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ABSTRACT
In the simultaneous message model, two parties holding n-
bit integers x, y send messages to a third party, the ref-
eree, enabling him to compute a boolean function f(x, y).
Buhrman et al [3] proved the remarkable result that, when
f is the equality function, the referee can solve this prob-
lem by comparing short “quantum fingerprints” sent by the
two parties, i.e., there exists a quantum protocol using only
O(logn) bits. This is in contrast to the well-known classi-

cal case for which Ω(n1/2) bits are provably necessary for
the same problem even with randomization. In this paper
we show that short quantum fingerprints can be used to
solve the problem for a much larger class of functions. Let
R||,pub(f) denote the number of bits needed in the classical
case, assuming in addition a common sequence of random
bits is known to all parties (the public coin model). We prove

that, if R||,pub(f) = O(1), then there exists a quantum pro-
tocol for f using only O(logn) bits. As an application we
show that O(logn) quantum bits suffice for the bounded
Hamming distance function, defined by f(x, y) = 1 if and
only if x and y have a constant Hamming distance d or less.

Categories and Subject Descriptors
F.1 [Theory of Computation]: Computation by Abstract
Devices
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Theory
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1. INTRODUCTION
In the simultaneous message model (see Kushilevitz ad

Nisan [4]), two parties A, B holding n-bit strings x, y send
messages ax, by to a third party, called the referee, who
wishes to compute a boolean function f(x, y). In the ran-
domized setting, a protocol specifies the probability distri-
butions of ax, by, and an M ×M boolean referee matrix D,
such that for all x, y, the probability of D(ax, by) = f(x, y)
exceeds 1 − ε, where 0 < ε ≤ 1/3 is a fixed constant. (The
choice of ε affects the complexity only by a multiplicative
constant.) Let R||(f) be the minimum number of bits (i.e.,
dlog2Me) needed by any such protocol.

Buhrman et al [3] extended the above model to the quan-
tum setting, in which A, B send quantum states |ux >, |vy >
in a Hilbert space of dimension M , and the referee makes
a decision based on some measurement on the the received
combined state |ux > ⊗|vy >. They proved the remark-
able result that, when f is the equality function, the ref-
eree can solve this problem by comparing short “quantum
fingerprints” sent by the two parties, i.e., there is a quan-
tum protocol using only dlog2Me = O(logn) qbits. This is
in contrast to the classical case for which it is well known
(Ambainis [1], Babai and Kimmel [2], Newman and Szegedy

[6]) that Θ(n1/2) bits are necessary and sufficient for the
equality function.

In this paper we show that short quantum fingerprints
can be used to solve a much larger class of functions. To
fix the notation, let Q||(f) denote the minimum number of
qbits communicated by any quantum protocol. The error
probability is bounded by a fixed constant 0 < ε ≤ 1/3.

Consider the public coin version (see Kushilevitz ad Nisan
[4]) of the (classical) simultaneous message model, in which
a common random bit sequence ξ is known to both A and
B. In this model, A sends a (deterministic) message ax,ξ, B
sends a (deterministic) message by,ξ, and the referee makes
the decision D(ax,ξ, by,ξ) using a boolean matrix D. Let

R||,pub(f) denote the minimum number of bits needed by any
protocol in the public coin model. Our main result (Theo-
rem 1) shows that the complexity in the quantum model is
closely related to that in the (classical) public coin model.

Let f1, f2, f3, · · · be a sequence of functions where fn :
{0, 1}n × {0, 1}n → {0, 1}.
Theorem 1 If R||,pub(fn) = O(1), then Q||(fn) = O(logn).

One can regard the result of Buhrman [3] as a special case
of Theorem 1, as the equality function has complexity O(1)

in the public coin model (see [4]). Let HAM
(d)
n denote the



boolean function such that HAM
(d)
n (x, y) = 1 if and only if

the two n-bit strings x and y have Hamming distance at most
d. As an application of Theorem 1, we show that, for any

fixed d, R||,pub(HAM
(d)
n ) = O(1), and hence by Theorem

1 the problem HAM
(d)
n can be solved with O(logn)-qbit

quantum fingerprints.

Theorem 2 R||,pub(HAM
(d)
n ) = O(d2).

Corollary For any fixed d, Q||(HAM
(d)
n ) = O(logn).

In Theorem 1, the term O(logn) hides a large constant.

It says that, if R||,pub(fn) ≤ c, then Q||(fn) = 2O(c) logn.

It is natural to ask whether one may achieve Q||(fn) =

O(R||,pub(fn) · logn) or better. (For comparison, note that

it is known ([2, 4, 6]) that R||(fn) = O(R||,pub(fn) · n1/2).)
The next theorem is a partial result in this direction.

Let M be any positive integer. Call two M × M real
matrices G,G′ isomorphic, if they differ only by the naming
of rows and columns, i.e., G′ = PGQ for some permutation
matrices P,Q. (Regard any G as a weighted bipartite graph
with vertex set [M ]×[M ], and with weight G(i, j) associated
with edge (i, j). Then G,G′ are isomorphic if and only if
their associated weighted graphs are isomporhic.) Let FM

be the set of all M ×M real positive semidefinite matrices
F with only non-negative entries. Let GM be the set of all G
isomorphic to at least some F ∈ FM . For any M×M matrix
K, define its convex width, w(K), as the smallest integer k
for which K can be expressed as the sum of k matrices in
GM .
Theorem 3 Let f : {0, 1}n×{0, 1}n → {0, 1} be a boolean
function, and A is a protocol that computes f in the public
coin model using anM×M referee matrixD. ThenQ||(f) =
O(w(D)5(1 + logw(D)) · (log2M + logn)).

Note that w(D) ≤ M , and thus Theorem 3 can be re-
garded as an extension of Theorem 1. The rest of the paper
is devoted to the proof of the above theorems. Some open
problems are discussed in the last section.

2. PRELIMINARIES
We review some material in [3]. Let H be a Hilbert space.

The Hilbert space H ⊗ H can be decomposed into two or-
thogonal subspaces V +, V −, called the symmetric subspace
and the anti-symmetric subspace. Subspace V + is generated
by the set of all states of the form |u > ⊗|v > +|v > ⊗|u >
for all |u >, |v >∈ H; and V − is generated by all states
of the form |u > ⊗|v > −|v > ⊗|u >. Consider the mea-
surement MH corresponding to the above decomposition,
with “+” and “-” as the possible outcomes. Buhrman et al
observed that the following simple fact is very useful.
Fact 1 Perform measurement MH on the state |u > ⊗|v >.
The probability of observing the result “-” is equal to (1−| <
u|v > |2)/2.

Let E : {0, 1}n → {0, 1}N , where N = O(n), be an error
correcting code such that E(x) and E(y) have Hamming
distance greater than 0.4N for any distinct x, y. Let Ei(x)
be the i-th bit of E(x). For each x ∈ {0, 1}n, let

|ux >=
1

N1/2

∑
1≤i≤N

|i, Ei(x) > .

Note that | < ux|uy > | = 1 if x = y, and otherwise | <
ux|uy > | < 0.6. By Fact 1, this implies that if one performs
the measurement MH on |ux > ⊗|uy >, the probability of
seeing “-” is equal to 0 if x = y, and otherwise is at least

(1− 0.62)/2 = 0.32.
We now describe Buhrman et al’s quantum protocol. Par-

ties A, B send k copies of |ux >, |uy > to the referee. The
referee performs the measurement MH on each of the k
copies of |ux > ⊗|uy >, and declare x = y if and only if “-”
is absent in the outcomes of all k experiments. The error
probability of this protocol is easy to analyze. It is always
correct if x = y. If x 6= y, the error probability is less than
(1 − 0.32)k, which can be made arbitrarily small by taking
a large enough constant k.

For our purpose, we need to extend their method to ob-
tain an estimate of | < u|v > |. As before, we perform
measurement MH on k copies of |u > ⊗|v >. Let k′ be
the number of times the answer “-” comes up. Define the

output η as (1 − 2k′

k
)1/2 if k′ ≤ k/2, and 0 otherwise. Let

∆ = η − | < u|v > |. The proof of the following lemma is
given in the Appendix.

Lemma 1 For any β > 0, Pr{|∆| > β} < 2e−kβ4/32.

3. PROOF OF THEOREM 1
Fix the error probability at ε = 1/10. Let c be a posi-

tive constant such that R||,pub(fn) ≤ c for all n. Consider
a public coin protocol computing fn using c communication
bits. Let [M ] = {1, 2, · · · ,M} be the message space where
M = 2c , and let D : [M ]× [M ] → {0, 1} be the referee ma-
trix (D may depend on n). It is well known (Newman [5])
that we can assume that the public random string is uni-
formly chosen from a set of L = O(n) strings ξ1, ξ2, · · · , ξL.
Let ai(x) ∈ [M ], bi(y) ∈ [M ] be the messages sent by A,B to
the referee when ξi is the public string chosen. By definition,

|f(x, y)− 1

L

∑
1≤i≤L

D(ai(x), bi(y))| < ε. (1)

Our plan is to construct a quantum protocol with error
probability bounded by 1/3, using 2O(c) logn communica-
tion qbits. Define the Hilbert space H = CM ⊗CL, where
C is the set of complex numbers. For each x, y ∈ {0, 1}n,
associate vectors in H

|ux > =
1

L1/2

∑
1≤i≤L

|ai(x) > ⊗|i >,

|vy > =
1

L1/2

∑
1≤i≤L

|bi(y) > ⊗|i > .

Let At(x) be the set of i ∈ [L] satisfying ai(x) = t, and
Bt(y) be the set of i ∈ [L] satisfying ai(y) = t.
Definition 1 For each 1 ≤ t ≤M , let

|ux,t > =
∑

i∈At(x)

|i >,

|vy,t > =
∑

i∈Bt(y)

|i > .

Note that the vectors |ux,t >, 1 ≤ t ≤ M are mutually or-
thogonal, and

∑
1≤t≤M ‖|ux,t > ‖2 = L. Similar statements

hold for the |vy,t >’s. It is clear that

|ux > =
1

L1/2

∑
1≤t≤M

|t > |ux,t >,

|vy > =
1

L1/2

∑
1≤t≤M

|t > |vy,t > . (2)



Lemma 2

1

L

∑
1≤i≤L

D(ai(x), bi(y)) =
∑

1≤t,t′≤M

D(t, t′)
< ux,t|vy,t′ >

L
.

The proof of Lemma 2 follows easily from the fact that
< ux,t|vy,t′ >= |Ax,t ∩By,t′ |.

If we can estimate the quantity
<ux,t|vy,t′>

L
for each pair

t, t′, up to an additive term ε/M2, then Lemma 2 allows us
to estimate 1

L

∑
1≤i≤` D(ai(x), bi(y)) up to an additive term

ε. By Equation (1), this means we can accurately decide
whether f(x, y) is 1 or 0.

Let t, t′ ∈ {1, 2, · · · ,M}. Let k = 64(M2/ε)4 loge(M
2/ε).

Lemma 3 By performing unitary transformations and quan-
tum measurements on k copies of |ux > ⊗|vy >, one can
obtain a random output rational number η such that

Pr{|η −
< ux,t|vy,t′ >

L
| > ε

M2
} < ε

M2
.

For the moment, assume that we have proved Lemma 3.
Consider the following quantum protocol. Parties A, B send
kM2 copies of |ux >, |vy > to the referee. For each of the
M2 pairs (t, t′) ∈ [M ] × [M ], the referee then obtains an

estimate ηx,y(t, t′) of the quantity
<ux,t|vy,t′>

L
for every t, t′,

using k of these copies and the quantum procedure provided
by Lemma 3. The referee then declares f(x, y) = 1 if and
only if

∑
t,t′ ηx,y(t, t′) > 1/2.

We now analyze the protocol. From Lemma 3 we conclude
that, with probability at least 1−M2 ε

M2 = 1− ε,

|ηx,y(t, t′)− < ux,t|vy,t′ >

L
| ≤ ε

M2
,

for all t, t′. By Equation (1) and Lemma 2, we conclude
that, for any x, y ∈ {0, 1}n, the probability is at least 1− ε
for the following inequality to hold:

|f(x, y)−
∑
t,t′

ηx,y(t, t′)|

≤ |f(x, y)− 1

L

∑
1≤i≤L

D(ai(x), bi(y))|

+
∑

1≤t,t′≤M

D(t, t′)|
< ux,t|vy,t′ >

L
− ηx,y(t, t′)|

≤ ε+M2 ε

M2

= 2ε

= 1/5.

Note that this last inequality implies the following: f(x, y) =
1 if and only if

∑
t,t′ ηx,y(t, t′) > 1/2. Therefore, the proba-

bility for the referee to make the correct decision is at least
1 − ε > 2/3. This proves Theorem 1, as the protocol uses
O(M10(logM) · (logM + logn)) qbits.

It remains to prove Lemma 3. For each of the k copies
of |ux > ⊗|vy >, do the following. First apply a unitary
transformation to |ux > ⊗|vy > to obtain |u′x > ⊗|v′y >,
where

|u′x > =
1

L1/2
(|0 > ⊗|t > |ux,t > +

∑
τ 6=t

|0 > ⊗|τ > |ux,τ >),

|v′y > =
1

L1/2
(|0 > ⊗|t > |vy,t′ > +

∑
τ 6=t

|1 > ⊗|τ > |vy,τ >).

(Strictly speaking, we need to enlarge the Hilbert space H
to C⊗H in order to accommodate |u′x > and |v′y >.) Note

that < u′x|v′y >=
<ux,t|vy,t′>

L
. We have thus reduced the

problem to the estimation of < u′x|v′y > from k copies of
|u′x > ⊗|v′y >. By Lemma 1, this problem can be solved
by performing measurements MH . Choose β = ε/M2, and
k = 64(M2/ε)4 loge(M

2/ε) in Lemma 1. Lemma 3 then
follows from the probability estimate in Lemma 1.

4. PROOF OF THEOREM 2
We give a protocol in the public coin model using γd2

communication bits, where γ = 104. We then prove that
the probability for the referee to be correct is at least 2/3.

The random public string consists of a sequence of γd2n
random bits, each of which is generated independently with
probability p = 1/(2d) to be a 1. Write this string as
z1, z2, · · · , zγd2 where each zi is an n-bit string. Party A
sends the referee the string a = a1a2 · · · aγd2 where ai is the
inner product of x · zi mod 2. Similarly, Party B sends the
referee the string b = b1b2 · · · bγd2 where bi is the inner prod-

uct of y ·zi mod 2. The referee decides that HAM
(d)
n (x, y) =

1 if and only if the Hamming distance between a and b is
less than γd2/2− qγd2 where

q = ((1− 1

d
)d + (1− 1

d
)d+1)/4.

Let ci = ai + bi. The Hamming distance between a and b
is the number of 1’s among c1, c2, · · · , cγd2 .
Lemma 4 Assume that the Hamming distance between x
and y is k. Then each ci is an independent random variable
with probability αk being 1, where

αk =
1

2
− 1

2
(1− 1

d
)k.

To prove Lemma 4, note that ci = 1 if and only if zi ·
(x ⊕ y) = 1. That is, ci = 1 if and only if among the k
bit positions in which x and y differ, zi has an odd number
of its bits equal to 1. Therefore, ci is a random bit with
probability βk to be 1, where βk =

∑
0≤i≤k
i:odd

(
k
i

)
pi(1− p)k−i.

Let gk(x) = (px+(1−p))k =
∑

0≤i≤k

(
k
i

)
(px)i(1−p)k−i. It is

easy to see that βk = 1
2
(gk(1)−gk(−1)) = 1/2−(1− 1

d
)k/2 =

αk. This proves Lemma 4.
Note that αk is an increasing function of k. By Lemma

4, we have reduced the analysis of the protocol to the fol-
lowing problem. We have a coin with a fixed but unknown
probability s to yield result 1 when it is tossed. We want
to distinguish the case s ≤ αd from the case s ≥ αd+1, by
observing c1, c2, · · · , cγd2 , the result of a sequence of γd2 in-
dependent tosses of the coin. We adopt the rule that we
declare s ≤ αd if and only if the number of 1’s is less than
γd2/2 − qγd2. To prove Theorem 2, we only need to show
that the probability of making the correct decision is greater
than 2/3.

This is now just a routine calculation in elementary statis-
tics, and we only give an informal argument here. For a
given s, the probability distribution of the number of 1’s is
centered around its expected value Ns = sγd2 with a stan-
dard deviation σ ≈ (sγd2)1/2 ≤ 100d. In our decision rule,
the cutoff point γd2/2−qγd2 is exactly the midpoint between
Nαd and Nαd+1 . Since Nαd+1 − Nαd = γd2(αd+1 − αd) =

γd2 · (1 − 1
d
)d/(2d) ≥ 2000d, the cutoff point is at least 10

standard deviations away from both Nαd and Nαd+1 . Thus,



the choice of this cutoff point offers very reliable discrimi-
nation between the hypothesis s ≤ αd and s ≥ αd+1.

5. PROOF OF THEOREM 3
Fix the error probability at ε = 1/10. Given a protocol

using referee matrix D in the public coin model, we would
like to construct a quantum protocol using O(w(D)5(1 +
logw(D)) · (log2M + logn)) qbits.

We adopt the notation developed in the proof of Theorem
1. The goal is for A and B to send the appropriate states to
the referee, so that he can estimate accurately the quantity

J =
∑

1≤t,t′≤M

D(t, t′)
< ux,t|vy,t′ >

L
,

which is approximately f(x, y) by (1) and Lemma 2. By as-
sumption, D =

∑
1≤`≤w(D)G` where G` ∈ GM . Therefore,

∑
1≤t,t′≤M

D(t, t′)
< ux,t|vy,t′ >

L

=
∑

1≤`≤w(D)

(
∑

1≤t,t′≤M

G`(t, t
′)
< ux,t|vy,t′ >

L
).(3)

Note that each G` is a matrix with all its entries being real
numbers between 0 and 1 (inclusive). The next proposition
offers a quantum protocol to estimate J through Equation
(3).
Proposition 1 Let G ∈ GM be a matrix with all entries
≤ 1 . Then there is a quantum protocol using O(w(D)4(1+
logw(D)) · (log2M + logn)) qbits such that the referee can
output (probabilistically) a rational number η satisfying the
following condition:

Pr{|η −
∑

1≤t,t′≤M

G(t, t′)
< ux,t|vy,t′ >

L
| > ε

w(D)
} < ε

w(D)
.

Similar to the discussions in Section 3, the referee can
apply Proposition 1 to G = G` for each 1 ≤ ` ≤ w(D)
to obtain an output η`(x, y). He then declares f(x, y) = 1
if and only if the value

∑
1≤`≤w(D) η`(x, y) exceeds 1/2. In

exactly the same way as in Section 3, one can prove that this
quantum protocol satisfies the requirements of Theorem 3.

It remains to prove Proposition 1. Without loss of gen-
erality, we can assume that G ∈ FM . Since G differs from
some G′ ∈ FM only in the naming of its rows and columns,
any quantum protocol satisfying the specification of Propo-
sition 1 G′ can be made to work for G.

Since G is a real semidefinite matrix, there exist a real
diagonal matrix Λ = (δt,t′λt) with only non-negative entries
and a real orthogonal matrix R = (rt,t′) such that G =
RΛR−1. Note that R−1 is equal to RT , the transpose of R.

We will define a set of fingerprints |u′′x >, |v′′y > in C ⊗
CM⊗CL such that< u′′x|v′′y >=

∑
1≤t,t′≤M G(t, t′)

<ux,t|vy,t′>

L
.

This immediately leads to a quantum protocol for prov-
ing Theorem 3, since A,B can send the referee sufficiently
many copies of |u′′x >, |v′′y >, so that the referee can estimate
< u′′x|v′′y > within the specification required by Proposition
1. Applying Lemma 1 with β = ε/w(D), we see that k copies
are sufficient where k = (4w(D)/ε)4 loge((1 + w(D))/ε).

Let

|u′x,s > =
∑

1≤t≤M

rt,s|ux,t >,

|v′y,s > =
∑

1≤t≤M

rt,s|vy,t > .

Definition 2 For any x, y ∈ {0, 1}n, let

|u′x > =
1

L1/2

∑
1≤s≤M

(λs)
1/2|s > |u′x,s >,

|v′y > =
1

L1/2

∑
1≤s≤M

(λs)
1/2|s > |v′y,s > .

Lemma 5 For each x, y ∈ {0, 1}n,

< u′x|v′y >=
∑

1≤t,t′≤M

G(t, t′)
< ux,t|vy,t′ >

L
.

Furthermore, ‖|u′x > ‖ ≤ 1 and , ‖|v′y > ‖ ≤ 1.
Proof of Lemma 5 Let U be the M×L matrix whose t-th
row is the vector |ux,t > represented in the basis {|1 >, |2 >
, · · · , |L >} (see Definition 1). Let U ′ be the M × L matrix
whose t-th row is the vector |u′x,t > represented in the basis

{|1 >, |2 >, · · · , |L >}. Then U ′ = RTU and U = RU ′.
Similarly, define V, V ′ as the matrices associated with

{|vy,t >}, {|v′y,t >}. Then V ′ = RTV and V = RV ′.
Observe that

< u′x|v′y > =
1

L

∑
1≤s≤M

λs < u′x,s|v′y,s >

=
1

L
Tr(U ′T ΛV ′)

=
1

L
Tr((RU ′)TRΛR−1(RV ′))

=
1

L
Tr(UTGV )

=
∑

1≤t,t′≤M

G(t, t′)
< ux,t|vy,t′ >

L
.

This proves the first assertion in Lemma 5.
Exactly the same manuipulation gives

‖|u′x > ‖2 =< u′x|u′x >=
∑

1≤t,t′≤M

G(t, t′)
< ux,t|ux,t′ >

L
.

Using the fact that < ux,t|ux,t′ >= 0 for t 6= t′ (see Defini-

tion 1), we have ‖|u′x > ‖2 =
∑

1≤t≤M G(t, t)
<ux,t|ux,t>

L
≤∑

1≤t≤M

<ux,t|ux,t>

L
= 1. Similarly, one obtains ‖|v′y > ‖2 ≤

1. This proves Lemma 5.
For any x, y ∈ {0, 1}n, define 0 ≤ θx, ψy ≤ π/2 such that

cos θx = ‖u′x‖ and cosψy = ‖v′y‖.
The final fingerprints can now be defined as vectors in

C ⊗ CM ⊗ CL. Let |κ >, |κ′ > be any two fixed mutually
orthogonal unit vectors in CM ⊗CL.
Definition 3 For any x, y ∈ {0, 1}n, let

|u′′x > = |0 > ⊗|u′x > + sin θx|1 > ⊗|κ >,
|v′′y > = |0 > ⊗|v′y > + sinψy|1 > ⊗|κ′ > .

It it easy to check that |u′′x >, |v′′y > are unit vectors, and
that < u′′x|v′′y >=< u′x|v′y >. By Lemma 5 we have then

< u′′x|v′′y >=
∑

1≤t,t′≤M G(t, t′)
<ux,t|vy,t′>

L
. This completes

the proof of Proposition 1, and hence Theorem 3.



6. DISCUSSIONS
The quantum protocol constructed in the proof of Theo-

rem 1 usesO(M10(logM)(logM+logn)) = 2O(c) logn qbits,
where M = 2c and c is the number of bits needed in the clas-
sical public coin simultaneous message model. Theorem 3
gives an improvement to O(M5(logM)(logM+logn)), since
w(D) ≤M for any D.

A further improvement can be made to giveO(M4(logM+

logn)) (but is still 2O(c) logn). Let F ⊆ [M ] × [M ] be the
set of (t, t′) with f(t, t′) = 1, and F ′ be the complement of
F . Costruct quantum fingerprints

|ux > =
1

(LM)1/2
(

∑
(t,t′)∈F

|00 > ⊗|t, t′ > |ux,t >

+
∑

(t,t′)∈F ′

|01 > ⊗|t, t′ > |ux,t >),

|vy > =
1

(LM)1/2
(

∑
(t,t′)∈F

|00 > ⊗|t, t′ > |vy,t′ >

+
∑

(t,t′)∈F ′

|10 > ⊗|t, t′ > |vy,t′ >).

One can verify that |ux >, |vy > are unit vectors, and that
| < ux|vy > | ≥ (1 − ε)/M if f(x, y) = 1, and ≤ ε/M
if f(x, y) = 0. The can be exploited easily to give an
O(M4(logM) · (logM + logn))-qbit quantum protocol. We
remark that a similar improvement can be made to the
number of qbits needed in Theorem 3 (to O(w(D)4(1 +
logw(D))(log2M + logn))).

We conclude with some open problems concerning the
power of quantum fingerprinting.
1. Is it true that Q||(f) = O(R||,pub(f) · logn)? It is even

conceivable that Q||(f) = O(R||,pub(f) + logn).
2. Is there some converse to Theorem 1? For example, is
it possible that any function f with Q||(f) = O(logn) must

satisfy R||,pub(f) = O(1)? Is it possible that any function

f with Q||(f) = O(logn) must satisfy R||(f) = O(n1−ε) ?

(Recall that R||(f) is the complexity in the basic (no public
coin) model.)

3. Can one improve the bound R||,pub(HAM
(d)
n ) = O(d2)

given in Theorem 2? Can one get better bounds, as a func-

tion of n and d, on Q||(HAM
(d)
n ) ?

4. Develop lower bound techniques for Q||(f). As a first
step, one may restrict the class of quantum protocols to
those based on estimating | < ux|vy > |. This gives rise to
interesting questions on the embedding of graphs in vector
spaces. For example, a bipartite graph G = ([N ]× [N ], E) is
said to have a (d, δ1, δ2)-threshold embedding, if there exist
two mappings φ, ψ from the set [N ] to the set of all unit
vectors in Cd such that (a) | < φ(x)|ψ(y) > | ≥ δ1 if (x, y) ∈
E, and (b) | < φ(x)|ψ(y) > | ≤ δ2 if (x, y) 6∈ E. Can one
characterize those G for which there is a (poly(logN), δ1, δ2)
threshold embedding where δ1 > δ2 ≥ 0 are fixed constants?
This is closely related to the question of characterization of
functions f with Q||(f) = O(logn).
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APPENDIX
Proof of Lemma 1

Recall that η is defined to be (1− 2k′

k
)1/2 if k′ ≤ k/2, and

0 otherwise; ∆ = η − | < u|v > |. We will prove that, for
any β > 0,

Pr{|∆| > β} < 2e−kβ4/32.

Let q = (1 − | < v|w > |2)/2. By Chernoff’s Inequality,
for any ξ > 0, we have

Pr{|k
′

k
− q| > ξ} < 2e−2kξ2

.

Choose ξ = β2/8. Then with probability at least 1−2e−2kξ2
=

1− 2e−kβ4/32, we have

−ξ ≤ k′

k
− 1− | < u|v > |2

2
≤ ξ. (4)

To prove Lemma 1, we only need to prove that (6) implies
|∆| ≤ β.

If | < u|v > | < β/2, then the leftmost inequality in (6)
implies

1− 2k′

k
≤ | < u|v > |2 + 2ξ <

β2

2
.

From the definition of η, we conclude then 0 ≤ η ≤ β, and
hence −β ≤ −| < u|v > | ≤ η − | < u|v > | ≤ β. Therefore,
|∆| ≤ β is true in this case.

We now consider the other case: | < v|w > | ≥ β/2.
Observe that (6) implies

| η2 − | < u|v > |2 | ≤ 2ξ,

leading to

|∆| = | η − | < u|v > | | ≤ 2ξ

| < u|v > | ≤ 2
β2

8

2

β
=
β

2
.

This completes the proof of Lemma 1.


