause is
a disjunction of literals. (A literal is a Boolean variable or
a negated Boolean variable.) If all clauses contain at most
three literals, the formula is a 3CNF.

A linear (LIN) Boolean formula is a conjunction of con-
straints, where every constraint is satisfied if and only if
the variables in the constraint add up to 0 mod 2. If all
constraints contain at most d literals, the formula is a dLIN.

Let ¢ be a formula on n variables. An n-bit string satisfies
o if it satisfies all clauses (constraints) of the formula. An
n-bit string is e-far from satisfying ¢ if at least an ¢ fraction
of the bits need to be changed to make the string satisfy
. Each formula ¢ defines a property {z| = satisfies p}. For
brevity, we refer to a test for this property as a test for .

3. MAIN THEOREM

In this section we state and prove the main theorem, say-
ing that some 3CNF properties are hard to test.

THEOREM 1 (MAIN). There exist 0 < §,e <1,0< p <
% such that for every sufficiently large n, there is a SCNF
formula ¢ on n variables such that every adaptive (&, u)-test

for p requires én queries.

Proor. To prove Theorem 1, we find hard 3CNF for-
mulae that define linear properties. Our first step towards
proving the main result is the theorem that for linear prop-
erties, 1-sided error non-adaptive tests are as powerful as
general tests.

THEOREM 2. Let V C {0,1}" be a vector space. For ev-
ery 2-sided error adaptive (g,u,q)-test T for V, there is a
1-sided error non-adaptive (g,2u,q)-test T for V.

This theorem is of independent interest as it applies to test-
ing any linear property®. The proof of Theorem 2 appears in
section 5. The reduction to simpler tests does not increase

2We state our results using the symmetric error parameter
1, but they can be all stated for arbitrary s < c.

3The theorem is stated for vector spaces in {0,1}", but our
proof can be extended to general vector spaces.
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the error but rather shifts the error from the YES-instances
to the NO-instances as it preserves the difference between
the completeness and soundness.

Equipped with Theorem 2, we can restrict our atten-
tion to proving Theorem 1 for non-adaptive 1-sided error
tests, provided that the formulae we work with define lin-
ear properties. Indeed, we find linear properties that are
hard to test and then represent them by CNFs. Consider
a vector space V. C {0,1}". Denote the dual space by
V. Let A = (Ai,...,An) be a basis for V. Let |z|
denote the weight of vector z € {0,1}". For two vectors
z,y € {0,1}", let (z,y) = Y I, z;y; mod 2. By definition,
V = {z|(z,Ai) = 0 for all A; € A}. Thus, viewing each
A; as a constraint, we can represent V as a dLIN formula
where d = maxu,ca|Ai|. We work with an arbitrary con-
stant d and later show how to reduce it to 3. Since each
3LIN formula has an equivalent 3CNF, it is enough to find
hard 3LINs.

We now present sufficient conditions for a vector space
to be hard to test. To understand the conditions, keep in
mind that later we employ Yao’s minimax principle to show
that all vector spaces satisfying these conditions are hard
for 1-sided non-adaptive tests. Yao’s principle states that
to prove that each low-query probabilistic test fails on some
input, it is enough to give a distribution on the inputs on
which each low-query deterministic test fails. We are only
interested in 1-sided error tests which, by definition, have to
accept unless no vector in the tested vector space satisfies
the answers to the queries. Therefore, to show that a vector
space satisfying our conditions is hard, we need to exhibit a
distribution on vectors which are far from the vector space,
such that every low-query deterministic non-adaptive test
on this distribution fails to determine with non-negligible
probability that the input violates the constraints of the
vector space.

DEFINITION 1 (HARD LINEAR PROPERTIES). Let V C
{0,1}™ be a vector space and let A be a basis for V. Fiz
0<e,pn<l.

o A is e-separating if every x € {0,1}" that falsifies
exactly one constraint in A has |x| > en.

o A is (g, p)-local if every a € {0,1}" that is a sum of
at least um vectors in A has |a| > q.

Notice that if A is e-separating, each string x falsifying ex-
actly one constraint in A is e-far from V. To see why, let
y € V. Then x+y falsifies exactly one constraint in 4. Since
A is e-separating, dist(z,y) = |z + y| > en. By definition,
dist(z,V) > en.

For the proof that every vector space satisfying the above
conditions is hard to test, our bad distribution that foils low-
query tests is over strings that falsify exactly one constraint.
The falsified constraint is chosen uniformly at random. The
first condition ensures that the distributions is over vectors
which are e-far from the vector space.

The second condition ensures that the distribution is hard
to test. To get the intuition, suppose the second condition
is violated. Then a p fraction of the constraints sums up to
a low-weight vector, and the sum represents a constraint on
fewer than g variables. Querying variables in the new con-
straint would allow a test running on our bad distribution to
deduce that some constraint is violated with probability at



least p. The second condition disallows this or, intuitively,
ensures that to “get information” about a fraction p of the
constraints in A, a test needs at least g queries.

The following theorem, proved in section 4, shows that
any linear space conforming to definition 1 is hard for 1-
sided error non-adaptive tests.

THEOREM 3
e<l,0<u< % Let V C {0,1}" be a vector space. If
VL has an e-separating (g, p)-local basis A = (A1,..., An),
then every non-adaptive 1-sided error (g,1 — 2u)-test for V
requires q queries.

Theorems 2 and 3 show that every linear property conform-
ing to definition 1 is hard even for 2-sided error adaptive
tests. The following theorem assures us that such linear
properties exist. The proof of this theorem, which uses the
probabilistic method, appears in section 6.

THEOREM 4
exist integer d > 0 and constants p,e,0, such that for all
sufficiently large n there is a collection A, C {0,1}" of
vectors of weight at most d which s linearly independent,
e-separating and (0n, p1)-local.

We now have dLIN formulae that are hard to test. The
following reduction brings d down to 3 while preserving the
properties of definition 1 (with smaller constants).

THEOREM 5
dependent, e-separating, (dn, p)-local A C {0,1}" of vectors
of weight at most d can be converted to a linearly indepen-
dent, £* -separating, (8*n*, p*)-local A* C {0,1}"" of vectors
of weight at most 3. If €,0, u are strictly positive constants,
so are €*,60%, u*.

Theorem 5 is proved in section 7. Recall that a 3LIN formula
can be defined by a 3CNF. This completes the proof of the
Main Theorem 1. [

4. LOWERBOUNDS FORNON-ADAPTIVE
1-SIDED ERROR TESTS

This section proves Theorem 3.

PROOF (OF THEOREM 3): We employ Yao’s minimax
principle. It states that to prove that every g-query ran-
domized test fails with probability more than ¢ it is enough
to exhibit a distribution B on the inputs for which every g¢-
query deterministic test fails with probability more than §.

For i = 1...m let B; be the uniform distribution over
n-bit strings that falsify constraint A; and satisfy the rest.
The distribution B is the uniform distribution over B;’s. The
comment after definition 1 shows that distribution B is over
strings which are e-far from V. Lemma 6 demonstrates that
every low complexity deterministic test is likely to fail on B,
which completes the proof of Theorem 3. []

LEMMA 6. Let T be a deterministic 1-sided error mon-
adaptive test with < q queries. If A is (q,p)-local then
Pry g[T(z) = 0] < 2p.

ProOF. Let @ be the set of queries posed by T. A query
to variable z; is viewed as a vector of weight 1 in {0,1}"
which is 1 at coordinate i and 0 everywhere else. Observe
that since T has 1-sided error, it has to accept if there is
a vector in V' consistent with the answers to the queries.

(NON-ADAPTIVE 1-SIDED ERROR). Fiz0 <

(HARD LINEAR PROPERTIES EXIST). There

(REDUCTION TO 3CNFs). Every linearly in-
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By linearity, this is equivalent to saying that 7T rejects a
vector in B only if the falsified constraint can be expressed
as a linear combination of queries and remaining constraints.
Thus, we need to show that < 2u fraction of constraints in
A can be expressed as a linear combination of queries and
remaining constraints.

Let ¢ be such a constraint. Then there is a set C C A
with 37 .o c € span(Q). We show that fewer than 2um
constraints in A are in such sets. Let I' be the family of
such sets, i.e., of subsets of A that sum up to a vector a €
span(Q).

It remains to show |Ugep C| < 2um. Observe that if
ai,a2 € span(Q), so does a1 + a2. In terms of C’s this
implies that if C1,C2 € T', so is C1 AC»*. Since |Q| < ¢ and
A is (g, u)-local, |C| < pm for all C € I'. We can now apply
Lemma 7 to conclude that |Ucer C| <2pm. O

LEMMA 7. Let I' = {C|C C [m]} be a non-empty fam-
ily of subsets of [m] such that T' is closed under symmet-
ric difference and for all sets C in ', |C| < w. Then

|UCEF C’| < 2w.

PrOOF. Suppose z € C for some C' € I'. Observe that
for any set C’ in I' (including C) either x € C' or x € CAC’
but not both. Since I is closed under symmetric difference
and " = CA(CAC"), each element in |, C occurs in
exactly half of the sets of I'. Therefore,

I
5 |ye

cer

=> lcl < (1] = Dw < |Tw.

cer

The first inequality holds because the empty set belongs to
I', and |C| < w for all other C in I'. Since |I'| > 0, we
conclude that | Jger C| < 2w. [

5. REDUCING 2-SIDED ERROR ADAPTIVE
TO 1-SIDED ERROR NON-ADAPTIVE

In this section we prove Theorem 2 by presenting a generic
reduction that converts any adaptive 2-sided error test for
a linear property to a non-adaptive 1-sided error one with-
out altering the query complexity. We perform this reduc-
tion in two stages: we first reduce an adaptive test with
2-sided error to an adaptive test with 1-sided error (Theo-
rem 9) maintaining the difference between completeness and
soundness and then reduce this to a non-adaptive test with
1-sided error (Theorem 11) maintaining both completeness
and soundness®. The second reduction was suggested by
Madhu Sudan.

A natural test for checking membership in a linear sub-
space V is one that is determined by a distribution over
sets of constraints in the dual space V1. This test chooses
a set of constraints from the dual space V1 according to
this distribution, queries all variables that appear in this set
of constraints and accepts or rejects depending on whether
the constraints are satisfied or not. Clearly, this is a 1-sided
error non-adaptive test. The proofs of Theorem 9 and Theo-
rem 11 demonstrate that any test can be converted into one
of the above form maintaining the query complexity and the
difference between completeness and soundness.

“For sets A, B, the symmetric difference of A and B, AAB =
{z|r € Aand z ¢ B} U{z|z ¢ A and z € B}.

®These reductions are stated for linear spaces V over the
field GF(2). However, they naturally extend to larger fields.




Any probabilistic test can be viewed as a distribution over
deterministic tests and each deterministic test can be rep-
resented by a decision tree. Thus, any test 7' can be repre-
sented by an ordered pair (Fr, Dr) where Fr = {['1,I's,...}
is a set of decision trees and Dr is a distribution on this set
such that on input z, T chooses a decision tree I' with prob-
ability Dr(T") and then answers according to I'(z).

The following terminology and lemma will be useful in an-
alyzing the reductions. We say that a test detects a violation
if there is no string in V' that is consistent with the answers
to the queries. By linearity, it is equivalent to having a con-
straint o in V1 such that (z,a) = 1 for all z € {0,1}" which
are consistent with the answers to the queries.

Let V be a vector space. For any leaf [ of decision tree
I, let V; be the set of all vectors in V' that are consistent
with the answers along the path leading to . Similarly, for
any string « € {0,1}", let V;” be the the set of all vectors in
x + V that are consistent with the answers along the path
leading to I.

LEMMA 8. Let V' C {0,1}" be a vector space and = €
{0,1}". For any decision tree I and a leaf | in T, if both V;
and Vi* are non-empty, then |Vi| = |V/*|.

PROOF. Let U be the set of all strings in V' which have
the bit 0 in all the positions queried along the path leading
to I. Since 0" € U, we have that U is non-empty. Observe
that if w € U and v € V;, then w +v € V}. In fact, if V; # 0,
Vi =v+ U for any v € V;. Hence, |V;| = |U|. Similarly, if
Vi® # (), we have that V}* = y + U for any y € V;°. Hence,
|V;| = |U| and the lemma follows. [

5.1 2-Sided to 1-Sided Error

In this section, we reduce a 2-sided error (adaptive) test
to a 1-sided error (adaptive) test maintaining the difference
between completeness and soundness and without altering
the query complexity.

THEOREM 9. Let V C {0,1}" be a vector space. For ev-
ery adaptive (g, u,q)-test T for V, there is a 1-sided error
adaptive (g,2u,q)-test T' for V.

PRrROOF. Let T = (Fr,Dr) be a 2-sided error (adaptive)
(e, 1, q)-test for V.. To convert T to a 1-sided error test, we
modify the test so that it rejects if and only if it observes
that a constraint in V' has been violated. We say that a
leaf [ is labelled optimally if its label is 0 when the query
answers on the path to [ falsify some constraint in V*, and
1 otherwise. We relabel the leaves of each tree I' in Fr
optimally to obtain the tree Igps.

Relabelling produces a 1-sided error test with unchanged
query complexity. However, the new test performs well only
on “average”. To get good performance on every string, we
randomize the input z by adding a random vector v from V'
to it and perform the test on = + v instead of z. Now we
formally define the 1-sided error T corresponding to T.

DEFINITION 2 (1-SIDED ERROR TEST). Given a 2-sided
error (adaptive) test T for V, define the test T' as follows:
On input z, choose a decision tree I' according to the distri-
bution Dt as T does, choose a random v € V and answer
according to Dopt(z + v).

Clearly, T' has 1-sided error as it rejects only if it detects a
violation. Also, T’ has the same query complexity as T'. It
remains to verify the soundness of T”.
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First, let us introduce some notation. As before, let A =
{A;,As,...,A,} be a basis for the dual space V1. The
space {0,1}" can be partitioned into 2™ sets as follows: For
each S C A, let Vs be the set of vectors that violate all
constraints in S and satisfy all other constraints in A. In
this notation, Vj V. It follows that if x € Vs for some
S C A, then Vs =z + V. Note that dist(xz,V) = dist(y,V)
for all z,y € Vs. Hence, the set of strings that are e-from
V is a union of sets of the form Vs. For any subset S of
A and any test T, let pr(S) be the average acceptance
probability of test T over all strings in Vs, ie., pr(S) =
average, ¢, (Pr[T'(y) = 1]). For notational brevity, we de-
note pr(0), the average acceptance probability of strings in
V, by pr. Observe that for the new test T”, for each input z,
Pr[T'(z) = 1] = p7+(S), where Vs =V + x.

The following lemma shows that the transformation to a
1-sided error test given by Definition 2 increases the accep-
tance probability of any string not in V' by at most pp — pr.

LEMMA 10. For any non-empty set S C A,
pr — pr(S) < pr — pre (S).

PRrROOF. Let S be a non-empty subset of A. It is enough
to prove that relabeling one leaf [ of a decision tree I' in F7
optimally does not decrease pr — pr(S). Then we obtain the
lemma by relabelling one leaf at a time to get T’ from T.
There are two cases to consider.

CasE (i) The path to [ falsifies some constraint in V.
Then [ is relabelled from 1 to 0. This change preserves
pr because it only affects strings that falsify some con-
straint. Moreover, it can only decrease the acceptance
probability for such strings. Therefore, pr(S) does not
increase. Hence, pr — pr(S) does not decrease.

CAsE(4i) The path to [ does not falsify any constraint in
V. Then [ is relabelled from 0 to 1. Let X and Y
respectively be the set of vectors in V' and Vs that are
consistent with the answers observed along the path
to [. Thus, every string in X UY was rejected be-
fore relabeling, but is accepted now. The behavior of
the algorithm on the remaining strings in V' and Vs is
unaltered. Hence, the probability pr increases by the

quantity Dr(Ty) - % Similarly, pr(S) increases by
DT(FI) L

v

It suffices to show that |X| > |Y|. Since the path
leading to ! does not falsify any constraint, X is non-
empty. If Y is empty, we are done. Otherwise, suppose
Y is non-empty. Let x € Y. Then X =V, and Y =V}*
in the notation of Lemma 8. Since both X = V; and
Y = V;” are non-empty, by Lemma 8, | X| = |Y'|, which
concludes the proof of the lemma. [

Thus, the above transformation to a 1-sided error test
does not decrease the difference between the completeness
and the soundness. As the completeness increases from 1—p
to 1, the soundness increases from p to at most 2u. This
completes the proof of Theorem 9. []

5.2 Adaptive to Non-Adaptive

In this section, we argue that adaptivity does not help to
check linear constraints. The intuition behind this is as fol-
lows: To check if a linear constraint is satisfied, a test needs



to query all the variables that participate in that constraint.
Based on any partial view involving some of the variables,
the test cannot guess if the constraint is going to be satisfied
or not till it reads the final variable. Hence, any adaptive
decision based on such a partial view does not help.

THEOREM 11. Let V' C {0,1}" be a vector space. For
every 1-sided error adaptive (¢, p,q)-test T for V, there is a
1-sided error non-adaptive (¢, u,q)-test T' for V.

PRrROOF. Let T be a 1-sided error (adaptive) (g, u, q)-test
for V. Let Fr and Dr be the associated set of decision trees
and the corresponding distribution respectively. Since T is
of 1-sided error, T accepts if it does not detect a violation.
Furthermore, we may assume that 7" rejects if it detects a
violation since this can only decrease the acceptance proba-
bility of strings not in V. This implies that all the trees in
Fr are optimally labeled. We now define the non-adaptive
test T" corresponding to T

DEFINITION 3
Given a 1-sided error (adaptive) test T for V', define the test
T’ as follows: On input z, choose a random v € V, query x
on all variables that T queries on input v, reject if a violation
1s detected, otherwise accept.

T’ has 1-sided error because it rejects only if it detects a
violation. The query complexity of T” is the same as that of
for T. Moreover, the queries depend only on the random v €
V and not on the input x. Hence, the test T' is non-adaptive.
The following lemma relates the acceptance probability of
T’ to the average acceptance probability of T

LEMMA 12. Let T be a 1-sided error (adaptive) test and
T' the non-adaptive version of T (as in Definition 8). Then,
for any string x € {0,1}",

Pr[T'(x) = 1] = average (Pr[T(z + v) = 1]).
veV

ProOF. For any decision tree I, let [1(I") denote the set
of leaves in I" that are labeled 1. For any leaf [ in a decision
tree T, let var(l) denote the set of variables queried along
the path leading to [ in the tree I'. Following the notation
of Lemma 8, let V; and V;* be the set of all vectors in V'
and = + V respectively that are consistent with the answers
along the path leading to I. Also let I} be a binary variable
which is set to 1 iff z does not violate any constraint in V =+
involving only the variables var(l). Observe that if test T”
chooses the decision tree I' € Fr and the vector v € V such
that v € V; for some leaf [ labeled 1 in the tree I', then
IF=1iff T'(z) = 1.

The quantity “average, . (Pr[T'(z + v) = 1])” can be ob-
tained as follows: First choose a decision tree I' € Fr ac-
cording to the distribution D7 and then for each leaf [ la-
beled 1 in I, find the fraction of vectors in x4+ V that follow
the path leading to [. The weighted sum of these fractions
is average, v, (Pr[T(z 4+ v) = 1]). Thus,

Vi

V]
(1)

Now consider the quantity “Pr[T’(z) = 1]”. Test T' can be
viewed in the following fashion: On input z, T chooses a
random decision tree I' € Fr according to the distribution

average (Pr[T'(z +v) =1]) = Z Dr(T)
veEV rexr

>

lel ()

(1-SIDED ERROR NON ADAPTIVE TEST).
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Dr, it then chooses a leaf I labeled 1 in I" with probabil-
ity proportional to the fraction of vectors v € V that are
accepted along the path leading to I (i.e., |Vi|/|V]), queries
z on all variables in var(l) and accepts if I = 1 and re-

jects otherwise. This gives us the following expression for
Pr[T'(z) = 1].

Pr[T'(z) = 1] = Z Dr(T) I7

reFxr

> W) @
1€ly (T)

From Equations (1) and (2), we obtain that it suffices to
prove that |V;*| = I - |V| for all leaves [ labeled 1 in order
to prove the lemma.

Observe that |V;| is non-empty since [ is labeled 1. Hence,
by Lemma 8, |V;| = |V;®| if V/* is also non-empty. It now
suffices to show that V;* is non-empty iff I = 1.

Suppose V;* is non-empty. Then there exists y € z + V
that does not violate any constraint involving only the vari-
ables var(l). But y and z satisfy the same set of constraints.
Hence, z also does not violate any constraint involving only
the variables var(l). Thus, I = 1.

Now, for the other direction, suppose I} = 1. Then the
values of the variables var(l) of x do not violate any con-
straint in V*. Hence, there exists « € V that has the same
values as x for the variables var(l). Let v € V;. Then, the
vector x —u + v € ¢ + V has the same values for the vari-
ables var(l) as v. Hence, V,” is non-empty. This concludes
the proof of the lemma. [

The above lemma proves that T inherits its acceptance
probability from 7. As mentioned earlier, 7" inherits its
query complexity from 7. Thus, the query complexity of
T’ is at most g. Hence T' is a 1-sided error non-adaptive
(e, p, q)-test for V. [

6. RANDOM CODES REQUIRE A LINEAR
NUMBER OF QUERIES

In this section we prove Theorem 4. In particular, we
show that a random (¢, d)-regular code with high probability
obeys definition 1, for large enough constants c¢,d. We start
by defining such codes, originally introduced and analyzed
by Gallager [9].

6.1 Random Regular Codes

Let G = (L, R, E) be a bipartite multi-graph, with |L| =
n,|R| = m, and let d(v) be the degree of a vertex v. G
is called (c,d)-regular if for all v € L, d(v) = ¢, and for
all v € R, d(v) = d. A random (c,d)-regular graph with
n left vertices and m = gn right vertices, is obtained by
selecting a random matching between cn “left” nodes, and
dm = cn “right” nodes. Collapse ¢ consecutive nodes on the
left to obtain n c-regular vertices, and collapse d consecutive
nodes on the right to obtain m d-regular vertices. Notice
that the resulting graph may be a multi-graph (i.e. have
multiple edges between two vertices). The code associated
with G is obtained by letting R define C*, as in the following
definition.

DEFINITION 4. Let G = (L,R,E) be a bipartite multi-
graph, with |L| = n,|R| = m. Associate a distinct Boolean
variable x; with any @ € L. For each j € R, let N(j) C L
be the set of neighbors of j. The j’th constraint is A; =



> ien( Ti mod 2. Let A(G) be the m X n matriz where the
jth row of A(G) is Aj. The code defined by G is

C(G) = (AG))" = {z € {0,1}"|A(G) -« = O}

A random (¢, d)-regular code is obtained by taking C(G)
as in the previous definition, for G a random (c, d)-regular
graph. Notice that a variable may appear several times in a
constraint.

6.2 Some Expansion Properties of Random
Regular Graphs

To prove C(G) obeys definition 1, we use standard argu-
ments about expansion of the random graph G. We reduce
each requirement on A(G) to a requirement on G, and then
show that the expansion of a random G implies that it sat-
isfies the requirements. We need the following notions of
neighborhood and expansion.

DEFINITION 5
For SCV, let

o N(S) be the set of neighbors of S.

o N(S) be the set of unique neighbors of S, i.e. vertices
with exactly one neighbor in S.

o N°¥(S) be the set of neighbors of S with an odd num-
ber of neighbors in S.

Notice that N(S) C N°%(S).

DEFINITION 6  (EXPANSION). Let G = (L, R, E) be a bi-
partite graph with |L| = n,|R| = m.

e G is called an (\,7)-right expander if

e G is called an (X, ~y)-right unique neighbor expander if
VS C R, |S| <vn, [IN'(S)] > X-1S].

e G is called an (\,7)-right odd expander if
VS C R, |S| > ~n, [N°™(S)| > X-|S].

Notice that expanders and unique neighbor expanders dis-
cuss subsets of size at most yn, whereas odd expanders dis-
cuss subsets of size at least yn. Left expanders (all three of
them) are defined analogously by taking S C L in defini-
tion 6.

The following lemmas are proved using standard tech-
niques for analysis of expansion of random graphs, such as
those appearing in e.g. [4, 17]. We defer the proofs to ap-
pendix A.

LEMMA 13. There exists a constant r > 0 such that for
any integers ¢ > 5,d > 2, a random (c,d)-reqular graph is
with high probability a (1,7 - d~?)-left unique neighbor ez-
pander.

LEMMA 14. For any odd integer c, any constants p >
2
0,0 < pf, and any integer d > (fj‘fcé)z, a random (c,d)-
reqular graph is with high probability a (8, p)-right odd ez-
pander.

(NEIGHBORS). Let G = (V, E) be a graph.
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6.3 Random Codes Require Are Hard to Test

We are ready to prove Theorem 4.

LEMMA 15. For any odd integer ¢ > 5, there exists an
integer d > ¢, and constants €,9, u > 0, such that for a ran-
dom (c,d)-regular graph G, the set A(G) is with high prob-
ability (i) linearly independent, (i) (dn,p)-local, and (iii)
€-separating.

PROOF (OF THEOREM 4): Fix ¢ =5. Let d,e,d, u be as in
Lemma 15. The theorem follows. [

PRrROOF (OF LEMMA 15): Given odd ¢ > 5 we will define
the constants d, €, d, p throughout the course of the proof.

(i) We need to show that adding up any subset of A(G)
cannot yield 0. Since we are working modulo 2, this is
equivalent to proving

VI C R, N°(T)#0.

For small T" we use unique neighbor expansion, and for
large T' we use odd neighbor expansion.

Fix ¢, and reverse the roles of left and right in lemma 13.
We conclude the existence of constant » > 0, such that
for any d > 5, G is with high probability a (1,7 - ¢ ?)-
right unique neighbor expander. This implies that if
IT| < r-¢”2-|R|, then N°¥(T) # () because N°*(T) D
NY(T) and N'(T) # 0.

Lemma 14 says that for any g > 0, and large enough d,
all sets of size at least ym have nonempty odd neigh-
borhood. (Actually, the lemma shows that the odd
neighborhood is of linear size, which is more than what
we need here.) Fixing p,d,d to the following values
completes the proof of the first claim:

2uc?

(pe = 0)*
(i3) Notice that if T C R, then N°(T) is exactly the
support of » .., A;. Thus, it suffices to show that

N°44(T) is large for large subsets T'.

By the definition of d, u, d from part (ii) and by lemma 14
G is whp a (dn, p)-right odd expander. This means
A(G) is (dn, p)-local. Part (i1) is proved.

p=r-c? §=p/2; d>

(i4i) Let G_; be the graph obtained from G by removing
vertex 7 € R and all edges touching it. Since A(G)
is linearly independent, it is sufficient to show that
C(G_-;) has no element of Hamming weight < en.

Let  be a non-zero element of C(G_;), and let S; C L
be the set of coordinates at which x is 1. Consider the
graph G_;. In this graph, the set of unique neighbors
of S, is empty because z € C(G_;) (otherwise, some
j' € N'(Sz), so (Aj/,xz) =1, a contradiction.) Thus,

N'(S.) € {3} (3)
where N'(S,) is the set of unique neighbors of S, in
G. Clearly, |S:| > 1 because the left degree of G is
c > 1. But if |Sy| < r-d~?-n then by lemma 13
IN'(S.)| > |Sz| > 1, in contradiction to equation (3).
We conclude that for any = € C(G—;), |z| > r-d™?, so
A(QG) is e-separating for ¢ satisfying:

e<r-d 2
Part (71%) is completed, and with it the theorem. [



7. REDUCING dLIN TO 3LIN

This section proves Theorem 5 which directly follows from
the final theorem of this section. The randomized construc-
tion from section 6 produces d-linear formulae which are
hard to test for some constant d. We would like to make
d as small as possible. This section obtains 3-linear hard
to test formulae. First we give a reduction from d-linear to
[4] + 1-linear formulae, and then apply it log d times to get
3-linear formulae.

Let ¢ be a d-linear formula on variablesin X = {z1,...,z,}.
The reduction maps ¢ to a ([%4] + 1)-linear formula on
variables X U Z where Z is a collection of new variables
{z1,...,2m}. For each constraint ¢;, say z1®...®zq =0, in
, two constraints, c; and ¢} are formed: 2;®. . .@z(%] Pz =
0 and Trdy Do DDz = 0. Let V C {0,1}" be the
vector space of vectors satisfying ¢, and let A be an m-
dimensional basis for the vector space V1 of constraints.
Define R(A) to be the collection of 2m vectors in {0,1}"**™
formed by splitting every constraint in A in two, as de-
scribed above. The following three lemmas show that the
reduction preserves the properties which make the formula
hard to test.

LEMMA 16. R(A) is independent.

ProOOF. It is enough to prove that no set of constraints in
R(A) sums up to 0. Let C € R(A). If only one of the two
constraints involving a new variable z appears in C, then
the sum of vectors in C' has 1 in z’s position. If, on the
other hand, all constraints appear in pairs, then the sum of
vectors in C' is equal to the sum of the constraints in 4 from
which C’s constraints were formed. By independence of old
constraints, this sum is not 0. [l

LEMMA 17. If A is e-separating, then R(A) is &' -separating

ro__ €
where € = TEmyn-

PROOF. Let 2’ be a vector in {0,1}"*™ that falsifies ex-
actly one constraint, say ¢, in R(A). Namely, (z’,c}) =1
and (z/,¢') =0 for all ¢’ € R(A),c #ci. Let x =z} ...2),.
Then (z,¢;) = (', ¢} +¢Z) = (¢/,¢}) + (¢/,¢Z) = 1, and
similarly, (z,¢) = 0 for all ¢ € A,¢c # ¢;. Thus, z falsi-
fies exactly one constraint in A. Since A is e-separating,
|z| > en. It follows that |z'| > en, implying that R(A) is

- _separating. [

n+m
LEMMA 18. If A is (q, p)-local, then R(A) is (q', p')-local
where ¢ = ;—& and p' = p+ 2.

PrOOF. Let o' € {0,1}™*™ be the sum of a subset T
of p' - 2m constraints in R(A). Let T> be the subset of
constraints in T that appear in pairs. Namely, for every
new variable z, both constrains with z are either in 75 or
not in Tb. Let Ty =T\ Ts.

Case 1: |Th| > ¢'. For every constraint in Ti, the new
variable z from that constraint does not appear in any other
constraint in T. Therefore, o’ is 1 on 2’s coordinate. Hence,
| 2 IT1] > o

Case 2: |T1| < ¢'. Then |T| = |T| = |Th| > p'm—4 =
2um. Let S be the set of constraints in .4 that gave rise to
constraints in T3. Then |S| = |T2|/2 > pm. Old variables
appear in the same number of constraints in S and in T5.
Thus,

> > 7.

e

ceTy

> e

ceS
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The last inequality follows from the fact that A is (g, p)-
local. When constraints from T are added to ZceTz ¢, each
T constraint zeroes out at most [2£] coordinates. It also
adds at least 1 to the weight of the sum since it contains a
new variable that does not appear in any other constraints

in 7. Hence,

>

c€To

d
-5 >q-5q4 =4 O

’
>
o' > .

d e

ceTy

Now we study what happens if the reduction is applied a
few times until d becomes 3.

THEOREM 19. Let V' C {0,1}" be a vector space and let
A be an m-dimensional basis for V- containing vectors of
weight at most d. Let A* be a set of m* wvectors in {0,1}",
obtained by applying the reduction R logd times, until the
weight of every vector is 3. If A is e-separating (g, p)-local,
then A* is *-separating and (q*, p*)-local, where

m* =dm ; n"=n+(d-1)m;

* 3 * 2q

= ="
1+(d—-1)m/n d+2

. i.d+2

" _u+m d+1"°

PrOOF. The theorem follows from lemmas 16, 17, 18. [l
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APPENDIX
A. PROOFS FROM SECTION 6

PROOF (OF LEMMA 13):
the proof of which will follow.

We need a couple of lemmas,

LeEMMA 20. For any integers ¢ > 2,d, and any constant
a < c—1, a random (c,d)-regular bipartite graph with n left
vertices, s with high probability o (o, €)-left expander, for
any € satisfying

1
(c—a)\ " c—a-—-1
‘< (26<1+a>. (a_d> )
C

LEMMA 21. Let G be a (c,d)-regular bipartite graph. If G
is an («, €)-left expander, then G is an (2a—c, £)-left unique
neighbor expander.

(4)

We do not try to optimize constants. Let o = C“ , Notic-

ing that for ¢ > 5, § <a<c-—1 BylemmaZO Gis a

(a, €)-right expander for any e satisfying equation (20).
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For our selection of «, and any ¢ > 5, the following in-
equalities can be verified:

_(ta) g

(c—a-1) —

<2/3

ole

(c—a)
(c—a-1) =2

Hence setting & = (100 - d) 2 satisfies equation (20). Fi-
nally, by lemma 21, we get that G is whp a (1,rd™?)-left
unique neighbor expander. [

PROOF (OF LEMMA 20): Let BAD be the event that the
random graph is not an expander. This means there is some
S C L,|S| < en such that [N(S)| < a-|S].

Fix sets S C L,T C R, |S| = s < en,|T| = as, and let
B; be the event that all edges leaving S land inside T. We
upper-bound the probability of this bad event.

< (ads) “
cn
The inequality follows as long as ads < cn. We now use
a union bound over all sets S C L |S| = s < en and all sets

c-s—1

1

=0

ads — 1

Pr[B;]

cn —1

T C R, |T|=as. Let & be the constant r = e' T (24)°""
En n m
Pr[BAD] < Z (S) . (as) - Pr[Bs]
s (ads\”
< ( 5) ( ) ()

Sl ()]
£L MT

By definition of a, ¢ —a — 1 > 0, hence (%)cfu*1 <1
Set

1
_ (c—a)\ T c—a—-1
<t - (v (1))
C

For this value of ¢, each term of the sum (5) is at most
1/2. Set A = min{%, ©=%=1}, and split the sum (5) into two

(5)

||M§ HM

(6)

sub-sums.
e s\ c—o 17$
Pr[BAD] < [n- (%) ]
s=1 n
S n* |:’i. (s>c oa— 1:|S Z [ ( )C—a—1:|
s=1 —
< 2. p D2 +n- an*
= k. n7>\+2>\2 +n- an*
< n-n71/9+n-27"A=o(1)

We conclude that with high probability, G is an (a, €)-left
expander. [

s



PrOOF (OF LEMMA 21): Let S C L, |S| < ¢|L|. Then by
expansion we get

a- S| <IN(S)].

Any neighbor of S that is not a unique neighbor, must be
touched by at least 2 edges leaving S. Since the left degree
of G is ¢, we get

c S| = INY(S) _ c-[S|+ IN'(S)]
2 2 ’
Combining the two equations, we get our claim. []

PROOF (OF LEMMA 14): In the proof, we make use of
the following theorem (see [13])

IN(S)| < IN'(S)] +

THEOREM 22  (AZUMA’S INEQUALITY). IfXo,..., Xy is
a martingale sequence such that |X; — Xiy1| < 1 for all i,
then

Pr{|X: — Xo| > AW < 2¢ /2

Fix T CR |T| =t > pm. Let X = |[N°(T)|. We
start by computing E[X]. For i =1...n, let X; be the ran-
dom variable indicating whether vertex i € L is in N°%(T).
Clearly X = " | X, so by the linearity of expectation,
we need only compute E[X;]. Recall that cn = dm, Let
odd(c) = {1,3,5,...,c} be the set of positive odd integers
< ¢, and notice that ¢ € odd(c) because c is odd.

zieodd(c) (Mﬁm) ’ ((l_c!i)idm)

()

E[X)] =

A%
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We conclude by linearity of expectation:
E[X] > 1 n— 0(1)

We now make use of the following edge-exposure martingale
to show concentration of X around its expectation. Fix an
ordering on the pudm edges leaving T', and define a sequence
of random variables Yo, ... Y,4m as follows: Y; is the random
variable that is equal to the expected size of N°%(T') after
the first 7 edges leaving T have been revealed. By definition,
Yuam = X, Yy = E[X], and the sequence is a martingale,
where |Y; — Yi11| < 1 for all ¢ < pdm. Since d >
we apply Azuma’s inequality (Theorem 22) and get:

2pc
(ue=8)2>

Pr[X <dn] < Pr[|[Yudm — Yo| > (u° — d)n]

c d
= Pr[[Yuam — Yo 2 (p° — 6)=m]

_dwe-5?2

e m S 26—(1+s)m

< 2

c 2
Where € = d(‘;u% —1 > 0. There are at most 2™ possible
sets T C R, so a union bound gives:

PrAT C R |T| > pm | > Aj| <on] < 27 -2e0F9™ =o(1)

JET

We conclude that A(G) is whp a (6, p1)-right odd expander.

O



