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Abstract

We continue the study of combinatorial property testing, initiated by Goldreich, Goldwasser and
Ron in [7]. The subject of this paper is testing regular languages. Our main result is as follows.
For a regular language L ∈ {0, 1}∗ and an integer n there exists a randomized algorithm which
always accepts a word w of length n if w ∈ L, and rejects it with high probability if w has to be
modified in at least εn positions to create a word in L. The algorithm queries Õ(1/ε) bits of w. This
query complexity is shown to be optimal up to a factor poly-logarithmic in 1/ε. We also discuss
testability of more complex languages and show, in particular, that the query complexity required
for testing context-free languages cannot be bounded by any function of ε. The problem of testing
regular languages can be viewed as a part of a very general approach, seeking to probe testability of
properties defined by logical means.

1 Introduction

Property testing deals with the question of deciding whether a given input x satisfies a prescribed
property P or is “far” from any input satisfying it. Let P be a property, i.e. a non-empty family of
binary words. A word w of length n is called ε-far from satisfying P , if no word w′ of the same length,
which differs from w in no more than εn places, satisfies P . An ε-test for P is a randomized algorithm,
which given the quantity n and the ability to make queries about the value of any desired bit of an
input word w of length n, distinguishes with probability at least 2/3 between the case of w ∈ P and
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the case of w being ε-far from satisfying P . Finally, we say that property P is (c, ε)-testable if for every
ε > 0 there exists an ε-test for P whose total number of queries is bounded by c.

Property testing was defined by Goldreich et. al [7] (inspired by [13]). It emerges naturally in
the context of PAC learning, program checking [6, 3, 10, 13], probabilistically checkable proofs [2] and
approximation algorithms [7].

In [7], the authors mainly consider graph properties, such as bipartiteness and show (among other
things) the quite surprising fact that testing bipartiteness can be done by randomly testing a polynomial
in 1/ε number of edges of the graph, answering the above question with constant probability of failure.
They also raise the question of obtaining general results as to when there is, for every ε > 0, an ε-test
for a property using c = c(ε) queries (i.e c is a function of ε but independent of n) with constant
probability of failure. We call properties of this type ε-testable. So far, such answers are quite sparse;
some interesting examples are given in [7], several additional ones can be obtained by applying the
Regularity Lemma as we show in a subsequent paper [1].

In this paper we address testability of formal languages (see [8] as a general reference). A language
L ⊆ {0, 1}∗ is a property which is usually viewed as a sequence of Boolean functions fn : {0, 1}n → {0, 1},
with f−1

n (1) = L ∩ {0, 1}n = Ln. Our main result states that all regular languages are ε-testable with
query complexity only Õ(1/ε). We also show that this complexity is optimal up to a factor poly-
logarithmic in 1/ε. This positive result cannot be extended to context-free languages, for there is an
example of a very simple context-free language which is not testable.

Since regular languages can be characterized using second order monadic logic, we thus obtain a
large set of logically defined objects which are testable. In [1] we provide testable graph properties
described by logical means as well. These results indicate a strong interrelation between testability and
logic. Although our result on regular languages can be viewed as a separate result having no logical
bearing at all, our opinion is that logic does provide the right context for testability problems, which
may lead to the discovery of further classes of testable properties.

The rest of this paper is organized as follows. In Section 2 we present the proof of the main result
showing that every regular language is testable. In Section 3 we show that the upper bound of Õ(1/ε)
for the query complexity of testing regular languages, obtained in Theorem 1, is tight up to a poly-
logarithmic factor. Section 4 is devoted to the discussion of testability of context-free languages. There
we show in particular that there exist non-testable context-free languages. We also discuss testability
of the Dyck languages. The final Section 5 contains some concluding remarks and outlines new research
directions.

2 Testing Regular Languages

In this section we prove the main result of the paper, namely that regular languages are (Õ(1
ε ), ε)-

testable. As this result is asymptotic, we assume that n is big enough with respect to 1
ε (and with

respect to any other constant that depends only on the fixed language we are working with). All
logarithms are binary unless stated explicitly otherwise.

We start by recalling the standard definition of a regular language, based on finite automata. This
definition is convenient for algorithmic purposes.
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Definition 2.1 A deterministic finite automaton (DFA) M over {0, 1} with states Q = {q1, . . . , qm}
is given by a function δ : Q × {0, 1} → Q together with a set F ⊆ Q. One of the states, q1 is called
the initial state. The states belonging to the set F are called accepting states, δ is called the transition
function.

We can extend the transition function δ to {0, 1}∗ recursively as follows. Let γ denote the empty
word. Then

δ(q, γ) = q;

δ(q, u0) = δ(δ(u, q), 0)

δ(q, u1) = δ(δ(u, q), 1).

Thus, if M starts in a state q and processes string u, then it ends up in a state δ(q, u).
We then say that M accepts a word u if δ(q1, u) ∈ F . M rejects u means that δ(q1, u) ∈ Q \ F .

Finally, the language accepted by M , denoted by LM , is the set of all u ∈ {0, 1}∗ accepted by M . We
use the following definition of regular languages:

Definition 2.2 A language is regular iff there exists a finite automaton that accepts it.

Therefore, we assume in this section that a regular language L is given by its automaton M so that
L = LM .

A word w of length n defines a sequence of states (qi0 , . . . , qin) in the following natural way: qi0 = q1,
and for 1 ≤ j ≤ n, qij = δ(q1, w[1] . . . w[j]). This sequence describes how the automaton M moves while
reading w. Later in the paper we will occasionally refer to this sequence as the traversal path of w.

A finite automaton M defines a directed graph G(M) by V (G(M)) = Q and E(G(M)) = {(qi, qj) |
δ(qi, 0) = qj} ∪ {(qi, qj) | δ(qi, 1) = qj}. The period g(G) of a directed graph G is the greatest common
divisor of cycle lengths in G. If G is acyclic, we set g(G) =∞.

We will use the following lemma about directed graphs.

Lemma 2.3 Let G = (V,E) be a nonempty, strongly connected directed graph with a finite period g(G).
Then there exist a partition V (G) = V0∪ . . . Vg−1 and a constant m = m(G) which does not exceed 3|V |2

such that:

1. For every 0 ≤ i, j ≤ g − 1 and for every u ∈ Vi, v ∈ Vj the length of every directed path from u to
v in G is (j − i) mod g;

2. For every 0 ≤ i, j ≤ g − 1 and for every u ∈ Vi, v ∈ Vj and for every integer r ≥ m, if r = (j − i)
(mod g), then there exists a directed path from u to v in G of length r.

Proof. To prove part 1, fix an arbitrary vertex z ∈ V and for each 0 ≤ i ≤ g − 1, let Vi be the set
of all those vertices which are reachable from v by a directed, (not necessarily simple), path of length
i mod g. Note that since any closed (directed) walk in G is a disjoint union of cycles, the length of each
such walk is divisible by g. This implies that the sets Vi are pairwise disjoint. Indeed, assume this is
false and suppose w lies in Vi ∩ Vj with i 6= j. As G is strongly connected there is a path p1 from w
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to z, and by definition there is a path p2 of length i mod g from z to w as well as a path p3 of length
j mod g from z to w. Now the number of edges of either p1 ∪ p2 or p1 ∪ p3 is not divisible by g, which
is impossible. Therefore the sets Vi form, indeed, a partition of V . For u ∈ Vi and v ∈ Vj , the union
of any (directed) path from z to u with a (directed) path from u to v forms a path from z to v, and as
any such path must have length j mod g the assertion of part 1 follows.
We next prove part 2. Consider any set of positive integers {ai} whose greatest common divisor is g.
It is well known that there is a smallest number t such that every integer s ≥ t which is divisible by g
is a linear combination with non-negative integer coefficients of the numbers ai. Moreover, it is known
(see [9], [5]), that t is smaller than the square of the maximal number ai. Fix a closed (directed) walk
in G, that visits all vertices and whose length is at most |V |2. (This is easily obtained by numbering
the vertices of G arbitrarily as v0, v1, . . . , vk−1 and by concatenating directed paths from vi to vi+1 for
each 0 ≤ i ≤ k − 1, where the indices are taken modulo k). Associate now the set of cycle lengths in
this walk with the set of positive integers {ai} as above. Then, following this closed walk and traversing
each directed cycle as many times as desired, we conclude that every integer which is divisible by g and
exceeds 2|V |2 is a length of a closed walk passing through all vertices of the graph. Given, now, a vertex
u ∈ Vi, a vertex v ∈ Vj and an integer r > 3|V |2 satisfying r = (j − i) mod g, fix a shortest path p from
u to v, and note that its length l satisfies l = (j − i) mod g and l < |V |(≤ |V |2). Adding to p a closed
walk of length r − l from v to itself we obtain the required path, completing the proof. 2

We call the constant m from the above lemma the reachability constant of G and denote it by m(G).
In the sequel we assume that m is divisible by g.

If LM ∩ {0, 1}n = ∅, a testing algorithm can reject any input without reading it at all. Therefore,
we can assume that we are in the non-trivial case LM ∩ {0, 1}n 6= ∅.

We now introduce a key definition for the sequel:

Definition 2.4 Given a word w ∈ {0, 1}n, a sub-word (run) w′ of w starting at position i is called
feasible for language LM , if there exists a state q ∈ Q such that q is reachable from q1 in G in exactly
i− 1 steps and there is a path of length n− (|w′|+ i− 1) in G from the state δ(q, w′) to at least one of
the accepting states. Otherwise, w′ is called infeasible.

Of course, finding an infeasible run in w proves that w 6∈ L. Our aim is to show that if a given word
w of length n is far from any word of length n in L, then many short runs of w are infeasible. Thus a
choice of a small number of random runs of w almost surely contains an infeasible run. First we treat
the following basic case:

Definition 2.5 We call an automaton M ‘essentially strongly connected’ if

1. M has a unique accepting state qacc;

2. The set of states of the automaton, Q, can be partitioned into two parts, C and D so that

• q1, qacc ∈ C;

• the subgraph of G(M) induced on C is strongly connected;
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• no edges in G(M) go from D to C (but edges can go from C to D).

(Note that D may be empty.)

Lemma 2.6 Assume that the language L = LM contains some words of length n, and that M is
essentially strongly connected with C and D being the partition of the states of M as in Definition 2.5.
Let m be the reachability constant of G[C]. Assume also that εn ≥ 64m log(4m/ε). Then if for a word
w of length |w| = n, dist(w,L) ≥ εn, then there exists an integer 1 ≤ i ≤ log(4m/ε) such that the
number of infeasible runs of w of length 2i+1 is at least 2i−4εn

m log(4m/ε) .

Proof.
Our intention is to construct a sequence (Rj)j=1,... of disjoint infeasible runs, each being minimal in

the sense that each of its prefixes is feasible, and so that each is a subword of the given word w. We
then show that we can concatenate these subwords to form a word in the language that is not too far
from w (‘not too far’ will essentially depend on the number of runs that we have constructed). This
in turn will show that if dist(w,L) ≥ εn then there is a lower bound on the number of these infeasible
runs.

For reasons to become obvious later we also want these runs to be in the interval [m+ 1, n−m].
A natural way to construct such a sequence is to repeat the following procedure starting from

coordinate m + 1: Let R1 be the shortest infeasible run starting from w[m + 1] and ending before
w[n − m + 1]. If there is no such run we stop. Assume that we have constructed so far R1, ..., Rj−1

ending at w[cj−1], next we construct Rj by taking the minimal infeasible run starting at w[cj−1 + 1]
and ending before w[n−m+ 1]. Again if there is no such run we stop.

Assume we have constructed in this way runs R1, ..., Rh. Note that each run is a subword of w,
the runs are pairwise disjoint and their concatenation in order forms a (continuous) subword of w.
Also, note that by the definition of each run Rj being minimal infeasible, its prefix R

(−)
j , obtained by

discarding the last bit of Rj is feasible. This, in turn, implies that R′j which is obtained from Rj by
flipping its last bit is feasible. In addition, by Definition 2.4, this means that for each R′j there is a state
qij ∈ C so that δ(qij , R

′
j) ∈ C and such that qij is reachable from q1 in cj−1 + 1 steps.

Next we inductively construct a word w∗ ∈ L such that dist(w,w∗) ≤ hm+ 2m+ 2. Assuming that
dist(w,L) ≥ εn this will imply a lower bound on h. The general idea is to ‘glue’ together the R′j for
j = 1, ..., h, each being feasible and yet very close to a subword of w (except for the last bit in each).
The only concern is to glue the pieces together so that as a whole word it will be feasible. This will
require an extra change of m bits per run, plus some additional 2m bits at the end of the word.

We maintain during the induction that for j = 0, . . . the word wj we construct is feasible starting
from position 1, and it ends in position cj . For the base case, let c0 = m and let w0 to be any word of
length m which is feasible starting from position 1. Assume we have already defined a word wj−1 feasible
from position 1 and ending in position cj−1. Let δ(q1, wj−1) = pj . As both pj and qij are reachable
from q1 by a path of length cj−1, according to Lemma 2.3 we can change the last m bits in wj−1 so
that we get a word uj for which δ(q1, uj) = qij . We now define wj as a concatenation of uj and R′j . Let
wh be the final word that is defined in this way, ending at place ch. Now the reason we have stopped
with Rh is either that there is no infeasible run starting at ch + 1, in which case, changing the last m
bits of wh and concatenating to it the remaining suffix of w (that starts at position ch + 1), exactly as
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in the case of adding R′j , yields the required w∗. The other possible reason for stopping growing Rh is
when there is a minimal infeasible run that start at ch + 1 and ends after position n−m+ 1. Let R be
that run, and let R′ be the run obtained by flipping the last bit of R. As was the case with any R′j , R

′

is feasible from position ch + 1. Hence there is a feasible word u of which R′ is a prefix, u is of length
n− ch and so that δ(qih , u) = qacc. We can construct w∗ from wh and u exactly as we have constructed
w∗ form wh and the suffix of w in the previous case.

By the definition of w∗, w∗ ∈ L. Following the inductive construction of w∗ it follows that for
1 ≤ j ≤ h, dist(wj , w[1, cj ]) ≤ jm+ 1. Then to get from wh to w∗ we concatenate R′ which is either a
subword of w (in the first case previously discussed) or it is a subword of w where one bit was changed
(in the second case), following by changing m bits at the end of wh and possibly additional m bits at
the end of u. Therefore dist(w,w∗) ≤ hm+ 2m+ 2, as we claimed.

Recalling that dist(w,L) ≥ εn, we conclude that h ≥ εn−2
m − 2 ≥ εn/(2m) (the last inequality is

by our assumptions that εn ≥ 64m log(4m/ε)). This already shows that if dist(w,L) ≥ εn then there
are Ω(εn) many disjoint infeasible runs in w. However, we need a stronger dependence as stated in the
lemma. We achieve this in the following way.

Let a = log(4m/ε). For 1 ≤ i ≤ a, denote by si the number of runs in {Rj}hj=1 whose length
falls in the interval [2i−1 + 1, 2i]. As |{Rj : 1 ≤ j ≤ h, |Rj | > 4m/ε}| < εn/(4m), we get

∑a
i=1 si ≥

h − εn/(4m) ≥ εn/(4m). Therefore there exists an index i for which si ≥ εn/(4am). Consider all
infeasible runs Rj with |Rj | ∈ [2i−1 + 1, 2i]. Note that if a run contains an infeasible sub-run then it is
infeasible by itself. Now, each infeasible run of length between 2i−1 + 1 and 2i is contained in at least
2i infeasible runs of length 2i+1, except maybe, for the first two and the last two runs (these with the
two smallest j’s and these with the two largest j’s). As Rj are disjoint, each infeasible run of length
2i+1 contains at most three of the Rjs of length at least 2i−1 + 1. Thus, we a get a total of at least
(2i/3)(si− 4) infeasible runs of length at most 2i+1. By our assumption on the parameters this number
is: (2i/3)(si − 4) ≥ 2i

3 ( εn
4am − 4) = 2i−4( εnam + 1

3
εn−64am

am ) ≥ 2i−4εn
m log(4m/ε) , as claimed. 2

Now our aim is to reduce the general case to the above described case. For a given DFA M with
a graph G = G(M), we denote by C(G) the graph of components of G, whose vertices correspond to
maximal by inclusion strongly connected components of G and whose directed edges connect components
of G, which are connected by some edge in G. Note that some of the vertices of C(G) may represent
single vertices of G with no self loops, that do not belong to any strongly connected subgraph of G
with at least two vertices. All other components have non empty paths inside them and will be called
truly connected. From now on we reserve k for the number of vertices of C(G) and set V = V (G). We
may assume that all vertices of G are reachable from the initial state q1. Then C(G) is an acyclic graph
in which there exists a directed path from a component C1, containing q1, to every other component.
Denote m = maxj(m(Cj)), l = lcm({g(G[Cj ])}), where j runs over all truly connected components
of G, corresponding to vertices of C(G). We will assume in the sequel that the following relation are
satisfied between the parameters:
Condition (*)

• εn
2k ≥ 64m log 8mk

ε .

• εn > 8km
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• ε log(1/ε) < 1
258k2|V |2m(l+m)

clearly, for any fixed k,m, l for ε small enough and n large enough condition (*) holds.
Our next step is to describe how a word w ∈ LM of length n can move along the automaton. If a word

w belongs to L, it traverses G starting from q1 and ending in one of the accepting states. Accordingly,
w traverses C(G) starting from C1 and ending in a component containing an accepting state. For
this reason, we call a path A in C(G) admissible, if it starts at C1 and ends at a component with an
accepting state. Given an admissible path A = (Ci1 , . . . , Cit) in C(G), a sequence P = (p1

j , p
2
j )
t
j=1 of

pairs of vertices of G (states of M) is called an admissible sequence of portals if it satisfies the following
restrictions:

1. p1
j , p

2
j ∈ Cij for every 1 ≤ j ≤ t;

2. p1
1 = q1;

3. p2
t ∈ F (i.e., p2

t is an accepting state of M);

4. For every 2 ≤ j ≤ t one has (p2
j−1, p

1
j ) ∈ E(G).

The idea behind the above definition of admissible portals is simple: Given an admissible path A,
an admissible sequence P of portals defines how a word w ∈ L moves from one strongly connected
component of A to the next one, starting from the initial state q1 and ending in an accepting state. The
pair (p1

j , p
2
j ) are the first and last states that are traversed in Cij .

Now, given an admissible path A and a corresponding admissible sequence P of portals, we say that
an increasing sequence of integers Π = (nj)t+1

j=1 forms an admissible partition with respect to (A,P ) if
the following holds:

1. n1 = 0;

2. for every 1 ≤ j ≤ t, there exists a path from p1
j to p2

j in Cij of length nj+1 − nj − 1;

3. nt+1 = n+ 1.

The meaning of the partition Π = (nj)t+1
j=1 is as follows. If w ∈ L and w traverses M in accordance

with (A,P ), then for each 1 ≤ j ≤ t, the value of nj indicates that w arrives to component Cij for
the first time after nj bits. For convenience we also set nt+1 = n + 1. Thus, for each 1 ≤ j ≤ t, the
word w stays in Cij in the interval [nj + 1, nj+1 − 1]. Note that it is possible in principle that for a
given admissible path A and a corresponding admissible sequence of portals P there is no corresponding
admissible partition Π (this could happen if the path A and the set of portals P correspond to no word
of length n).

A triplet (A,P,Π), where A is an admissible path, P is a corresponding admissible sequence of
portals and Π is a corresponding admissible partition, will be called an admissible triplet. It is clear
from the definition of an admissible triplet that a word w ∈ L traverses G in accordance with a scenario
suggested by one of the admissible triplets. Therefore, in order to get convinced that w 6∈ L, it is enough
to check that w does not fit any admissible triplet.
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Fix an admissible triplet (A,P,Π), where A = (Ci1 , . . . , Cit), P = (p1
j , p

2
j )
t
j=1 and Π = (nj)t+1

j=1. For
all 1 ≤ j ≤ t, we define a language Lj that contains all words that traverse in M from p1

j to p2
j . This is

done formally by defining an automaton Mj as follows: The set of states of Mj is obtained by adding to
Cij a new state fj . The initial state of Mj and its unique accepting state are p1

j and p2
j , respectively. For

each q ∈ Cij and α ∈ {0, 1}, if δM (q, α) ∈ Cij , we set δMj (q, α) = δM (q, α). Otherwise, δMj (q, α) = fj .
We also define δMj (fj , 0) = δMj (fj , 1) = fj . Namely, in Mj all transitions within Cij remain the same.
All transitions going to other components now go to fj which has a loop to itself. Thus, Mj is essentially
strongly connected as in Definition 2.5 with D = {fj}. Then Lj is the language accepted by Mj .

Given the fixed admissible triplet (A,P,Π) and a word w of length |w| = n, we define t sub-words of
it, w1, . . . , wt, by setting wj = w[nj +1] . . . w[nj+1−1], where 1 ≤ j ≤ t. Note that |wj | = nj+1−nj−1.
Namely, if w were to path through M according to the partition Π then the substring wj corresponds
to the portion of the traversal path of w that lies within the component Cij .

Lemma 2.7 Let (A,P,Π) be an admissible triplet , where A = (Ci1 , . . . , Cit), P = (p1
j , p

2
j )
t
j=1, Π =

(nj)t+1
j=1. Let w be a word of length n satisfying dist(w,L) ≥ εn. Define languages (Lj)tj=1 and words

(wj)tj=1 as described above. Then there exists an index j, 1 ≤ j ≤ t, for which dist(wj , Lj) ≥ εn−k
k .

Proof. Assume this is not the case. Let Π = (nj)t+1
j=1 be the partition and recall that t ≤ k. For

every 1 ≤ j ≤ t , if nj+1 − nj ≥ 2, let wj∗ ∈ Lj be a word of length nj+1 − nj − 1 for which
dist(wj , wj∗) < (εn− k)/k. If nj+1 − nj = 1, we set wj∗ = γ (the empty word). Also, for 1 ≤ j ≤ t− 1
choose αj ∈ {0, 1} so that δM (p2

j , αj) = p1
j+1. Then by construction the word w∗ = w1∗α1w

2∗ . . . αt−1w
t∗

belongs to L and dist(w,w∗) ≤ t− 1 +
∑t

j=1 dist(w
j , wj∗) ≤ t− 1 + t(εn− k)/k < εn – a contradiction.

2

Now we present a key idea of the proof. Ideally, we would like to test whether an input word w

of length n fits any admissible triplet. In the positive case, i.e. when w ∈ LM , the traversal path of
w in M defines naturally an admissible triplet which w will obviously fit. In the negative case, i.e.
when dist(w,L) ≥ εn, Lemma 2.7 implies that for every admissible triplet (A,P,Π), at least one of the
sub-words wj is very far from the corresponding language Lj . Then by Lemma 2.6 wj contains many
short infeasible runs, and thus sampling a small number of random runs will catch one of them with
high probability. However, the problem is that the total number of admissible triplets clearly depends
on n, which makes the task of applying directly the union bound on the probability of not catching an
infeasible run impossible.

We circumvent this difficulty in the following way. We place evenly in 1, . . . n a bounded number
(depending only on ε and the parameters of M) of transition intervals Ts of a bounded length and
postulate that a transition between components of C(G) should happen inside these transition intervals.
Then we show that if w ∈ L, it can be modified slightly to meet this restriction, whereas if dist(w,L) ≥
εn, for any choice of such an admissible triplet, w is far from fitting it. As the number of admissible
triplets under consideration is bounded by a function of ε only, we can apply the union bound to estimate
the probability of failure.

Recall that m = maxj(m(Cj)), l = lcm({g(G[Cj ])}), where j runs over all truly connected compo-
nents of G, corresponding to vertices of C(G). Let S = 129km log(1/ε)/ε. We place S transition intervals
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{Ts = [as, bs]}Ss=1 evenly in [n], where the length of each transition interval Ts is |Ts| = (k − 1)(l +m).

For 1 ≤ i ≤ log(8km/ε) define ri = 28−ik2m log2( 1
ε
)

ε .

ALGORITHM
Input: a word w of length |w| = n;

1. For each 1 ≤ i ≤ log(8km/ε) choose ri random runs in w of length 2i+1 each;

2. For each admissible triplet (A,P,Π) with A = (Ci1 , . . . , Cit), P = (p1
j , p

2
j )
t
j=1, Π = (nj)t+1

j=1 such
that for all 2 ≤ j ≤ t one has nj ∈ Ts for some 1 ≤ s ≤ S, do the following:

• Form the automata Mj , 1 ≤ j ≤ t, as described above.

• Discard those chosen runs which end or begin at place p for which |p−nj | ≤ εn/(128km log(1/ε)).
Namely, those runs which have one of their ends closer than εn/(128km log(1/ε)) from some
nj ∈ Π.

• For each remaining run R, if R falls between nj and nj+1, check whether it is feasible for
the automaton Mj starting at b− nj + 1 where b is the first coordinate of R in w. Namely,
b− nj + 1 is the place where R starts relative to nj , which is the the place w “enters” Mj .

3. If for some admissible triplet all checked runs turned out to be feasible, output ”YES”. Otherwise
(i.e, in the case where for all admissible triplets at least one infeasible run has been found) output
”NO”.

Lemma 2.8 If dist(w,L) ≥ εn, then the above algorithm outputs ”NO” with probability at least 3/4.
If w ∈ L, then the algorithm always outputs ”YES”.

Proof. The proof contains two independent parts, in the first we consider the case of an input w with
dist(w,L) ≥ εn, on which the algorithm should answer ‘NO’ (with high probability). The other part
treats the case where w ∈ L, for which the algorithm should answer ‘YES’.

Let us first assume that dist(w,L) ≥ εn. The number of admissible triplets (A,P,Π) for which all
partition points fall into the union of transition intervals

⋃S
s=1 Ts can be estimated from above by

2k|V |2k (S(k − 1)(l +m))k−1

(first choose an admissible path in C(G), the number of admissible paths is at most 2k as any subset of
vertices of C(G) defines at most one path spanning it; then choose portals, the total number of chosen
portals is at most 2k, therefore there are at most |V |2k possible choices for portals; then for a fixed
pair (A,P ) there are at most S|Ts| choices for each nj , where 2 ≤ j ≤ t and t ≤ k). For ε satisfying
condition (*) and S as above, this expression is at most (1/ε)2k. Thus we need to check at most (1/ε)2k

admissible triplets.
Let (A,P,Π) be an admissible triplet satisfying the restriction formulated in Step 2 of the above

algorithm. Write A = (Ci1 , . . . , Cit), P = (p1
j , p

2
j )
t
j=1, Π = (nj)t+1

j=1. Then the triplet defines automata
(Mj)tj=1 and languages (Lj)tj=1 as described before. By Lemma 2.7 for some 1 ≤ j ≤ t one has
dist(wj , Lj) ≥ (εn− k)/k > εn/(2k). Then by Lemma 2.6 there exists an i, 1 ≤ i ≤ log(8km/ε) so that
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wj contains at least (2i−4εn/(2km log(8km/ε)) ≥ 2i−6εn/(km log(1/ε)) infeasible runs of length 2i+1. At
most α = εn/(128km log(1/ε)) of them may touch the last α bits of the interval [nj , nj+1−1], and at most
α of them may touch the first α bits of this interval. Hence there are at least 2i−6εn/(km log(1/ε))−2α ≥
(2i−7εn)/(km log(1/ε)) of them that touch neither the first nor the last εn/(128km log(1/ε)) bits of the
interval [nj , nj+1 − 1]. Obviously, if a random sample contains one of these infeasible runs, then it
provides a certificate for the fact that w does not fit this admissible triplet. A random sample of ri runs
of length 2i+1 misses all of these infeasible runs with probability at most(

1− 1
n

2i−7εn

km log(1
ε )

)ri
< e−2k log( 1

ε
) <

1
4

(
1
ε

)−2k

.

Thus by the union bound we conclude that in this case a random sample does not contain a ”witness” for
each feasible triplet with probability at most 1/4. This completes the proof for the case of dist(w,L) ≥
εn.

We now address the case for which w ∈ L. We need to show that in this case the algorithm answers
‘YES’. For this is is enough to show that if w ∈ L, then there exists an admissible triplet which passes
successfully the test of the above algorithm. A traversal of w in M naturally defines a triplet (A,P,Π)
as follows: A = (Ci1 , . . . , Cit), where Ci1 , . . . , Cit are components from C(G), ordered according to the
order of their traversal by w; P = (p1

j , p
2
j )
t
j=1, where p1

j (resp. p2
j ) is the first (resp. the last) state of Cij

visited by w; Π = (nj)t+1
j=1, where n1 = 0, nt+1 = n+ 1, and for 2 ≤ j ≤ t, nj is set to be the first time w

enters Cij while traversing M . However, this partition does not necessarily meet the requirement stated
in Step 2 of the algorithm: In the true traversal of w in M the transitions from Cij to Cij+1 might
occur outside the transition intervals Ts. We show that the desired triplet can be obtained from the
actual triplet, (A,P,Π), of w by modifying only the third component of it. This modified triplet would
then correspond to a different word w′ ∈ L (which is quite close to w) that makes all the transitions
inside the postulated transition intervals. In addition, we will take care that no query is made to bits
in which w′ differs from w. Hence, the algorithm will actually be consistent with both. This is in fact
the reason for discarding the runs that are too close to some nj in Step 2 of the algorithm. Intuitively,
this is done as follows: Assume nj is not in a transition interval, then we either make the traversal in
Cij−1 longer so to end in p2

j−1 in a transition interval, or we shorten the traversal in Cij−1 so to enter
a transition interval, depending on where the closest transition interval is. Formally this is done as
follows. Define a new partition Π′ = (n′j)

t+1
j=1 where n′1 = n1 = 0. For each 2 ≤ j ≤ t choose a transition

interval Ts closest to nj . If Cij is a truly connected component, we choose n′j as the leftmost coordinate
in Ts satisfying the following restrictions: (a) n′j ≡ nj mod l; (b) n′j − n′j−1 > m. If Cij is a singleton
without loops we set n′j = n′j−1 + 1. As |Ts| = (k − 1)(l +m), such an n′j always exists. Finally, we set
n′t+1 = nt+1 = n+ 1.

Note that the obtained triplet (A,P,Π′) is admissible. Indeed, for every 1 ≤ j ≤ t we have n′j+1−n′j ≡
nj+1−nj mod l, thus implying n′j+1−n′j ≡ nj+1−nj mod g(G[Cij ]), if Cij is truly connected. As there
exists a path from p1

j to p2
j in Cij of length nj+1−nj−1, there also exists a path of length n′j+1−n′j−1.

This implies the admissibility of Π′ and hence the admissibility of (A,P,Π′).
Let now R be a run of w inside [n′j+εn/(128km log(1/ε)), n′j+1−εn/(128km log(1/ε))] and let b be its

first coordinate. Since we placed S transition intervals {Ts} evenly in [n], we have |n′j−nj | ≤ n/S+|Ts| =
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εn/(129km log(1/ε)) + (k− 1)(l+m). Therefore, R falls also completely inside [nj +m,nj+1 − 1]. (We
remark at this point that the purpose of discarding marginal runs at Step 2 of the algorithm is to achieve
that each one of the remaining runs will fall completely not only within [n′j , n

′
j+1], but also within

[nj , nj+1]. As we will see immediately this guarantees that R will be feasible for the corresponding
automaton Mj . Without this deletion, with positive probability one of the sampled runs R may start in
a place where w is in Cij−1 and end in a place where w is in Cij , thus making it impossible to attribute
R to one particular automaton Mj . Therefore, with positive probability the algorithm would fail in the
positive case. Discarding marginal runs allows us to get a one-sided error algorithm).

As w ∈ L, there exists a state q ∈ Cij so that δ(q,R) ∈ Cij . Also, q is reachable from p1
j (the initial

state of Cij ) in b − nj ≥ m steps (b is the first coordinate of R). According to the choice of n′j we
have n′j ≡ nj mod gj , where gj is the period of Cij . But then by Lemma 2.3 q is reachable from p1

j in
b− n′j ( ≥ m) steps. This shows that R is feasible for Mj , starting at b− n′j + 1. Thus, if w ∈ L, the
above algorithm always outputs ”YES”. 2

Finally, the number of bits of w queried by our algorithm is at most

log(8km/ε)∑
i=1

2i+1ri =
log(8km/ε)∑

i=1

2i+1 28−ik2m log2(1
ε )

ε
<

210k2m log3(1
ε )

ε
.

We have thus proven the following theorem.

Theorem 1 For every regular language L, every integer n and every small enough ε > 0, there exists
a one-sided error ε-testing algorithm for L∩ {0, 1}n, whose query complexity is c log3(1/ε)/ε, where the
constant c > 0 depends only on L.

A final note about the dependence of the complexity on the parameters is in place here. In the proof
M is considered fixed, as the algorithm is tailored for a fixed given language. However, in the calculation
above we have kept the dependence of the query complexity on the parameters of M explicit. One has
to take in mind though that the estimates hold only when condition (*) holds. In particular we require
(third item in (*)), that 1/(ε log(1/ε)) = Ω(k2|V |2m(l +m)).

Another note is about the running time of the algorithm (rather then just its query complexity). The
dominating term in Step 1 and the first two subsets of Step 2 of the algorithm is the query complexity.
In the last substeps, each run has to be checked against Mj . Each such check involves checking whether
there is a word u and a word v (of suitable lengths) so that uRv ∈ L. Checking whether there are such
u, v is done directly by Lemma 2.3 in case the length of u and v are longer than m, or by checking all
2m words if one of them is shorter than m.

3 Lower bound for regular languages

In many testability questions, it is quite natural to expect a lower bound of order 1/ε for the query
complexity of testing. This is usually proven by taking a positive example of size n and perturbing it in
randomly chosen εn places to create a negative instance which is hard to distinguish from the positive
one. Regular languages are not an exception in this respect, as shown by the next proposition and its
fairly simple proof.
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Proposition 1 Let L be the regular language over the alphabet {0, 1} defined by L = {1n | n ≥ 1}. For
any n an ε-test for L ∩ {0, 1}n has query complexity at least 1

3ε .

Proof. Our proof is based on the following reformulation of the renowned principle of Yao [14], saying
that if there exists a probability distribution on the union Ω of positive and negative examples such that
any deterministic testing algorithm of query complexity d is correct with probability less than 2/3 for
an input randomly chosen from Ω according to this distribution, then d is a lower bound on the query
complexity of any randomized testing algorithm.

Define a distribution on the set of positive and negative instances of length n as follows. The word
1n gets probability 1/2. Next we partition the index set [1, n] into t = 1/ε parts I1, . . . , It, each of size
εn, and for each 1 ≤ i ≤ t give probability 1/(2t) to the vector yi created from 1n by flipping all bits in
Ii from 1 to 0. Note that dist(yi, L) = εn, hence all yi are negative instances. Now we apply the above
mentioned principle of Yao. Let A be a deterministic ε-testing algorithm with query complexity d. If
A is incorrect on the word 1n, then it is already incorrect with probability at least 1/2. Otherwise, it
should accept the input if all d tested bits equal to 1. Therefore it accepts as well at least t− d of the
inputs yi. This shows that A gives an incorrect answer with probability at least (t − d)/(2t) < 1/3,
implying d > t/3. 2.

The main idea of the proof of the above proposition can be used to get an Ω(1/ε) lower bound on
the query complexity of testing any non-trivial regular language, with a natural definition of non-trivial.
This is proven in the next proposition. A somewhat paradoxical feature of its proof is that our main
positive result (Theorem 1) and its proof are used here to get a negative result.

For a language L let Ln = L ∩ {0, 1}n.

Definition 3.1 A language L is non-trivial if there exists a constant 0 < ε0 < 1, so that for infinitely
many values of n the set Ln is non-empty, and there exists a word w ∈ {0, 1}n so that dist(w,Ln) ≥ ε0n.

Proposition 2 Let L be a non-trivial regular language. Then for all sufficiently small ε > 0, any
ε-testing algorithm for L requires Ω(1/ε) queries.

Proof. The proof here is essentially a generalization of the proof of Proposition 1. We thus present it
in a somewhat abridged form.

Let n be large enough. Assume Ln 6= ∅, and w ∈ {0, 1}n is such that dist(w,Ln) ≥ ε0n. We may
clearly assume that the constant ε0 is as small as needed for our purposes. Our main result, Theorem
1, and its proof imply that with probability at least 2/3, a random choice of a set of runs, built as
described at Step 1 of the testing algorithm of Theorem 1, and having total length Õ(1/ε0), will cause
the algorithm to reject w. As we have noticed, the testing algorithm has one sided error, i.e., it always
accepts a word from L. Thus, if we choose a random set of runs as above, it will cause to reject w with
probability 2/3 and it will not coincide with any word u ∈ Ln (for otherwise, it would reject u too).

Each such random set of runs is just a random set of intervals in {1, . . . , n} (of length as defined in
Step 1 of the testing algorithm) of total length bounded by Õ(1/ε0). Notice that two such random sets
intersect with probability Õ(1/(ε20n)). Therefore if we choose Ω̃(ε2n) such subsets at random, then we
expect that Õ(ε20n) pairs of them will intersect, and that 2/3 of the members will reject w. This implies
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that there exists a family S of Ω̃(ε20)n pairwise disjoint sets of runs so that for each member of S, no
word of Ln coincides with w on this set. Fix now ε0 and let ε > 0 be small enough compared to ε0. We
partition the family S into t = (c/ε) subfamilies S1, . . . ,St, each of cardinality εn, where the constant c
depends on ε0 only and is thus independent of ε. Let u be a word in Ln. For each 1 ≤ i ≤ t, the word
wi is obtained from u by changing the bits of u, corresponding to Si, to those from w. It follows then
that dist(wi, Ln) ≥ εn. Indeed, to transform wi into a word in Ln, at least one bit has to be changed
in every member of Si.

Now, as in the proof of Proposition 1, we define a probability distribution on the union of positive
and negative examples. The word u gets probability 1/2, and each one of the t words w1, . . . , wt gets
probability 1/(2t). A simple argument, essentially identical to that in the proof of Proposition 1, shows
that any deterministic algorithm needs to query at least Ω(t) = Ω(1/ε) bits of the input word to be
successful with probability at least 2/3 on the defined probability distribution. Applying Yao’s principle,
we get the desired result. 2

4 Testability of context-free languages

Having essentially completed the analysis of testability of regular languages, it is quite natural to try
to make one step further and to address testability of the much more complex class of context-free
languages (see, e.g., [8] for a background information). It turns out that the general situation changes
drastically here as compared to the case of regular languages. We show that there exist quite simple
context-free languages which are not ε-testable. Then we turn our attention to one particular family of
context-free languages – the so-called Dyck languages. We prove that the first language in this family,
D1, is testable in time polynomial in 1/ε, while all other languages in the family are already non-testable.
All relevant definitions and proofs follow.

4.1 Some context-free languages are non-testable

As we have already mentioned, not all context-free languages are testable. This is proven in the following
proposition.

Theorem 2 Any ε-testing algorithm for the context-free language L = {vvRuuR}, where wR denotes
the reversal of a word w, requires Ω(

√
n) queries in order to have error of at most 1/3.

Proof. Let n be divisible by 6. We again define a distribution D on the union of positive and negative
inputs in the following way. A negative instance is chosen uniformly at random from among all negative
instances (i.e. those words w ∈ {0, 1}n which are at distance at least εn from L). We refer to this
distribution as N . Positive instances are generated according to a distribution P defined as follows: we
pick uniformly at random an integer k in the interval [n/6 + 1, n/3] and then select a positive example
uniformly among words vvRuuR with |v| = k. Finally the distribution D on all inputs is defined as
follows: with probability 1/2 we choose a positive input according to P and with probability 1/2 we
choose a negative input according to N . We note that a positive instance is actually a pair (k,w) (the
same word w may be generated using different k’s).
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We use the above mentioned Yao’s principle again. Let A be a deterministic ε-testing algorithm for
L. We show that for any such A, if its maximum number of queries is d = o(

√
n), then its expected

error with respect to D is at least 1
2 − o(1). Indeed, let A be such an algorithm. We can view A as

a binary decision tree, where each node represents a query to a certain place, and the two outgoing
edges, labeled with 0 or 1, represent possible answers. Each leaf of A represents the end of a possible
computation, and is labeled ‘positive’ or ‘negative’ according to the decision of the algorithm. Tracing
the path from the root to a node of A, we can associate with each node t of A a pair (Qt, ft), where
Qt ⊆ {1, . . . , n} is a set of queries to the input word, and ft : Qt → {0, 1} is a vector of answers received
by the algorithm.. We may obviously assume that A is a full binary tree of height d and has thus 2d

leaves. Then |Qt| = d for each leaf t of A.
We will use the following notation. For a subset Q ⊆ {1, . . . , n} and a function f : Q→ {0, 1}, let

E−(Q, f) = {w ∈ {0, 1}n, dist(w,L) ≥ εn, w coincides with f on Q} ,
E+(Q, f) = {w ∈ {0, 1}n ∩ L : w coincides with f on Q} ,

i.e., E−(Q, f) (E+(Q, f)) is the set of all negative (resp. positive) instances of length n consistent with
the pair (Q, f). Also, if D is a probability distribution on the set of binary strings of length n and
E ⊆ {0, 1}n is a subset, we define PrD[E] =

∑
w∈E Pr

D[w].
Let T1 be the set of all leaves of A labeled ‘positive’, let T0 be the set of all leaves of T labeled

‘negative’. Then the total error of the algorithm A on the distribution D is∑
t∈T1

PrD[E−(Qt, ft)] +
∑
t∈T0

PrD[E+(Qt, ft)] .

The theorem follows from the following two claims.

Claim 4.1 For every subset Q ⊂ {1, . . . , n} of cardinality |Q| = o(n) and for every function f : Q →
{0, 1},

PrD[E−(Q, f)] ≥
(

1
2
− o(1)

)
2−|Q| .

Claim 4.2 For every subset Q ⊂ {1, . . . , n} of cardinality |Q| = o(
√
n) and for every function f : Q→

{0, 1},

PrD[E+(Q, f)] ≥
(

1
2
− o(1)

)
2−|Q| .

Based on Claims 4.1, 4.2, we can estimate the error of the algorithm A by∑
t∈T1

PrD[E−(Qt, ft)] +
∑
t∈T0

PrD[E+(Qt, ft)] ≥
∑
t∈T1

(
1
2
− o(1)

)
2−|Qt| +

∑
t∈T0

(
1
2
− o(1)

)
2−|Qt|

=
(

1
2
− o(1)

)
|T1|+ |T0|

2d
≥ 1

2
− o(1) .

The theorem follows. 2
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We now present the proofs of Claims 4.1 and 4.2.

Proof of Claim 4.1: Notice first that L has at most 2n/2n/2 words of length n (first choose a word
of length n/2 and then cut it into two parts v and u, thus getting a word w = vvRuuR ∈ L). Therefore
the number of words of length n at distance less than εn from L is at most |L ∩ {0, 1}n|

∑εn
i=0

(
n
i

)
≤

2n/2+2ε log(1/ε)n. We get

|E−(Q, f)| ≥ |{w ∈ {0, 1}n : w(Q) = f}| − |{w ∈ {0, 1}n : dist(w,L) < εn}|
≥ 2n−|Q| − 2n/2+2ε log(1/ε)n = (1− o(1))2n−|Q| .

It follows then from the definition of D that

PrD[E−(Q, f)] =
1
2
PrN [E−(Q, f)] ≥ 1

2
|E−(Q, f)|

2n
≥
(

1
2
− o(1)

)
2−|Q| . 2

Proof of Claim 4.2: It follows from the definition of the distribution D that for a word w ∈ L∩{0, 1}n,

PrD(w) =
1
2
PrP (w) =

1
2
|{w = vvRuuR : |v| = k, n6 + 1 ≤ k ≤ n

3 }|
n
6 2n/2

.

Recall that E+(Q, f) is the set of words in L for which are consistent with f on the set of queries Q,
Hence,

PrD[E+(Q, f)] =
1

n
6 2n/2+1

n/3∑
k=n/6+1

|{w ∈ {0, 1}n : w(Q) = f, w = vvRuuR, |v| = k}| .

Now observe that for each of the
(
d
2

)
pairs of places in Q there are at most two choices of k, for which

the pair is symmetric with respect to k or to n/2 + k. This implies that for n/6− 2
(
d
2

)
= (1− o(1))n/6

choices of k, the set Q does not contain a pair symmetric with respect to k or n/2 + k. For each such k,

|{w ∈ {0, 1}n : w(Q) = f, w = vvRuuR, |v| = k}| = 2n/2−|Q| .

Therefore,

PrD[E+(Q, f)] ≥
(1− o(1))n6 2n/2−|Q|

n
6 2n/2+1

=
(

1
2
− o(1)

)
2−|Q| . 2

As a concluding remark to this subsection we would like to note that in the next subsection (Theorem
4) we will give another proof to the fact that not all context-free languages are testable by showing
the non-testability of the Dyck language D2. However, we preferred to give Theorem 2 as well due to
the following reasons. First, the language discussed in Theorem 2 is simpler and more natural than
the Dyck language D2. Secondly, the lower bound of Theorem 2 is better than that of Theorem 4.
The proofs of these two theorems have many common points, so the reader may view Theorem 2 as a
”warm-up” for Theorem 4.
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4.2 Testability of the Dyck languages

It would be extremely nice to determine exactly which context-free languages are testable. At present
we seem to be very far from fulfilling this task. However, we are able to solve this question completely
for one family of context-free languages – the so called Dyck languages.

For an integer n ≥ 1, the Dyck language of order n, denoted by Dn, is the language over the alphabet
of 2n symbols {a1, b1, . . . , an, bn}, grouped into n ordered pairs (a1, b1), . . . , (an, bn). The language Dn

is defined by the following productions:

1. S → aiSbi for i = 1, . . . , n;

2. S → SS;

3. S → γ,

where γ denotes the empty word. Though the words of Dn are not binary according to the above
definition, we can easily encode them and the grammar describing them using only 0’s and 1’s. Thus we
may still assume that we are in the framework of languages over the binary alphabet. We can interpret
Dn as the language with n distinct pairs of brackets, where a word w belongs to Dn iff it forms a
balanced bracket expression. The most basic and well known language in this family is D1, where we
have only one pair of brackets. Dyck languages play an important role in the theory of context-free
languages (see, e.g., [4] for a relevant discussion) and therefore the task of exploring their testability is
interesting.

Our first goal in this subsection is to show that the language D1 is testable. Let us introduce a
suitable notation. First, for the sake of simplicity we denote the brackets a1, b1 of D1 by 0, 1, respectively.
Assume that n is a large enough even number (obviously, for odd n we have D1 ∩ {0, 1}n = ∅, thus
there is nothing to test in this case). Let w be a binary word of length n. For 1 ≤ i ≤ n, we denote by
x(w, i) the number of 0’s in the first i positions of w. Also, y(w, i) stands for the number of 1′s in the
first i positions of w. We have the following claims.

Claim 4.3 The word w belongs to D1 if and only if the following two conditions hold: (a) x(w, i) ≥
y(w, i) for every 1 ≤ i ≤ n; (b) x(w, n) = y(w, n).

Proof. Follows easily from the definition of D1, for example, by induction on the length of w. We omit
a detailed proof. 2

Claim 4.4 If w satisfies (a) y(w, i)−x(w, i) ≤ s1 for every 1 ≤ i ≤ n; (b) x(w, n)− y(w, n) ≤ s2, then
dist(w,D1) ≤ s1 + s2/2 + 1.

Proof. Observe first that by Claim 4.3 a word w is in D1 if and only if we can partition its letters
into pairwise disjoint pairs, so that the left letter in each pair is a zero, and the right letter is a one.
Consider the bipartite graph, whose two classes of vertices are the set of indices i for which w[i] = 0
and the set of indices i for which w[i] = 1, respectively, where each i with w[i] = 1 is connected to all
1 ≤ j < i for which w[j] = 0. By assumption (a) and the defect form of Hall’s theorem, this graph
contains a matching of size at least y(w, n)− s1. By assumption (b), y(w, n) ≥ n/2− s2/2. Therefore,
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there are at least n/2 − s2/2 − s1 disjoint pairs of letters in w, where in each pair there is a zero on
the left and a one on the right. Let us pair the remaining elements of w arbitrarily, where all pairs
but at most one consist of either two 0’s or two 1’s. By changing, now, when needed, the left entry of
each such pair to 0 and its right entry to 1 we obtain a word in D1, and the total number of changes
performed is at most (s2 + 2s1 − 2)/2 + 2 = s1 + s2/2 + 1, completing the proof. 2

Claim 4.5 a) If for some 1 ≤ i ≤ n one has y(w, i) − x(w, i) ≥ s, then dist(w,D1) ≥ s/2; b) If
x(w, n)− y(w, n) ≥ s, then dist(w,D1) ≥ s/2.

Proof. Follows immediately from Claim 4.3. 2

We conclude from the above three claims that a word w is far from D1 if and only if for some
coordinate i it deviates significantly from the necessary and sufficient conditions provided by Claim 4.4.
This observation is used in the analysis of an algorithm for testing D1, proposed below.

Set

d =
C log

(
1
ε

)
ε2

;

∆ =
C log

(
1
ε

)
8ε

,

where C > 0 is a sufficiently large constant, whose value will be chosen later, and assume d is an even
integer. In what follows we omit all floor and ceiling signs, to simplify the presentation.

ALGORITHM
Input: a word w of length |w| = n;

1. Choose a sample S of bits in the following way: For each bit of w, independently and with
probability p = d/n choose it to be in S. Then, if S contains more then d + ∆/4 bits, answer
‘YES’ without querying any bit. Else,

2. If dist(S,D1 ∩ {0, 1}d
′
) < ∆, where d′ = |S|, output ”YES”, otherwise output ”NO”.

Lemma 4.6 The above algorithm outputs a correct answer with probability at least 2/3.

Proof. As we have already mentioned, we set

p =
d

n
=
C log

(
1
ε

)
ε2n

.

The proof contains two independent parts, in the first we prove that the algorithm is correct (with
probability 2/3) for w ∈ D1 and in the second part we prove that the algorithm has a bounded error
for words w for which dist(w,D1) ≥ εn.

Consider first the positive case w ∈ D1. Set t = C/ε and assume for simplicity that t as well as n/t
are integers. For 1 ≤ j ≤ t, let Xj be the number of 0’s in S, sampled from the interval [1, nj/t]. Let
also Yj denote the number of 1’s in S, sampled from the same interval. Both Xj and Yj are binomial
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random variables with parameters x(w, nj/t) and p, and y(w, nj/t) and p, respectively. As w ∈ D1, we
get by Claim 4.3 that x(w, nj/t) ≥ y(w, nj/t), implying EXj ≥ EYj . Applying standard bounds on
the tails of binomial distribution, we obtain:

Pr[Yj ≥ Xj +
∆
2

] ≤ Pr[Xj ≤ EXj −
∆
4

] + Pr[Yj ≥ EYj +
∆
4

] ≤ 2−Ω(∆2/np) = 2−Ω(C log(1/ε)) . (1)

For 1 ≤ j ≤ t − 1, set Zj = Yj+1 − Yj . Note that EZj ≤ np/t. Using similar argumentation as above,
we get

Pr[Zj ≥
2np
t

] ≤ 2−Ω(np/t) = 2−Ω(log(1/ε)/ε) . (2)

As w ∈ D1, we have by Claim 4.3 x(w, n) = y(w, n) = n/2. Hence

Pr[Xt ≥
np

2
+

∆
8

] ≤ 2−Ω(∆2/np) = 2−Ω(C log(1/ε)) . (3)

Finally, we have the following estimate on the distribution of the sample size |S|:

Pr[||S| − np| ≥ ∆
4

] ≤ 2−Ω(∆2/np) = 2−Ω(C log(1/ε)) . (4)

Choosing C large enough and recalling the definition of t, we derive from (1)–(4) that with probability
at least 2/3 the following events hold simultaneously:

1. max1≤j≤t(Yj −Xj) ≤ ∆
2 ;

2. max1≤j≤t Zj ≤ 2np
t ;

3. Xt ≤ np
2 + ∆

8 ;

4. |S| ≥ np− ∆
4 .

Assume that the above four conditions are satisfied. Then we claim that dist(S,D1) < ∆. Indeed,
the first two conditions guarantee that for all 1 ≤ i ≤ |S| we have y(S, i)−x(S, i) ≤ ∆/2+2np/t ≤ 2∆/3.
The last two conditions provide x(S, |S|)− y(S, |S|) = Xt−Yt = 2Xt− |S| ≤ ∆/2. Therefore, by Claim
4.4 dist(S,D1) < ∆. Thus, if w ∈ D1, our algorithm will accept w with probability at least 2/3, as
required. This ends the first part of the proof.

Let us now consider the negative case. Assume that dist(w,D1 ∩ {0, 1}n) ≥ εn. By Claim 4.4 we
have then that at least one of the following two conditions holds: a) there exists an index 1 ≤ i ≤ n, for
which y(w, i)−x(w, i) ≥ εn/2; b) x(w, n)− y(w, n) ≥ εn/2. In the former case, let X, Y be the number
of 0’s, 1’s, respectively, of S, sampled from the interval [1, i]. Let also k be the number of elements
from [1, i] chosen to S. Then X = x(S, k), Y = y(S, k). Both X and Y are binomially distributed
with parameters x(w, i) and p, and y(w, i) and p, respectively. It follows from the definition of i that
EY − EX ≥ εnp/2. But then we have

Pr[y(S, k)− x(S, k) ≤ 2∆] = Pr[Y −X ≤ 2∆] ≤
Pr[X ≥ EX + (

εnp

4
−∆)] + Pr[Y ≤ EY − (

εnp

4
−∆)]

= 2−Ω((εnp/4−∆)2/(np)) .

18



Choosing the constant C to be sufficiently large and recalling the definitions of p and ∆, we see that
the above probability is at most 1/6. But if y(S, k) − x(S, k) ≥ 2∆, it follows from Claim 4.5 that
dist(S,D1) ≥ ∆.

If x(w, n)− y(w, n) ≥ εn/2, we obtain, using similar arguments:

Pr[x(S, |S|)− y(S, |S|) ≤ 2∆] = 2−Ω((εnp/4−∆)2/(np)) .

The above probability can be made at most 1/6 by the choice of C. But if x(S, |S|)− y(S, |S|) ≥ 2∆, it
follows from Claim 4.5 that dist(S,D1) ≥ ∆. Thus in both cases we obtain that our algorithm accepts
w with probability at most 1/6. In addition, the algorithm may accept w (in each of the cases), when
|S| > d + ∆/4 (first item in the algorithm). However, by equation (4) this may be bounded by 1/6
(choosing C as in the first part). Hence the algorithm rejects w with probability at least 2/3. This
completes the proof of Lemma 4.6. 2.

By Lemma 4.6 we have the following result about the testability of the Dyck language D1.

Theorem 3 For every integer n and every small enough ε > 0, there exists an ε-testing algorithm for
D1 ∩ {0, 1}n, whose query complexity is C log(1/ε)/ε2 for some absolute constant C > 0.

The reader has possibly noticed one significant difference between the algorithm of Section 2 for
testing regular languages and our algorithm for testing D1. While the algorithm for testing regular
languages has a one-sided error, the algorithm of this section has a two-sided error. This is not a
coincidence. We can show that there is no one-sided error algorithm for testing membership in D1,
whose number of queries is bounded by a function of ε only. Indeed, assume that A is a one-sided error
algorithm for testing D1. Consider its execution on the input word u = 0n/2+εn1n/2−εn. It is easy to see
that dist(u,D1) ≥ εn. Therefore, A must reject u with probability at least 2/3. Fix any sequence of
coin tosses which makes A reject u and denote by Q the corresponding set of queried bits of u. We claim
that if |Q∩[1, n/2+εn]| ≤ n/2−εn, then there exists a word w of length n from D1, for which w[i] = u[i]
for all i ∈ Q. To prove this claim, we may clearly assume that |Q ∩ [1, n/2 + εn]| = n/2− εn. Define w
as follows. For all i > n/2 + εn we set w[i] = 1. Now, we take the first εn indices i in [1, n/2 + εn] \Q
and set w[i] = 0. For the last εn indices i in [1, n/2 + εn] \Q we set w[i] = 1. Also, w[i] = u[i] for all
i ∈ Q. Now, w satisfies the sufficient condition for the membership in D1, given by Claim 4.3. Indeed,
at any point j in [1, n/2 + εn] the number of 0’s in the first j bits of w is at least as large as the number
of 1’s. Also, for j ≥ n/2 + εn we have x(w, j) = n/2 and y(w, j) = εn + (j − n/2 − εn) = j − n/2.
Therefore w ∈ D1. As A is assumed to be a one-sided error algorithm, it should always accept every
w ∈ D1. But then we must have |Q ∩ [1, n/2 + εn]| > n/2 − εn, implying that A queries a linear in n

number of bits. We have proven the following statement.

Proposition 3 Any one-sided error ε-test for membership in D1 queries Ω(n) bits on words of length
n.

Our next goal is to prove that all other Dyck languages, namely Dk for all k ≥ 2 are non-testable.
We will present a detailed proof of this statement only for k = 2, but this clearly implies the result for
all k ≥ 3.
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For the sake of clarity of exposition we replace the symbols a1, b1, a2, b2 in the definition of D2 by
0, 1, 2, 3, respectively. Then D2 is defined by the following context-free grammar: S → 0S1 | 2S3 | SS | γ,
where γ is the empty word. Having in mind the above mentioned bracket interpretation of the Dyck
languages, we will sometimes refer to 0, 2 as left brackets and to 1, 3 as right brackets. Note that we
do not use an encoding of D2 as a language over {0, 1}, but rather over an alphabet of size 4. Clearly,
non-testability of D2 as defined above will imply non-testability of any binary encoding of D2 that is
obtained by a fixed binary encoding of {0, 1, 2, 3}.

Theorem 4 The language D2 is not ε-testable.

Proof. Let n be a large enough integer, divisible by 8. We denote Ln = D2 ∩ {0, 1, 2, 3}n. Using Yao’s
principle, we assign a probability distribution on inputs of length n and show that any deterministic
algorithm probing d = O(1) bits outputs an incorrect answer with probability 0.5± o(1). Both positive
and negative words will be composed of three parts: The first which is a sequence of matching 0/1
(brackets of the first kind) followed by a sequence of 0/2 (left brackets) and a sequence of 1/3 (right
brackets).

Positive instances are generated according to the distribution P as follows: choose k uniformly at
random in the range n/8, . . . , n/4. Given k, the word of length n is w = 0k1kv where v is of length n−2k
generated by: for i = 1, ...(n−2k)/2 choose v[i] at random from 0, 2 and then set v[n−2k+1−i] = v[i]+1.

Negative instances are chosen as follows: the process is very similar to the positive case except that
we do not have the restriction on v[n − 2k + 1 − i] = v[i] + 1. Namely, we choose k at random in the
range n/8, . . . , n/4. Given k, a word of length n is w = 0k1kv, where v is of length n− 2k generated by:
for i = 1, ...(n−2k)/2 choose v[i] at random from 0, 2 and for i = 1, ...(n−2k)/2 choose v[n−2k+1− i]
at random from 1, 3. Let us denote by N the distribution at this stage. Note that the words that are
generated may be of distance less than εn from Ln (in fact some words in Ln are generated too). Hence
we further condition N on the event that the word is of distance at least εn from Ln.

The probability distribution over all inputs of length n is is now defined by choosing with probability
1/2 a positive instance, generated as above, and with probability 1/2 a negative instance, chosen
according to the above described process.

Claim 4.7 The probability that an instance generated according to N is εn-close to some word in Ln
is exponentially small in n.

Proof. Fix k and let w = 0k1kv be a word of length n generated by N . For such fixed k the three parts
of w are the first part of matching 0/1 of length 2k, the second part which is a random sequence of 0/2
of length n−2k

2 and the third part which is a random sequence of 1/3 of length n−2k
2 . Let us denote by

N1, N2, N3 these three disjoint sets of indices of w.
We will bound from above the number of words w of length n of the form w = 0k1k(0/2)

n−2k
2 (1/3)

n−2k
2

which are at distance at most εn from Ln. First we choose the value of w on N2, which gives 2
n−2k

2

possibilities. Then we choose (at most) εn bits of w to be changed to get a word from Ln (
(
n
εn

)
choices)

and set those bits (4εn possibilities). At this point, the only part of w still to be set is its value of N3,
where we are allowed to use only right brackets 1, 3. The word to be obtained should belong to Ln. It
is easy to see that there is at most one way to complete the current word to a word in Ln using right
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brackets only. Hence the number of such words altogether is at most 2
n−2k

2

(
n
εn

)
4εn. The total number

of words w of the form 0k1k(0/2)
n−2k

2 (1/3)
n−2k

2 is 2n−2k, and each such word gets the same probability
in the distribution N . Therefore the probability that a word chosen according to N is εn-close to Ln
can be estimated from above by

Σn/4
k=n/8

8
n
·

2
n−2k

2

(
n
εn

)
4εn

2n−2k
≤ maxk(2O(ε log( 1

ε
))n+2εn−n

2
+k) ≤ 2−n/5 ,

for small enough ε > 0 as promised. 2

Claim 4.8 Let S ⊆ [n], |S| = d, be a fixed set of places and let k be chosen uniformly at random in the
range n/8, ..., n/4. Then S contains a pair i < j symmetric with respect to (n− 2k)/2 with probability
at most

(
d
2

)
8
n .

Proof. For each distinct pair i, j ∈ S there is a unique k for which i, j are symmetric with respect to
the above point. Hence the above probability is bounded by

(
d
2

)
8
n . 2

We now return to the proof of Theorem 4. Let A be an algorithm for testing Ln that queries at
most d = O(1) queries. As d = O(1) we may assume that A is non-adaptive, namely, it queries some
fixed set of places S of size d (as every adaptive A can be made non adaptive by querying ahead at
most 2d possible queries defined by two possible branchings after each adaptive query. We then look at
these 2d = O(1) queries as our S). For any possible set of answers f : S −→ {0, 1, 2, 3} and an input
w let fw denote the event that w is consistent with f on S. Let NoSym be the event that S contains
no symmetric pair with respect to (n− 2k)/2. Also, let F0 denote all these f ’s on which the algorithm
answers ‘NO’ and let F1 be all these f ’s on which it answers ‘YES’. Finally denote by (w positive) and
(w negative) the events that a random w is a positive instance and a negative instance, respectively.

The total error of the algorithm is∑
f∈F0

Prob[fw ∧ (w positive)] +
∑
f∈F1

Prob[fw ∧ (w negative)] ≥

Prob[NoSym]

∑
f∈F0

Prob[fw ∧ (w positive)|NoSym] +
∑
f∈F1

Prob[fw ∧ (w negative)|NoSym]


However, given that S contains no symmetric pairs, for a fixed f , Prob[fw ∧ (w is negative)] is

essentially equal to Prob[fw ∧ (w is positive)] (these probabilities would be exactly equal if negative
w would be generated according to N . Claim 4.7 asserts that N is exponentially close to the real
distribution on negative instances). Hence each is of these probabilities is 0.5Prob[fw|NoSym]± o(1).

Plugging this into the sum above, and using Claim 4.8 we get that the error probability is bounded
from below by Prob(NoSym)

∑
f (0.5 ± o(1))Prob[fw|NoSym] ≥ (1 −

(
d
2

)
8
n)(0.5 ± o(1)) ≥ 0.5 − o(1).

2
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5 Concluding remarks

The main technical achievement of this paper is a proof of testability of regular languages. A possible
continuation of the research is to describe other classes of testable languages and to formulate sufficient
conditions for a context-free language to be testable (recall that in Theorem 2 we have shown that not
all context-free languages are testable).

One of the most natural ways to describe large classes of testable combinatorial properties is by
putting some restrictions on the logical formulas that define them. In particular we can restrict the arity
of the participating relations, the number of quantifier alternations, the order of the logical expression
(first order, second order), etc.

The result of the present paper is an example to this approach, since regular languages are exactly
those that can be expressed in second order monadic logic with a unary predicate and an embedded
linear order. Another example can be found in a sequel of this paper [1], which addresses testability of
graph properties defined by sentences in first order logic with binary predicates, and which complements
the class of graph properties shown to be testable by Goldreich et al [7]. Analogous results for predicates
of higher arities would be desirable to obtain, but technical difficulties arise when the arity is greater
than two.

As a long term goal we propose a systematic study of the testability of logically defined classes.
Since many different types of logical frameworks are known, to find out which one is suited for this
study is a challenge. Virtually all single problems that have been looked at so far have the perspective
of being captured by a more general logically defined class with members that have the same testability
properties.

A very different avenue is to try to develop general combinatorial techniques for proving lower
bounds for the query complexity of testing arbitrary properties, possibly by finding analogs to the block
sensitivity [12] and the Fourier analysis [11] approaches for decision tree complexity. At present we have
no candidates for combinatorial conditions that would be both necessary and sufficient for ε-testability.
Acknowledgment. We would like to thank Oded Goldreich for helpful comments. We are also grateful
to the anonymous referees for their careful reading.
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