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ABSTRACT

We present a probabilistic analysis for a large class of ¢oab
torial optimization problems containing, e.qg., bihary optimiza-

tion problemsdefined by linear constraints and a linear objective
function over{0,1}". By parameterizing which constraints are of

stochastic and which are of adversarial nature, we obtagma-s
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Categories and Subject Descriptors

F.2.0 [Analysis of Algorithms and Problem Complexity]: Mis-
cellaneous

General Terms

random input model that enables us to do a general average-ca Algorithms

analysis for a large class of optimization problems whilehet
same time taking care for the combinatorial structure oividdal
problems. Our analysis covers various probability distitns for
the choice of the stochastic numbers and inclusieeothed analy-

siswith Gaussian and other kinds of perturbation models asa spe

cial case. In fact, we can exactly characterize the smoathed
plexity of optimization problems in terms of their random rats
case complexity.

A binary optimization problem hasgolynomial smoothed
complexityif and only if it has a pseudopolynomial com-
plexity.
Our analysis is centered around structural propertiesrarigiop-
timization problems, calledinner, loser, andfeasibility gaps We
show, when the coefficients of the objective function andtame
of the constraints are stochastic, then there usually existiyno-
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1. INTRODUCTION

Many combinatorial optimization problems have an objectiv
function or constraints specified in terms of real numbeseae
senting natural quantities like time, weight, distanceytdity. This
includes some well-studied optimization problems likg, etrav-
eling salesperson, shortest path, minimum spanning treeelis
as various scheduling and packing problems. When analyhing
complexity of algorithms for such problems, we usually assu
that these numbers are integers or rational numbers withita fin
length representation. The hope is that it suffices to measuod

mial n~2(1) gap between the best and the second best solution ascompute with some bounded precision in order to identify pn o

well as a polynomial slack to the boundary of the constraiBim-
ilar to the condition number for linear programming, thes@g
describe the sensitivity of the optimal solution to sligetrtprba-

tions of the input and can be used to bound the necessaryaagcur

as well as the complexity for solving an instance. We exploit

gaps in form of an adaptive rounding scheme increasing tbe-ac

racy of calculation until the optimal solution is found. Téteength
of our techniques is illustrated by applications to varidiiz-hard
optimization problems from mathematical programmingwoek
design, and scheduling for which we obtain the the first aigars
with polynomial average-case/smoothed complexity.
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timal or close to optimal solution. In fact, if real numbers- o
cur only in the objective function and if this objective ftion is
well-behaved (e.g., a linear function) then calculatinghweason-
able approximations of the input numbers yields a feasible-s
tion whose objective value is at least close to the optim@ailve
value. More problematically, however, if the constraints de-
fined by real numbers, then calculating with rounded inputibers
might miss all interesting solutions or might even produdeasi-
ble solutions.

How can one solve optimization problems (efficiently) on meo
puter when not even the input numbers can be specified eRaetly
In practice, optimization problems in which real numbersurdn

or less carefully. Fortunately, this approach seems tayiea-
sonable results. We seek for a theoretically founded exsilam
why this rounding approach usually works. Studying thiséssn-

der worst case assumptions does not make very much sense as, i

the worst case, the smallest inaccuracy might lead to aasitie
or utterly sub-optimal solution. This question needs to toelisd
in a stochastic model. In the following probabilistic arsgy we
will show that, under some reasonable and quite generahasoc
tic assumptions, one can usually round real-valued inpothars
after only a logarithmic number of bits without changing the
timal solution. In fact, our probabilistic analysis goes fieeyond
the point of explaining phenomena occurring in practice. ahée



able to provide algorithms with polynomial average-casegmex-
ity (more precisely, polynomial smoothed complexity) foguite
general class of discrete optimization problems. Our amslyov-
ers various well-studiedlP-hard discrete optimization problems
from mathematical programming, network design, and sdheglu
like, e.g., multi-dimensional knapsack, constrained spantree,
or scheduling to minimize the weighted number of tardy jobs.

1.1 A semi-random input model for discrete
optimization problems

A discrete optimization problem is specified in terms of ajgob
tive function and a feasible region over a set of discret@bbas.
Usually the variables are binary, the objective functidinisar, and
the feasible region is defined by a set of linear constraBuppose
an optimization problerfl is defined by a set af binary variables
X1,---,%1, an objective function of the fornrminimize (or maxi-
mize) cTx, and a finite set of constraints x < tj or w/x > t;. In
the following, we use the phrasapressioras a generic term for the
linear expressions” x andw! x occurring in the objective function
and the constraints, respectively. We explicitly distiistpbetween
those expressions that shall be of stochastic nature ase that
shall be of adversarial nature. In particular, we assumgtiieae is
a set ofstochastic expressionghose coefficients shall be random
or randomly perturbed real numbers and a setlversarial expres-
sionsin the sense that we treat the numbers in these expresdiens li
rational or integer numbers in a usual worst-case analybis.rea-
son for distinguishing stochastic and adversarial exprasss that
we do not want that the randomization destroys the combiiato
structure of the underlying optimization problems. At hént, let
us remark that we can slightly relax the assumptions madeeabo
In fact, the linearity assumption for adversarial exprassican be
dropped, that is, objective function and constraints oelgchto be
specified by linear expressions if they are stochastic.

tion does not have to be linear if it is adversarial, but ikitinear,
i.e., of the formc™x, c € Q", then a unique ranking can always
be enforced by encoding the lexicographical order amongdhe
tions into the less significant bits of the objective funatigithout
changing the computational complexity of the underlyingrojza-
tion problem by more than a polynomial factor. In fact, mdshe
algorithmic problems that we will study have algorithmsttim-
plicitly realize a unique ranking. In this case, one doesewan
need an explicit encoding. Given a unigue ranking, we seéhdo
thewinner, i.e., the highest ranked solutiondm B;N...NBy. In
the following, optimization problems satisfying all thentlitions
above are callethinary optimization problems with stochastic ex-
pressionsr, for short,binary optimization problems

Smoothed Analysis.The framework of smoothed analysis was
introduced by Spielman and Teng in [24]. Essentially, thegws
that the Simplex algorithm has polynomial smoothed comiplex
when input numbers are slightly perturbed using a Gauss&n d
tribution with small standard deviation. It is assumed firat an
adversary specifies all coefficients in the constraint matrch that
[[w]| < 1, for every coefficientv, and then these adversarial num-
bers are slightly perturbed by adding to each of them a random
numbers drawn according to a Gaussian distribution withmtea
and a specified standard deviation- 0. Spielman and Teng prove
a running time for the Simplex algorithm under the shadow ver
tex pivot rule that is polynomial in the number of variablexa
constraints as well as ié. Similar results have been obtained for
other variants of the Simplex algorithm as well as for a fetheot
problems [1, 3, 5, 8, 25]. Our probabilistic analysis is restricted
to the model of smoothed analysis, but we use this nice framew
to illustrate our results.

We generalize smoothed analysis as follows. At first, we do no
necessarily perturb all coefficients in the constraint malut only
the coefficients in the stochastic expressions. Initialfyadversary

ber of stochastic expressions is denotedk byl and the number of
stochastic constraints by € {k— 1,k}. A stochastic instancef an
optimization problentl is described in terms of a possibly stochas-
tic (and in this case linear) objective function and a felasibgion
that is defined by the intersection of an arbitrary sutsset{0, 1}"
with k' subsetBy, ..., B¢ C {0,1}" each of which is defined by a
stochastic, linear constraint. The coefficients in thelsistic ex-
pressions are specified by independent continuous pratlyadis-
tributions with domainR. Different coefficients might be drawn
according to different distributions. The only restriction these
distributions is that their density function is piecewismtnuous

constraints that shall be stochastic is restrictefdft] or [—1,1],
depending on whether the domain should be non-negativesor al
include negative numbers. Then a random perturbationthligh
changes the coefficients in the stochastic constraints dyngdn
independent random number to each of them. These random num-
bers are drawn according to a specified family of probabilisyri-
butions satisfying the following conditions. Lét: R — R>q be
any piecewise continuous density function such thafEug)) = 1
and [|s|f(s)dsis finite, that is, the random variable described by
f has a finite expected absolute value. Functfois called the
perturbation model For @ > 1, we definefy, by scalingf, that is,

and bounded. Assuming bounded densities is necessaryas oth fo(S) = @f (sp), for everys € R. This way, the density parameter

wise worst-case instances could be approximated arlbyjtragll

by specifying distributions with very high density. For ae dis-
tribution, the supremum of its density function is calleslden-
sity parameter We will see that the maximum density parameter
over all distributions plays an important role in our anaysThis
parameter is denoted by Intuitively, @ can be seen as a mea-
sure specifying of how close the instances might be to thestwor
case. A worst-case instance can be interpreted as a stiecimast
stance in which the probability measure for each stochastither

is mapped to a single point. Thus, the largethe closer we are to
a worst-case analysis.

In our probabilistic analysis, we assume that the objedtine-
tion defines a unique ranking among all solutiond@1}". Ob-
serve, if the objective function is stochastic then the ficiehts are
continuous random variables so that the probability thextetiexist
solutions with same objective value is 0. In other words, igus
ranking is given with probability 1. Recall that the objgetifunc-

of fyis @. We obtaing-perturbationsaccording to the perturbation
model f by adding an independent random variable with density
function fy, to each stochastic input number. For example, one ob-
tains the Gaussian perturbation model from [24] by choosing

be the Gaussian density with standard deviafem) ~/2. A non-
negative domain can be obtained, e.g., by choositmbe the den-
sity of the uniform distribution ovel0, 1]. In [24] the running time

is described in terms of the standard deviatmonin contrast, we
describe the running time in terms of the density paramgté&or

the Gaussian and the uniform distribution these two pararsetre
closely related; in both casesgis proportional to}j.

Let us illustrate our semi-random input model by an examiple.
the single-pair shortest path problem one seeks for theedigrath
in a graphG = (V, E) between a given sourss= V and a given tar-
gett € V. In the binary program formulation of this problem there
is a variablexe for each edgee € E. Thus,n corresponds to the
number of edges. A solutionis feasible if the edges in the set



{e€ E|xe =1} form a path fronstot. Let.S denote the set of all
solutions satisfying this condition. The combinatoriausture de-
scribed bys should not be touched by our randomization. It makes
sense, however, to assume that the objective function éhastic

as its coefficients describe measured quantities. So we ssayree
that these coefficients are perturbed with unifagrperturbations,
that is, each of these coefficients corresponds to the sum afla
versarial number fronj0,1] and an independent random number
drawn uniformly from[0,¢1]. In the constrained shortest path
problem (see, e.g., [11]), edges do not only have lengthsitbut
ditionally each edge comes with a latency paraméteNow one
seeks for the shortest path satisfying an additionallyifipddinear
time constrainty ¢ /ex < T. This additional constraint corresponds
to a subset3; C {0,1}/Fl so that nowB; N S is the set of feasible
solutions. Due to the additional constraint, the problemob®es
NP-hard. We will see, however, that there is an algorithm with
“polynomial smoothed complexity” if either the objectiveriction

or the additional latency constraint is stochastic.

1.2 How accurately do we need to calculate?

More precisely, we ask how many bits of each stochastic input
number do we need to reveal in order to determine the winner? —
We say that the winner ideterminedafter revealing some number
of the bits, when there is only one possible candidate foniheer,
regardless of the outcomes of the unrevealed bits.

THEOREM 1. Consider any instance of a binary optimization
probleml. Let n> 1 denote the number of binary variables and
k > 1 the number of stochastic expressions.

a) Suppose the expected absolute v&iigv|] of every stochas-
tic coefficient w is bounded from above by-|0. Then the
number of bits in front of the floating point of any stochastic
number is bounded by (@g(1+ pnk)), whpt.

b) Lete> 0 denote the maximum density parameter, that is, all
density functions are upper-bounded @@yThen the winner
is uniquely determined when revealingl@y(1+ ¢nk)) bits
after the binary point of each stochastic coefficievip.

One can always scale the input of a linear optimization nwobl
by multiplying all input numbers with a factor> 0. Obviously,
the parameterg and @ must be adapted to this scaling, thatjis,
needs to be multiplied witlr and @ with \—1/ Observe that this kind
of scaling does not change the overall number of bits thal teeke
revealed as logunk) 4+ log(gnk) = log(yunk) + Iog(\—ll(pnk). In case
of a smoothed analysis, the right way to scale the input nusnbe
is already build into the model. According to our definitiptize
density functionf specifying the perturbation model has to have a
finite expected absolute value. For any fixed model of peatioh,

J I8/ f(s)ds=0O(1). In particular, the expected absolute value of the
density functionfy, is O(¢1). Taking into account that the domain
of the initial adversarial choices for the stochastic coffits is
[—1,1] or [0,1], we observe thap-perturbations yield coefficients
with an expected absolute value of at most O(1+ %). In order to
simplify the notation, our model of smoothed analysis isrieted

to density parameterg > 1. This leads to the following result on
the overall number of bits that need to be revealed per ssticha
input number.

COROLLARY 2. For any fixed perturbation model f, the win-
ner is uniquely determined when revealing@(¢nk)) bits of each
stochastic coefficientyhp.

Lwith high probability, with probability - (nk)~%, for every fixed
a>0

Let us explain the concepts and ideas behind the analysis for
Theorem 1. Part a) of the theorem follows simply by applyimg t
Markov inequality to the expected absolute values of thévidd
ual coefficients. The interesting part of the theorem isestan
b). In order to identify the winner one needsisolate the win-
ner from other feasible solutions having a worse objectaeie.
Furthermore, one needs $eparatethe winner from those infea-
sible solutions that have a better objective value than timmev.
Our analysis is based ongeneralized Isolating Lemmai.e., a
generalization of the well-known Isolating Lemma by Mulmeyl
Vazirani and Vazirani [18] — and a novBkeparating Lemma

The Isolating Lemma was originally presented in an artiblewa
RNC algorithms for perfect matchings [18]. It is known, hawe
that the lemma does not only apply to the matching problem but
to to general binary optimization problems with a linearemtive
function. The lemma states that the optimal solution of atyin
optimization problem is unique with probability at Iea}stwhen
choosing the coefficients of the objective function indegeerly,
uniformly at random from the s€tl,2,...,2n}. This is a very sur-
prising and counterintuitive result as there might be aroaeptial
number of feasible solutions whose objective values falinab a
polynomially large set, namely the sgt,2,...,2n°}, so that one
can expect that an exponential number of solutions are noajope
the same objective value. The reason why the winner nevesthe
is isolated is that the objective values of different sans are not
independent but the solutions represent subsets over adys®t
of only nrandom numbers. We adapt the Isolating Lemma towards
our continuous setting and generalize it towards pieceeosénu-
ous probability distributions as described in Section Inlpartic-
ular, different coefficients may follow different continue proba-
bility distributions. Suppose only the objective functigrstochas-
tic, and the feasible region is fixed arbitrarily. Letdenote the
maximum density parameter over all coefficients in the dhjec
functions. Define thevinner gapto be the difference between the
objective value of the winner and the second-best feasithlgiaen,
provided there are at least two feasible solutions. Thergéined
Isolating Lemma states that the winner gap is a continuawora
variable whose density function is bounded from above gy, 2
and this bound is tight. From this result one can immediatiely
rive the following lower bound on the size of the winner gapr F
everye € [0, 1], the winner gap is lower-bounded with prob-
ability at least - €. As a consequence, it suffices to reveal only
O(log(gn)) bits of each coefficient of the objective function in or-
der to identify the winnemnvhp.

We accompany the Isolating Lemma with a no@sparating
Lemma enabling us to separate the winner from infeasible solu-
tions with better objective value than the winner. For tineetibe-
ing, consider any binary optimization problem in which agén
constraint is stochastic. The difficulty in checking thesiedity
with respect to this constraint is that it might be likelyttzere are
many solutions that are exponentially close to the consthaiper-
plane. Nevertheless, we will see that the optimal solutiam loe
identified by inspecting only a logarithmic number of bits pgut
numberwhp. The reason is that we do not need to check the fea-
sibility of all solutions but only of some particular solotis. The
losersare those solutions that have a rank higher than the winner
but they are infeasible because of the considered coristraire
loser gapis defined to be the minimal amount by which a loser
(except for the solution) exceeds the constraint threshold. The
Separating Lemma shows that the supremum of the density func
tion of the loser gap is at mogn®. Hence, for eveng > 0, the
loser gap is at least:,; with probability at least +-¢€. Let us try

to give some intuition about this result. If there are onlyeaf



losers then one can imagine that neither of them comes vesg cl

to a random or randomly perturbed hyperplane. Howevergether

might be an exponential number of losers. In this case, hexev
the winner has a relatively low rank as there is an exponlemiia-
ber of solutions better than the winner; but this is very kel if
the constraint hyperplane is likely to come very close togbed
solutions which correspond to the losers. Seeing it theratiag
around, if there are many losers then the hyperplane ig/ltkebe
relatively far away from the losers, which might intuitiyedxplain

the phenomenon described by the Separating Lemma. Bebigles t

loser gap, we study the so-calléshsibility gapcorresponding to
the slack of the optimal solution with respect to the stotbaen-
straint. Essentially, we prove that the density functiohdoser

and feasibility gaps have the same maximum supremum sdiat t

density of the feasibility gap is lower-bounded as well. In
fact, our analysis for loser and feasibility gaps is heak#ged on
symmetry properties between them.

Let us remark that, when analyzing the winner gap, it is agslim
arandom objective function and a fixed feasible region. htrest,
when analyzing loser and feasibility gaps, it is assumechédaia
constraint or a set of random constraints instead of a raralpet-
tive function. In other words, the random expressions dagitihe
objective function and the constraints are assumed to lohasti-
cally independent. In fact, if the feasible region and thgctive
function are correlated, then winner, loser, and feagjbdan not
be lower-bounded by a polynomial. The optimization varizithe
subset-sum problem (i.e., knapsack with profits equal tgkis) is
a simple counterexample. Lueker [16] proved exponentiitall
gaps for this problem.

1.3 Characterizing polynomial smoothed
complexity
Based on the gap properties, we aim at characterizing wiigeh d

crete optimization problems have polynomial time alganishun-
der random perturbations. We formalize this as follows. &y
binary optimization probleniil and any perturbation modél Let
In denote the set of all unperturbed instances of lehgthat the
adversary may specify. The definition of the input leniytheeds
some clarification as the coefficients in the stochasticesgions

are assumed to be real numbers. We define that each of these num

bers has a virtual length of one. (This way, we enduite kn.) The
bits of the stochastic numbers can be accessed by askingele or
in time O(1) per bit. The bits after the binary point of each coeffi-
cient are revealed one by one from left to right. The deteistin
part of the input does not contain real numbers and can baledco
in an arbitrary fashion. For an instance I, letl + f, denote the
random instance that is obtained byp@erturbation of. We say
thatl hassmoothed polynomial complexifyand only if it admits
an algorithm4 whose running tim& satisfies

S0.B>0: V9> 11 YN € N: maxE[(T(1+1)*| < BoN .

This definition of polynomial smoothed complexity followsone
or less the way how polynomial complexity is defined in averag
case complexity theory, adding the requirement that thaingn
time should be polynomially bounded not onlyNrbut also ing. It

is not difficult to show that the assumption on the runningetwfia

is equivalent to requiring that there exists a polynor®@\, ¢, %)
such that for everiN € IN,@ > 1,¢ € [0, 1], the probability that the
running time of4 exceedsP(N, @, %) is at moste. Observe that
this does not imply that the expected running time is polyirom
ally bounded. To enforce expected polynomial running tithe,
exponenta in the definition of polynomial smoothed complexity

should have been placed outside instead of inside the atjmct
The reason for not defining polynomial complexity based an th
expected running time is that this is not a sufficiently raimation.
For example, an algorithm with expected polynomial runringe

on one machine model might have expected exponential rgnnin
time on another machine model. In contrast, the above definit
yields a notion of polynomial smoothed complexity that does
vary among classes of machines admitting polynomial time si
ulations among each other. Although polynomial smoothed-co
plexity does not always imply polynomial bounds on the expac
running time, we will show that several of our algorithmiculs
yield expected polynomial running time on a RAM.

We show that the smoothed complexity of a binary optimiza-
tion problem can be characterized in terms of its worst-case-
plexity. Theorem 1 shows that one usually only needs to tevea
logarithmic number of bits per real-valued input numberisHug-
gests that there should be a connection between pseudopubin
worst-case running time and polynomial average-case iyl
For a binary optimization probleim, letI1, denote the correspond-
ing optimization problem in which all numbers in the stodiaex-
pression are assumed to be integers in unary representzaitead
of randomly chosen real-valued numbers. The following téeo
holds for any fixed perturbation modél

THEOREM 3. Abinary optimization problerfl has polynomial
smoothed complexity if and onlyfif, € ZPP.

In other words,IM has polynomial smoothed complexity if it
admits a (possibly randomized) algorithm with (expectes@us
dopolynomial worst-case running time. This characteidraim-
mediately shows that stronglyP-hard optimization problems do
not have polynomial smoothed complexity, unl@$¥P= NP. This
result might not sound very surprising as the hardness ofgly
NP-hard problems does not rely on large or precisely specified i
put numbers. Observe, however, that the stridiRghardness of a
problem does not immediately rule out the possibility of dypo
nomial average-case complexity. For example, the TSP g@nobl
with edge lengths drawn uniformly at random frdf)1] might
have a polynomial average-case complexity. Our theorem; ho
ever, shows that it does not have a polynomial smoothed @mpl
ity, unlessP = NP. The more sophisticated part of the theorem
Is the other direction stating that every binary problem itiimy a
pseudopolynomial time algorithm has a polynomial smootieed-
plexity. This result is based on the generalized Isolatieghna
and the Separating Lemma. The idea is as follows. We desiign ef
cient verifiers checking whether a solution computed witkrain
precision is actually the optimal solution Bf. The success prob-
ability of these verifiers is analyzed with the help of the gapp-
erties. In an adaptive rounding procedure we increase tgion
until the optimal solution is found. The overall running &rof this
meta-algorithm is polynomial if the algorithm computing tolu-
tions with bounded precision has pseudopolynomial runtimg.

Algorithmic Applications. Let us illustrate the strength of The-
orem 3 by giving some algorithmic applications to some Wwalbwn
optimization problems and comparing these results witkipus
work on the probabilistic analysis of optimization probkerithere
has been substantial effort to analyze random instancés &hiap-
sack problem, see, e.g., [5, 6, 12, 14, 15]. The knapsacKkemob
can be seen as the simplest non-trivial binary optimizaginb-
lem as its feasible region is described by only one singlealin
constraint. The problem belongs to the class of packinglenab,
that is, the constraint is of the form'x < t and the coefficients
are assumed to be non-negative. To our knowledge, the kriapsa



problem is the onlyNP-hard optimization problem that was pre-
viously known to have polynomial smoothed complexity [SheT
multi-dimensional knapsack problem is a natural geneatim in
which there are multiple packing constraints instead oy amle.
Dyer and Frieze [9] proved that, with constant probabilityis
problem can be solved in polynomial time if the number of con-
straints is constant and the coefficients in the constraistwell

as in the objective function are chosen uniformly at randoomf
[0,1]. Their result, however, does not yield polynomial average-
case complexity as the dependence of the running time oratlhe f
ure probability is not bounded by a polynomial. The multigtep-
sack problem with a constant number of constraints admitea-p
dopolynomial algorithm. Hence, Theorem 3 implies a polyiam
smoothed and, hence, also a polynomial average-case odtyple
for this problem. Moreover, the pseudopolynomial algarithlso
works for general 0/1 integer programming with any fixed num-
ber of constraints. Therefore, this class of problems h&gmpe
mial smoothed complexity when assuming that the objectimef
tion and all constraints are stochastic. Furthermore, tleerem
shows that general 0/1 integer programming with an unbalinde
number of constraints has no polynomial smoothed compiast

it is stronglyNP-hard.

The problem of scheduling to minimize the weighted number of
tardy jobs is defined by jobs each of which coming with a pro-
cessing time;, a due datel;, and a penaltyg; that has to be paid if
jobiis not finished in time. The jobs shall be scheduled on a single
machine such that the sum of the penalties is minimized.rmge
of n binary variables«,...,X,, the objective is to minimize' x
wherex = 1 if job i cannot be finished in time. Observe that the
problem is essentially solved once these binary variabslegeter-
mined as we can assume w.l.0.g. that an optimal scheduletesec
the selected jobs in the order of non-decreasing deadlirfesex-
act formulation of the feasible region in terms of a binarggram
is not of interest to us. The input of the problem consisty ofiBn
numbers, the processing times, the due dates, and theipenals
the scheduling problem admits an algorithm whose runnimg ti
is pseudopolynomial with respect to the penalties, thelprolhas
polynomial smoothed complexity for stochastic penalties.

Next we come to multicriteria optimization problems. If eea
criteria shall be optimized simultaneously then usuallg ofithem
is declared to be the objective function, and the othersa@rau-
lated in form of a constraint with a given threshold. Oftenewh
a single-criteria optimization problem is polynomial, theblem
becomed\P-hard when adding another criteria in form of a linear
constraint. Examples for such problems are shortest pptn-s
ning tree, or matching [17, 11, 19]. Theorem 3 enables usdeepr
polynomial smoothed complexity for such multicriteria plems
as follows. The problems listed above have exact algoritwitis
pseudopolynomial running time [19, 4, 18], that is, givenirae-
gerk and an instance of these problems one can compute a solutio
with objective value exactlk in pseudopolynomial time. Using
standard coding techniques (see, e.g., [23]) a pseudapoigh
algorithm for the exact single-criteria decision problemplies a
pseudopolynomial algorithm for its multicriteria optiraiion vari-
ant. Combining this observation with Theorem 3 yields tHio¥o
ing result.

COROLLARY 4. Letl be a (single objective) binary optimiza-
tion problem. Suppose the exact versiotilaidmits an algorithm
with pseudopolynomial running time. Then any multicraerari-
ant of I with stochastic coefficients with respect to all criterissha
a polynomial smoothed complexity.

A similar approach was used in [19] to derive approximation

n

schemes for multiobjective optimizations problems. Theltary
implies polynomial smoothed complexity for the multicritevari-
ants of shortest path, spanning tree, and matching. Onertdites
always need to assume that all criteria are of stochasticaafor
example, the bicriteria variant of the shortest path pnoblee.,
the constrained shortest path problem, has an algorithnsevhm-
ning time is pseudopolynomial with respect to the objectivec-
tion and another algorithm that is pseudopolynomial witspezt
to the additional constraint. Applying Theorem 3 directijtihese
algorithms yields that the constrained shortest path probhas
polynomial smoothed complexity even when either only theob
tive function or the additional constraint are stochastic.

1.4 Other aspects

In order to obtairexpected polynomial running timeunder ran-
dom perturbations one needs an algorithm with “pseudafinaa
stead of pseudopolynomial running time. Such pseudoliatepr-
rithms exist on a uniform RAM, e.g., for the knapsack prohléme
problem of scheduling to minimize weighted tardiness orde-
straint shortest path problem. Hence, assuming the uniRfl
model, all these problems admit algorithms with expectdyrm
mial running time under random perturbations. With someemor
effort the same result can also be obtained on a log-RAM. More
details are given in a full version of this paper.

On a first view, theEuclidean variants of TSP and Steiner
tree might look like interesting candidates for problems wittypo
nomial smoothed complexity. Using the same techniques tin
proof of Theorem 3 one can easily prove, however, that pohiab
smoothed complexity for these problem would imply an random
ized fully polynomial time approximation scheme. Thus, iaign
at smoothed analysis for Euclidean TSP or Steiner tree oakes
sense if one believes that these problems might admit an FPAS

One criticism of the smoothed analysis of the Simplex atbori
is that the additive perturbations destroy the zero-stirecof an
optimization problem as it replaces zeros with small valugse
also the discussion in [24]. The same criticism applies ¢éoziéro-
structure in binary programs. It turns out, however, thatmob-
abilistic analysis in Section 2 is robust enough to deal wélo-
preserving perturbations. In particular, we can extend our input
model by allowing the adversary to declare some of the coefiis
in the stochastic constraints to be fixed to zero. This waycare
extend our results to further algorithmic applications), .ewe ob-
tain polynomial smoothed complexity for the general assignt
problem (GAP) with any fixed number of bins.

2. ANALYSIS OF THE GAP PROPERTIES

In this section, we will formally define winner, loser, ancafe
sibility gaps and prove upper bounds on the density funstioi
these random variables. Before going into the details oftied-
ysis, the term "upper bound on the density” needs some elarifi
cation as the density of a continuous variable is not uniqdet
fined. A continuous random variabl is defined by itsdistri-
bution Fx(t) = Pr[X <t]. In general, thelensity & is any non-
negative function satisfyingx (t) = [*., fx(s)ds Observe that the
integrand is not uniquely determined. It might be redefinecuay
set of points of measure 0 without affecting the integral. s&fg
that a continuous random variabteis well-behavedf its distribu-
tion functionFx is piecewise differentiable. In this casé admits
a piecewise continuous density functifg which at all of its con-
tinuous points corresponds to the derivativeFgf As usual, we
ignore the trifling indeterminacy in the definition & and refer to
fx asthedensity ofX. In particular, thesupremum of the density
of X refers solely to the supremum over the points at whfighs



continuous, and we say that the densityp@indedif there exists
b € R such thatfx(s) < b, for every points € R at which fx is
continuous. Throughout the analy§it denote(1,...,n}.

The winner gap. We consider an instance of a discrete optimiza-
tion problem whose solutions are describedrblyinary variables
X1,-.-,X%. The set of feasible solution is denoted By {0,1}".

We assume that there are at least two feasible solutionstiet-
wise S can be specified arbitrarily. The objective function is de-
noted bycTx. The numbers; € R, i =1,...,n, are assumed to be
stochastic, that is, they are treated as independent ranacatles
following possibly different, well-behaved continuousopability
distributions with bounded density. W.l.0.g., we considenaxi-
mization problem. Lex* = argmaxc' x| x € S} denote the winner
andx** = argmaxc' x| x € S\ {x*}} the second best solution. The
winner gapA is defined to be the difference between the objective
values of a best and a second best solution, that is,

A= c'x —clx™* .

The random variabl& is well-behaved, i.e.A admits a piece-
wise continuous density function. This can be seen as fsllow
The probability space o\ is (c; x ... x ¢y) € R". Each pair
of solutions defines a hyperplane R, consisting of all points
where the two solutions have equal objective function. €hes
perplanes partitiofR" into a finite number of polyhedral cells. Fix
any cellC C R". In this cell,x* andx** are uniquely determined.
In particular, (A|C) = c"x* —c"x**. Thus, the random variable
A|C is a linear functional of the well-behaved continuous Valga
C1,...,Cn. Thus the density oA\|C corresponds to the convolution
of piecewise-continuous variables, and hence it is pieseaontin-
uous, too. Consequentlf = 3 ¢ Pr[C] fac is piecewise continu-
ous as well, so thak is well-behaved. The same kind of argument
applies to other gap variables that we will define in the feifa.

LEMMA 5 (GENERALIZEDISOLATING LEMMA). Letq de-
note the density parameter gf d <i < n, andgo= max ¢. For
every choice of the feasible regigrand every choice of the proba-
bility distributions of @, . . ., ¢, the density function & is bounded
from above bRy iy & < 2¢n.

PROOF At first, we observe, if there is a varialethat takes
the same value in all feasible solutions, then this varidbkes not
affect the winner gap and it can be ignored. Thus, w.l.ogy, f
everyi € [n], there are at least two feasible solutions whose vectors
differ in thei-th bit, i.e., with respect to thieth variable. Under
this assumption, we can define the winner gap with respedi to b
positioni € [n] by

A = c'x—cly 1)

with x* = argmaXc'x|x € §} andy = argmaxc'x|x € 5, % #
x*}. In words,A; is the difference between the objective value of
the winnerx* and the value of a solutionthat is best among those
solutions that differ in thé-th bit from x*, i.e., the best solution in
{xe S| #xX7.

Clearly, the best solutionx” = (xj,...,X;), and the second best
solution,x™* = (x;*,...,x3*), differ in at least one bit, that is, there
existsi € [n] such thak' # x**. If the best and the second best solu-
tion differ in thei-th bit thenA = A;. Thus,A is guaranteed to take
a value also taken by at least one of the varialles.. Ay We
will prove upper bounds on the density functions of the \z&a
A4,...,An and use these bounds and the following lemma to obtain
an upper bound on the density of the random variabl©bserve
that the random variables, ..., A, are well-behaved continuous,
but there might be various kinds of dependencies among tlaese
ables.

LEMMA 6. Let X,...,Xn and X denote well-behaved continu-
ous random variables. Suppose X always takes a value equal to
one of the values of the variableg, X .,X,. Then for all te R,

fx (1) < Tiem fx ().

The lemma follows directly from elementary probability ting
Therefore, we skip the proof. In the following, we will proes
upper bound of & on the density function for the random variable
A, for everyi € [n]. Combining this bound with Lemma 6 imme-
diately yields that the density function Afis bounded from above
by 25 jcjny @, SO that the theorem is shown.

Let us fix an index € [n]. It only remains to be shown that the
density ofA; is bounded from above byg2 We partitions, the
set of feasible solutions, into two disjoint subs&fs= {x € S|x =
0} and$; = {x € S|x = 1}. Now suppose all random variables
Ck,k # i are fixed arbitrarily. Obviously, under this assumption,
the winner among the solutions j§y and its objective value are
uniquely determined as the objective values of the solatiarsy
do not depend omw;. Although the objective values of the solu-
tions in $; are not fixed, the winner of; is uniquely determined
as well because the unknown outcome of the random varizble
does not affect the order among the solutionsiinFor j € {0,1},
let x) denote the winner among the solutionssin We observe

A = |c™xV — cTx(9| because the solutions andy as defined
in Equation (1) cannot be contained in the sameSsef € {0,1}.
Hence A; takes either the value aff x() — cTx(9 or the value of
c™x@ —cTx(D). Observe that the random varialjeappears as a
simple additive term in both of these expressions, and theitje
of ¢ is at mostq. Therefore, both expressions describe random
variables with density at mogt as well. (Observe that this holds,
regardless of whether we assume that the other variabldxade
or random numbers.) Consequently, Lemma 6 yields that the de
sity of 4 is at most &. This completes the proof of Lemma 5.
|

Loser and feasibility gaps for a single constraint. We con-
sider an instance of an optimization problem owdbinary vari-
ables. The objective function can be fixed arbitrarily; wekrall
solutions (feasible and infeasible) according to theieotiye value
in non-increasing order. Solutions with the same objectalees
are ranked in an arbitrary but fixed fashion. The feasibléregs
described by a subsgtC {0,1}" intersected with the half-spage
described by an additional linear constraint. W.l.0.g.dbestraint
is of the formw' x < t. The setS and the thresholtiare assumed
to be fixed. The coefficients,, ..., w, correspond to independent
random variables following possibly different, well-bekd con-
tinuous probability distributions with bounded densityhelwin-
ner, denoted by*, is the solution with highest rank i§iN 8. The
feasibility gapis defined by

- |

In words, I' corresponds to the slack of the winner with respect
to the threshold. Observe thak* might be undefined as there is
no feasible solution. In this case, the random vari@btekes the
value L (undefinejl The domain of” is R>oU {_L}. The density
function fr overR ¢ is well-behaved continuous. The functién
does not necessarily integrate to 1 but only teRr [ =_]. In the
following, when talking about the density 6f we solely refer to
the functionfr over Rxg, that is, we ignore the probability of the
event{l' =1} as itis of no relevance to us.

A solution is called doserif it is contained ins and has a higher
rank thanx*, that is, the losers are those solutions frgrthat are

t—wlx
1

if SNB+#£0,and
otherwise.



better than the winner (w.r.t. the ranking), but they areatfiby
the constraintv’ x < t. The set of losers is denoted lay If there
is no winner, as there is no feasible solution, then we defines.
Theloser gapis defined by

A= { min{w'x—t |xe £} if L+#0, and
It otherwise.

As in the case of the feasibility gap, when talking about thesity
of the loser gap, we solely refer to the functifg over R>o and
ignore the probability of the evefi\ =_1}.

Our goal is to upper-bound the densities &ndA. Observe that
the solution 0 is different from all other solutions i as its fea-
sibility does not depend on the outcome of the random coeffisi
Wy, ..., Wn. Suppose Oe § and @' has the highest rank among all
solutions inS. Then one can enforde= 0 by settingg¢ = 0. Sim-
ilarly, one can enforcé\ — 0 fort — 0. For this reason, we need
to exclude the solutionOfrom our analysis. Assumind'® S, the
following theorem shows that both the loser and the feasilghp
are likely to have polynomial size.

LEMMA 7 (SEPARATINGLEMMA). Letq denote the density
parameter of w and @ = maXe ) @ Supposé" ¢ S. Then the

densities of” andA are bounded from above bys_; ¢ < gn?.

PrRoOOF We will heavily use symmetry properties between the
two gaps. At first, we will prove an upper bound @f on the
density of the loser gap under the assumption that the rgrddt
isfies a certain monotonicity property. Next, we will showattthe
supremum of the density functions for loser and feasibijaps are
identical for worst-case choices of the thresholtihis way, the up-
per bound on the density of the loser gap holds for the fdagibi
gap as well. Then we will show that monotonicity assumption f
the feasibility gap can be dropped at the cost of an extrarfact
thereby achieving an upper bound@# on the density of the fea-
sibility gap. Finally, by applying the symmetry betweendosnd
feasibility gap again, we obtain the same result for therlgae.

The ranking among the solutions is callednotonef all pairs of
solutionsx,y € S, x having a higher rank thay satisfy that there
existsi € [n] with x; > y;. When considering the binary solution
vector as subsets @f], a ranking ismonotonef no solution that is
a proper subset of another solutiSris ranked lower thais. This
property is naturally satisfied for maximization problenasing a
linear objective function with positive coefficients, busaif all
solutions inS have the same number of ones.

LEMMA 8. Supposé®” ¢ S and the ranking is monotone. Then
fA is bounded from above I ®

PROOF Fixt € R arbitrarily. Asin the proof for the winner gap,
we definen random variabled\q, ...,y with maximum densities
@1,...,¢n such that at least one of them takes the valué .ofor
i €[n], defines; = {xe S |x =1}ands =5\S. Letxt) denote
the winner froms;, i.e., the solution with highest rank 'L[s" N B.
Now let £Z; denote the set of losers frogy with respect tox™ that
is, £i = {x € S |x has a higher rank thad7. If X does not exist

then we set/; = Sj. Now deflnexmln = argmin{w"x|x € £;}, and

(i

A = { vaTxmmft if i 0, and

otherwise.

Observe that is not necessarily a subset 6fasxt’) might have

a lower rank thanx*. In fact,x_; might be feasible so tha; can

take negative values. The reason for this “wasteful” définits

that it yields some kind of independence that we will expioithe
following arguments.

Claim A: The density ofA; is at mostg. This claim can be
seen as follows. The definitions above enstre S while X() €
Si. Suppose all variablesj, j # i are fixed arbitrarily. We prove
that the density of\; is bounded byp under this assumption, and
hence the same bound holds for randomly chasgn # i as well.

The winnerxt™) _can be determined without knowing the outcome
of wi asx{ € § and for all solutions ins; the i-th entry is zero.

Observe that; is fixed as soon a€7is fixed, and so |x£n)m As a

consequencew. is not affected by the determlnatlonxﬁ,t Asthe

i-th bit ofxmln is set to one, the random varialflgcan be rewritten

asAi =w'" £n)m —t =K +Ww, wherek denotes a fixed quantity and

w; is a random variable with density at magt Consequently, the
density of/\; is bounded from above by.

Claim B:If A #.1, then there existse [n] such that\ takes the
value of Aj. To show this claim, let us first assume tlxatexists
and L # 0. Let Xpin € £ denote theminimal loser i.e., Xmin =
argmin{w"x|x € £}. By definition, xmin has a higher rank than
x*. Because of the monotonicity of the ranking, there existsn|
such thatx* € § andXmin € Sj. Fromx* € §j, we conclude<* =

x). Consequentlymin € £LNS = £ SO thatimin = xﬁn)m Hence,
A = /. Now suppose* does not exist. Ther = § and £ =,
for all i € [n]. Thus, there existse [n] with xnin = X..,;,, because

S = Ui Si as @ ¢ S. Finally, if £ = 0 then the claim follows
immediately as\=1.

Now applying Lemma 6 to the Claims A and B immediately
yields the lemma. a

The following lemma shows that upper bounds on the density
function of the loser gap also hold for the feasibility gajl aice
versa. For a given threshotd let R(t) C R>q denote the set of
points at which the distribution functions 6ft) andr (t) are dif-
ferentiable. AsA(t) and Tl (t) are well-behaved continuous, the
points inR \ R(t) have measure 0 and, hence, can be neglected.

LEMMA 9. Supposed” ¢ 5. Thensup.p SURcR() f
SUReR SURCR(t) fA(t)(S)-

ra(s) =

PROOF (Sketch) We take an alternative view on the given opti-
mization problem. We interpret the problem as a bicriterabfem.
The feasible region is defined by the setOn one hand, we seek
for a solution fromS whose rank is as high as possible. On the
other hand, we seek for a solution with small weight, wheee th
weightof a solutionx € § is defined by the linear function”x. A
solutionx € § is calledPareto-optimalif there is no other solution
y € S so thaty improves orx in rank and weight simultaneously.

We show that winners and minimal losers of the original opti-
mization problem correspond to Pareto-optimal solutidrtbe bi-
criteria problem. Intuitively, we can imagine that all Rareptimal
solutions are mapped onto a horizontal line such that a é&aret
optimal solutionx is mapped to the point™x. ThenT (t) is the
distance from the point on this line to the closest Pareto point
leftof t (i.e., less than or equal t§, andA(t) is the distance from
t to the closest Pareto poistrictly right of t (i.e., larger thart).
Now let f be a measure ové& describing the density of the Pareto
points on the line. Let’ € R denote the point maximizing. Then
f(t') is the joint supremum of the densitieslToAndA when setting
t =t/, and this choice of maximizes the supremum of the density
functions, so that the lemma follows. m]



PrROOF First we show the bound for the feasibility gap. Sup-
posel’ < g, for somee € R>p. Then there existg € [k with
tj — ]Tx* < ¢. Thus,

Prilf <eg] < z Pr [tj *WJ'TX* <eg
IS
Now, for every individualj € [k], we can apply the Separating

Lemma assuming that the set of feasible solutions with gpe
L1 \ all other constraints is fixed as the coefficients in this tramst are

stochastically independent from the other constraintss Whay, we
obtainPr I < ] < k-gqn?.

Next, we turn our attention to the loser gap. Unfortunately,
X5 cannot generalize the bound on the loser gap from one to-multi
ple constraints in the same way as we generalized the fégsibi
gap as the loser gap for multiple constraints does not quores

Figure 1: The picture shows three constraints of the form to the minimal loser gap over the individual constraintsstéad
—X1 <t1, X1 — X2 <tp, and X1 + X > t3. Supposex is the we will make use of the result for the feasibility gap estsidid
only loser. The loser gap ofx is max{tj — w'jrx\w}'x <t} = above. Assumé < g, for somee € R>¢. Then there exists a loser
t1— (1,07 x. x satisfyingVj € [k : w/x—tj <e. Letx_ denote the loser with

this property that is ranked highest. Consider a relaxeihnain’
of the given optimization problerfl where the thresholds of all
Combining the two lemmas, we observe that the density of the stochastic constraints are increasedcepize., we have constraints
feasibility gapr(t) is at mosty .y @, provided that the ranking WX <tj+¢, j € [kl. Observe thak is feasible in the relaxed
is monotone and'D¢ 5. Next we extend this result towards gen-  problem’ and, by the definition of,, no higher ranked solution

eral kinds of rankings by breaking the original problem ibswb- is feasible. Thusy_ is the winner off1’. Sincet; < W}'XL <tj+e

lems. We partitions into the setss® = {xe S| yx =k}, for : - , .
- ! . for somej € [K], the feasibility gag™’ of the relaxed problem is
1 <k < n. Observe that each of these sets contains only solutions smaller thare. Hence.A < & implies ™ < ¢. Finally, applying

with the same number of ones, and hence satisfies the moaibyoni / 2 ] .

condition. Letr K (t) denote the feasibility gap over the sg. t?;g:;?ffgrg] ii}kﬁ gk(m derived in e frst part ofthe prDOOf
By Lemma 8, the density df(¥(t) is at mosty;(y @, for every y = & = e
t € R. Furthermore[ (t) takes the value of one of the variables 3. PROOF OF THEOREM 1
r®(t), 1< k < nbecause the winner of one of the subproblems is
the winner of the original problem. As a consequence of Lerma
the density of (t) is at mosiny iy @, for every continuous point

t € R. Let us remark that such a kind of argument cannot directly
be applied to the loser gap. By applying Lemma 9, however, the
bound for the feasibility gap holds for the loser gap as wédnce,
Lemma 7 is shown. a

First, suppose the only stochastic expression is the abgefcinc-
tion. We reveab bits after the binary point of each coefficient
(1 <i <nj, and assume that all following bits are 0. This corre-
sponds to rounding down all numbers to multiples of 2ausing
an absolute rounding error of less tharPZor each number.

LEMMA 11. Let@denote the maximum density parameter over

Loser and Feasibility gap for multiple constraints. Assume all coefficients in the objective function. When revealirgts after
there arek > 2 stochastic constraints. W.L.o.g., these constraints th€ Pinary point of each coefficient in the objective fum:th)gnzthe
are of the formijx <tj, for j € [, and the sets of points satis- winner is uniquely determined with probability at ledst 2~°n-¢.

fying these constraints arBy, ..., B, respectively. We generalize PROOF Let|c| be the vector that is obtained by rounding each
the definition of feasibility and loser gap as follows. Giverset entryc; of ¢ down to the next multiple of 2. Consider any two
of solutionss C {0,1}" and a ranking, thevinner X is the highest ~ solutionsx, X € S. We have|(cTx—cx) — (|c|Tx— [c|TX)| =
ranked solution i "B N...N B. Thefeasibility gap for multiple l(c—|c])T(x—x)| < n27°. Hence, if the winner gap (with re-
constraintss the minimal slack ok* over all stochastic constraints,  spect to the exact coefficients, .. .,cn) is at leasn2~ then the
thatis,I” = minj¢(q {t; —w}'x*}, if X* exists, and\ =_, otherwise. rounding can not affect the optimality of the winner. In thisse
The set ofosers L consists of all solutions frons that have a rank the winner is uniquely determined after revealing ohlpits of
higher thanx*. Observe that a loser only needs to be infeasible each coefficient;. Let g, denote the supremum of the density of
with respect to one out of theconstraints. In particular, itisnot A, ThenPr[A < X] < xga for all x € R>g. Using Lemma 5 and

true that the values of all losers are likely to be far awayfrall settingx = n2~P yields Pr [A < n2*b] < 27bn2q, O
thresholds;j, j € [k]; not even if we consider only those constraints

for which the respective losers are infeasible. Fortugatebw- Next suppose only some of the constraints are stochastit, an
ever, we do not need such a property in the application ofaber| the objective function is adversarial. Lkt denote the number
gap. For every loser, one only needs a single constraintehders of stochastic constraints. W.l.0.g. the constraints arthefform

the loser infeasible. Therefore, we define theer gap for multi- ijx <tj, j € [K]. We revealb bits after the binary point of each
ple constraintdoy A = minye , MaX;¢q {w'jrxftj}, if L#0, and coefficient and round down.

N =1, otherwise. Figure 1 illustrates this definition. . _
LEMMA 12. Let@denote the maximum density parameter over

LEMMA 10. Let @ denote the maximum density parameter of all coefficients in the stochastic constraints. When rewgab bits
all coefficients in the stochastic constraints. Supgdse S. Then after the binary point of each coefficient, then the winnemnigjuely
Pr[I <g] < ekon? andPr [A < €] < ekgn?, for all € € R>o. determined with probability at leagt— 2Pk’ n3¢.



PrROOF Observe that, due to rounding, infeasible solutions might gap is large enough so that the winner is uniquely determimed

become feasible whereas feasible solutions stay feaJiblensure
that the winner is uniquely determined it suffices to uppearrb
the maximum possible error in each constraint that is cabigéide

rounding. If this error is smaller than the loser gap themdiog

cannot change the feasibility status of any loser, i.ein&lasible
solutions that have rank higher than the winner stay inféasi

In order to apply the bound on the loser gap given in Lemma 10,

let us first assume™0Z . The error for every solution with respect
to any constraint is at mos2 . The definition of the loser gap
for multiple stochastic constraints states that for evesgix there
is a constrain € [K] such thaw]x—t; > T. Therefore, ifl >
n2-P then every loser stays infeasible after rounding. Applying
Lemma 10, the probability for this event is at least Il’(pns/zb.

The solution 0 can influence the loser gap in two ways. At

first, 0" can be a loser and thus decrease the loser gap. However

rounding the coefficients; does not change the objective value of
this solution. Thus, Dstays infeasible under rounding and the loser
gap with respect to all other solutions in unaffected. Aoset "
might be the winner, which would result in a different loset s
than under the assumptiofi @ S. In this case, however"thas a
higher rank than the previous winner so that the set of losans
only shrink. Therefore, the loser gap cannot decrease beaafu
0" and, hence, the argument above about the feasibility ofttier o
solutions remains valid. O

the sense of Lemma 11, then the algorithm will always compute
certified winner. Hence, the probability that the algoritrsuc-
cessful corresponds to the bound given in Lemma 11.

Certifying feasibility. Now we show how to deal with stochas-
tic constraints. W.l.o.g, we assume that all stochasticsiraints
are of the forrrijx <tj,1<j < k. As described in Lemma 12 all

coefficients are rounded down to the next multiple of 2and we
compute a certified winner with respect to the rounded caeffis.

Let X denote the winner with respect to the rounded coefficients.
Observe, that we rounded in such a way that feasible sokutitay
feasible. However, we have to detect infeasible solutibasright
become feasible due to the rounding and displace the trueewin
Hence, we need to check whethéis indeed feasible with respect
to the original constraints. This would be trivial if the exaal-

ues of all constraint vectonsy,...,wy were available. However,

we want to check the feasibility with only knowirmbits after the
binary point of each coefficient. Letvj | denote the vector that is
obtained by rounding down each entrywf to the next multiple
of 2. Assume solutiorx is infeasible w.r.t. thej-th constre%int

and becomes feasible due to rounding. Then| x <t < wj X

and hence;j — [wj|Tx < wlx— [wj|Tx < n27P, i.e. x has slack
less tham2~P for constraintj. Our verifier will use this property.

It classifiesx’ as possibly infeasible if it has slack less thaT?

for any of thek constraints. There are two reasons why the verifier

Now suppose some constraints and the objective function are may fail. At first, there might be a loser that appears to bsifea

stochastic. Lek = k' + 1 denote the number of stochastic expres-
sions. The probability that winner and loser gap are suffitye
large, as described in the two lemmas above, iskign3/2° —
on?/2° > 1 —ken3/2°. This implies that the winner is uniquely
determined when revealir@(log(kgn)) bits,whp. This completes
the proof of Theorem 1. |

4. PROOF OF THEOREM 3

At first, we prove that a randomized pseudopolynomial algo-
rithm implies polynomial smoothed complexity. We designa&n
gorithm with polynomial smoothed complexity calling theeps
dopolynomial algorithm with higher and higher precisiortiLtine
optimal solution is found. Due to space limitations, we qmigsent
the core of the algorithm and its analysis, namely we prelsent
to compute a certified winner when only a bounded number ef bit
per input number is available. The algorithm has availdblets
after the binary point of each random coefficient and eithutpuats
the true winner or, if it cannot compute such a winner as ideee
more bits, it reports a failure.

Certifying optimality. Suppose only the objective function is
stochastic. W.l.o.g., consider a maximization problemhvab-
jective functionc™x. Let |ci| denote the coefficient; rounded
down to the next smaller multiple of 2. At first, we compute
the optimal solutiornx’ for the problem with the rounded coeffi-
cients |c1],...,[cn]. To check, whethex is optimal with re-
spect to the original cost vectay we generate another vector —
of rounded coefficients. This time the rounding dependz oRor
all i with X/ = 1, we set := |ci| and for alli with X = 0, we set
G = [ci] = |ci] +2°P. Observe, the functiod(x) = c"x— ¢’ x
is maximal forx = x¥'. Next, we compute the optimal solution
X' for the problem with the vectoc. If X = x” thenx' simul-
taneously maximize$(x) andc'x. Consequently, it maximizes
cTx+ o(x) = c"x as well and, hencey corresponds to the true
winner x*. Thus, the algorithm outputg as a certified winner if
X = X" and reports a failure, otherwise. Observe, if the winner

ble because of the rounding. As seen in the proof of Lemma 12,
however, this can happen only if the loser gap is smaller ti2afi.

At second, by mistake the true winner might have been rajease

its slack is less than2~2. This can happen only if the feasibil-
ity gap is smaller tham2°. Applying Lemma 10 yields that the
probability that one of these events happen is at mid@ 2¢n3.

Now let us briefly sketch the missing details of the algoritumd
its analysis. Until now we did not specify how the optimalg@n
for the rounded coefficient is actually computed. For thigpse,
we use the pseudopolynomial algorithm. The optimal sotutio
found whenb = O(log(gnk)), whp. Hence, the pseudopolynomial
algorithm has to deal with numbers describeddijog(¢nk)) bits
so that its running time is bounded bf®9(#k) — poly(gnk) =
poly(eN), whp.

Finally, we need to show that polynomial smoothed complex-
ity implies the existence of a randomized pseudopolynoaig-
rithm. Polynomial smoothed complexity implies that therises
an algorithmA4 and a polynomiaP(n, @) such that the probabil-
ity that the running time ofg exceedsP(n, @) is at most%. Since
we are aiming for a pseudopolynomial time algorithm we can as
sume that all numbers in the stochastic expressions argeirste
Let M denote the largest absolute value of those integers. The ide
is to perturb all numbers only slightly such that the cumuéaer-
ror in each expression is less thén To adapt the problem to the
smoothed analysis framework we first scale all input numinettse
stochastic constraints 1. Then we generate a random pertur-
bation and test if any number has changed by more taki) L.

In that case we outpeaILURE. Otherwise we call the perturbation
proper and rurd. If 4 has not completed afté(n, @) time steps
we stopA4 and outpufFAILURE. Let Q be the event that the pertur-
bation is proper. There is a constantdepending on perturbation
model f, such thaPr[Q] > % when settingp= 4cr?kM. Then the
probability of success is

PriQA(T <P(n,@)] > Pr[Q—Pr[T >P(n,¢)] >

NN



The running time of this algorithm is pseudopolynomial hessa
@ = O(Mn?k). Hence,My € ZPP. This completes the proof of
Theorem 3. a

5. RELATIONSHIP TO CONDITION
NUMBERS

To obtain a finer analysis of algorithms than that provided by
worst-case complexity, one should find a way of distinguighi
hard problem instances from easy ones. A natural approdth is
find a quantity indicating the difficulty of solving a probleim-
stance. In Numerical Analysis and Operations Researclcans
mon to bound the running time of an algorithm in terms aioa-
dition numberof its input. The condition number is typically de-
fined to be the sensitivity of the solution for a problem inst&to
slight perturbations of the input. For example, Renegar22022]
presents a variant of the primal interior point method arstdbes
its running time as a function of the condition number. Redahly,
his running time bound depends only logarithmically on tbedi-
tion number. Dunagan, Spielman, and Teng [7] study this itiond
number in the smoothed analysis framework. Assuming Ganissi
@-perturbations, the condition number can be bounded by & fun
tion that is polynomial inp. Thus, the running time of Renegar’s
algorithm depends only logarithmically on the density paetero.

In contrast, the running time bound of the Simplex algorithre-
sented by Spielman and Teng in [24] is polynomiadin

In [25], Spielman and Teng propose to extend the condition-nu
ber towards discrete optimization problems in order toshghkie
smoothed analysis of such problems. As a natural definitiothie
condition number of a discrete function they sugdkstreciprocal
of the minimum distance of an input to one on which the functio
has a different value In fact, the minimum of winner, loser, and
feasibility gap is a lower bound on the amount by which thefeoe
cients of a binary optimization problem needs to be altecethat
the winner, i.e., the solution taking the optimal value,rajes. Let
us define the reciprocal of this minimum to be tmadition number
for binary optimization problemsThis allows us to summarize our
analysis in an alternative way. Our probabilistic analysiSec-
tion 2 shows that the condition number is bounded polyndynial
the density parameter Furthermore, in Section 4, we proved that
a problem with pseudopolynomial worst-case complexity itslam
algorithm whose running time is bounded polynomially in toa-
dition number. Combining these results, we obtained algms
whose smoothed complexity depends in a polynomial fashion o
the density paramet@r Let us remark that this kind of dependence
is best possible for NP-hard optimization problems, untbsse
is a subexponential time algorithm fiP-complete problems. In
particular a running time bound logarithmic@would yield a ran-
domized algorithm with polynomial worst-case complexity.
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