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Recapitulation : Last Lecture

* Moving object detection as robust regression with outlier
detection

« Simultaneous multiple surface/moving object estimation

« EXxpectation-Maximization (EM) algorithm as a formal
mechanism for multiple model estimation & its application to
multiple motion detection and estimation



The Tracking Problem

Maintain identity across time of designated or automatically
detected objects




The Tracking Problem : Issues

Object Detection : Designated or automatically detected

Object State Instantiation: Object representation
— Position, Velocity, Shape, Color, Appearance, Template...

State Prediction:

— Having seen {y,,y.,...,y.,} What state do these measurements predict for the
next time instant i?

— Need a representation for P(X; | Y, =Yg,.., i = Y1)

Data Association:

— Which of the measurements at the i-th instant correspond to the predicted
state at that instant ?

— Use P |Y,=Y,....Y =Y., toestablishthe correspondence
State Update:

— With the corresponding measurement Yi  established for instant i, compute
an estimate of the optimal new state through P(X;| Y, =Yg..... Y, =Y))



Object Detection

Designated Object

e User specifies a template

« The system converts that template into an appropriate
representation to be tracked



Object Detection

Fixed Cameras

R~ Ty ey

 Model the background using a reference image or
a reference distribution

» Detect objects as changes with respect to the reference



Object Detection

1‘_.*

Moving Cameras

Align consecutive frames using the

now well-known techniques studied
in this class

Use frame differencing between
aligned frames to detect changes
designhated as new objects



Simple Tracker : Blob tracker

 Change-based tracker:

— Approach
« Align video images
» Detect regions of change
« Track change blobs

— Problem with this approach is that it uses no appearance
iInformation

o difficult to deal with stalled or close-by objects




Moving Blobs




Simple Tracker - Correlation Based

e Correlation-based tracker:

— Approach

* |nitialize the templates and the supports of foreground
objects

» Estimate motion by correlation

— The problem with this approach is that it does not
simultaneously compute the segmentation and
appearance

* NO accurate segmentation or region of support = may
drift over time.

» Get confused by cluttered backgrounds



Problems with the simple trackers

They lack the two key ingredients for optimal tracking:
— State prediction
— Optimal state updation

Since measurements are never perfect --- each has some
uncertainty associated with it --- optimal state prediction
and updation need to take the uncertainties into account

Furthermore, the object representation needs to be richer
— Not just a change blob, or fixed template
— Optimal method for updating the state



Kalman Filtering

Assume that results of experiment
(.e., optical flow) are noisy
measurements of system state

Model of how system evolves
Prediction / correction framework

Optimal combination
of system model and observations

Rudolf Emil Kalman

Acknowledgment: much of the following material is based on the
SIGGRAPH 2001 course by Greg Welch and Gary Bishop (UNC)



Simple Example

A point whose position remains constant : x
— Say a temperature reading

Noisy measurement of that single point z,
Variance g;? (uncertainty o)
Best estimate of true position )‘(1 =z

Uncertainty in best estimate &12 =g°
1



Simple Example

« Second measurement z,, variance 0,2

« Best estimate of true position

1 2 41
%=%4 ot 2
1 41
a o
-9 ot _
=Xt (z-%)
52-_ 1
« Uncertainty in best estimate 27 1 41
o



Online Weighted Average

« Combine successive measurements into constantly-
Improving estimate

* Uncertainty decreases over time

* Only need to keep current measurement,
last estimate of state and uncertainty

We have essentially computed the Least Squares OR Minimum
Variance OR Maximum Likelihood estimate of X given a number
of noisy measurements Z through an incremental method



Terminology

In this example, position is state
— in general, any vector

State evolves over time according to a dynamic model or
process model
— (in this example, “nothing changes”)

Measurements are related to the state according to a
measurement model
— (possibly incomplete, possibly noisy)

Best estimate of state )'Zwith covariance P



Tracking Framework

* Very general model:
— We assume there are moving objects, which have an underlying state
X
— There are measurements Z, some of which are functions of this state
— There is a clock

» at each tick, the state changes
« at each tick, we get a new observation

o Examples
— object is ball, state is 3D position+velocity, measurements are stereo
pairs
— object is person, state is body configuration, measurements are
frames, clock is in camera (30 fps)



Bayesian Graphical Model

Those that tell us about objects & their states

State Variables:
But they are hidden, cannot be directly observed

Dynamic Model

Can be directly observed

Measurements: _ ]
Are noisy, uncertain



Bayesian Formulation

P(X, 12) =KP(Zc 1 %) [P0 1 %P (e 24 )X,

p(xk | Zk) Posterior probability after latest measurement
p(zk | Xk) Likelihood of the current measurement

p(xk | Xk-1) Temporal prior from the dynamic model

p(Xk_1 | Zk_l) Posterior probability after previous measurement

K Normalizing constant



The Kalman Filter

e Key ideas:
— Linear models interact uniquely well with Gaussian noise

* make the prior Gaussian,
» everything else Gaussian and the calculations are easy

— Gaussians are really easy to represent
e once you know the mean and covariance, you're done



Linear Models

For “standard” Kalman filtering, everything must be linear
System / Dynamical model: X, = cbk-lxk-l + fk_l
The matrix @, Is state transition matrix

The vector ¢, represents additive noise, assumed to have
covariance Q : N(0;Q)

X, ~ N(®X,1; Q)



Linear Models

e Measurement model / Likelihood model:
Z, =HX, +p
Z, ~N(HX:R,)

e Matrix H Is measurement matrix

e The vector 1/ Is measurement noise, assumed to
have covariance R : N(O;p)



Position-Velocity Model

* Points moving with constant velocity

 We wish to estimate their PV state at every time instant

Xy

D,

X

Yt

0 1
1 o

1 At

Position-Velocity State

Constant Velocity
Dynamic Model Matrix

Only position is directly
observable



Prediction/Correction

 Predict new state

X = Py Xy
R =® R, P,+Q,

o Correct to take new measurements into account

X = %+ Kk(zk _Hkxl’<)
R = (I - Kka)Pk,



Kalman Gain

* Weighting of process model vs. measurements

K¢ = Pk,HII(HkPk'HI-(r + Fek)_:l

 Compare to what we saw earlier:

oy

2 2
0-1 + 0-2




Optimal Linear Filter

Optimal Predicted Measurement
Linear Estimate state

A
X, (+) =KX, (-)+K,zZ,

Under Gaussian assumptions, linear estimate is the optimal
Estimation Error: X, (+) =X, +X, (_|_)
X, (+)=[K, +K H -1]x, +K X, (-)+K, Vv,

For an unbiased estimate: E[)?k (+)] =0 KL = |- Kka

Ve

X () =X, ()+K [z, -HX, (-)]

Kk Is obtained by minimizing the variance of the state estimate



Results: Position-Only Model
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Results: Position-Velocity Model
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Extension: Multiple Models

e Simultaneously run many KFs with different
system models

e Estimate probability each KF is correct

* Final estimate: weighted average



Results: Multiple Models

— WM Estimate
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[Welch & Bishop]



Multiple Models

Results
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Results: Multiple Models

y [meters]

o=

= TO TE =73 =5 =0

Time [seconds]

1 O ,
-‘ - — L r
0 oslr - = ey, % Faedee™ _
S o T bil:
B °rmir - - . gty e m.,
- = = = Tm, o=
Nn 0.6 _--: - - - :? -' - L - -
e " - L. _l'-_ !.= -
0.5 - = _ -
— wn L] - '-- -
& 0-4:- -.‘ - -:- - - = n
=. ozl L - "o - - .
N ” s . .2 - -
D- ozL" -_ -_--J'_' - - - 7
-'.-- - - l-- L - - -
0.1 —:-_‘;5-_ - - fa” " - i
O—M — i‘? ¥ - d

0 5 ETs) RS 20 55 30

[Welch & Bishop]



Extension: SCAAT

 H be different at different times
— Different sensors, types of measurements
— Sometimes measure only part of state

e Single Constraint At A Time (SCAAT)

— Incorporate results from one sensor at once

— Alternative: wait until you have measurements
from enough sensors to know complete state
(MCAAT)

— MCAAT equations often more complex, but
sometimes necessary for initialization



UNC HiBall

e 6 cameras, looking at LEDs on celling
o LEDs flash over time

[Welch & Bishop]



Extension: Nonlinearity (EKF)

« HiBall state model has nonlinear degrees of
freedom (rotations)

« Extended Kalman Filter allows nonlinearities by:
— Using general functions instead of matrices
— Linearizing functions to project forward
— Like 15t order Taylor series expansion

— Only have to evaluate Jacobians (partial derivatives), not
Invert process/measurement functions



Other Extensions

On-line noise estimation

Using known system input (e.g. actuators)

Using information from both past and future

Non-Gaussian noise and particle filtering



Data Association

 Nearest Neighbors

— choose the measurement with highest probability given
predicted state

— popular, but can lead to catastrophe

 Probabilistic Data Association

— combine measurements, weighting by probability given
predicted state

— gate using predicted state



Video based Tracking : Complexities

In addition to position and velocity, object state may include:
— Appearance, shape, specific object models : people, vehicles, etc.

Camera may move in addition to the object
— Track background as well as the foreground

Measurement model and the associated likelihood
computation is more complex:

— Compute the likelihood of the presence of a head-n-shoulders person
model at a given location in the image

Multiple objects need to be tracked simultaneously

— Measurements need to be optimally associated with a set of models
rather than a single model as in the previous examples



Application - Tracking vehicles in aerial
videos

 The goals of a tracking system are to
— detect new moving objects

— maintain identity of objects, handle multiple objects and
Interactions between them. e.g. passing, stopped, etc.

— provide information regarding the objects, e.g. shape,
appearance and motion.

Tracking
System

Video Stream Results



Tracking as a continuous motion
segmentation problem

Tracking problem < continuous motion segmentation
problem: estimation of a complete representation of
foreground and background objects over time.

Complete representation (Layer) includes:
— motion of objects and background
— shape of objects and support
— appearance of objects

Key: constraints




Layer based motion analysis method

e Simultaneously achieve motion and
segmentation estimation (EM algorithm)

— Estimate segmentation based on motion
consistency

— Estimate motion based on segmentation



Motion layer representations -
models/constraints

Local constraints

Global constraints

Multi-frame consistency

Smooth dense flow:

2D affine;

2D rotation and translation &

Weiss 97 Darrell91, Wang93, constant velocity:
i Hsu94, Sawhney96, .
Motion Weiss 96, Vasconcel 0s97 This paper
3D planar: Torr99

MRF segmentation | Background+Gaussian | Constant segmentation prior:

S tati prior: SR O gl This paper - Elliptical shape prior
MENLaLion| - weissoe, This paper - Section 2.1
Vasconcel 0s97
Constant appearance:

Appearance This paper




Dynamic Layer Representation

« Spatial and temporal constraints on the layer segmentation,
motion, and appearance

 EM algorithm for maximum a posteriori estimation

o Layer ownership is constrained by a parametric shape
distribution, instead of a local smoothness constraint. It
prevents the layer evolving into arbitrary shapes, and
enables tractable estimation over time.



Representation and constraints -
segmentation and appearance

* Segmentation prior model &, ={l;,s}
» background + elliptical shapes
« constant value over time

Layer |
Background
layer

e Appearance model - A
e constant value over time



Representation and constraints -
motion

e Motion model

— motion
» foreground O, = (U, )
— translation + rotation
— constant velocity model ut

,/
A,
\
\ Cbt
\

* background
— planar surface



MAP estimation

P(motion, , appearance, , shape__ prior, |image,,
Image,_;, motion, _,, appearance,_;, Shape__ prior,_;)

-

4 _ ) a _ )
motion, motion,
=) gppEAraNCe, M=—Pp gppEArance, [—)
shape prior shape prior
9 apep y \ apep y

motion,
appearance,
shape prior

N

)

l L
AV




MAP estimation - formulation

« Notation
— currentimage is |,. Current state is A =[6;,®;,A]

e Estimation

maxargP(/ | Ty, Ay, 1)
A

= maiiarg P(Ly | &, g, i) P(A | A g, 1)

Y

likelihood prior



Optimization using EM algorithm

 The general Expectation Maximization algorithm
— observation Yy and parameter g
— objective function:

maxarg P(y | 8)P(6)
6

— equivalent to iteratively improving conditional expectation
Q(618') = E[logP(x,y|6)|8',y] +10g P(6)
* For the dynamic layer tracker:
Q=HllogP(l;, z | A, Ay, li0) 111, /A Ay, Ll +10gP(A [ A y)

« Optimize Q over /|,



Optimization - 3 steps

e Optimization over motion, segmentation, and
appearance correspond to the following three steps:

— layer motion estimation based on current segmentation and
appearance = weighted correlation or direct method

— layer segmentation estimation = competition between
motion layers

— layer appearance estimation = Kalman filtering of
appearance



Optimization - flow chart
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Optimization - illustration

\ 4

v/ | motiont

motiont-1 |/

S .| motion shape appearance . .
shape prior t-1 / estimation | estimation| | estimation o / shape prior t

appearance t-1 E— appearance t

A

frame t



Optimization - equations

e Motion estimation
— weighted SSD

 Ownership estimation - gradient method

O SOOI 0N -y it 0 GOy ()

0sj i=0 Lij(%)D(%) ol = L. (%)D(X)
~(8,) ~S1))/ o ~(gj =l ) 0%

(L () = YE i /1S,

 Appearance estimation

AT aa+h 1 (x) ] of
(L ox+h o))

A (M%) =




Inference of object status

o A state transition graph is designed to

— trigger events such as object initialization, object
elimination

— Infer object states such as moving, stopping, two
objects that are close to each other, etc.



Inference of Object Status

NM KINM&INS}
NM & Sl occluded

INM
‘ INM&NS

new > moving >(_ disappear

INM & OB
‘ INM&NS
INSIOBILT
NM&!SI&1ZM
NM &!51&ZM @

' Conditions

NS = normal SSD score
NM&NS OB = out of scope
LT = NM for along time
ZM= zero motion estimation
NB = new blob, no object covering
NM | OB ablob
NM = no motion blob covering the
object
Sl = dignificant increase of SSD

OBILT
NB




Implementation - Sarnoff Layer
Tracker

Airborne Video Survelllance System (tracking component)
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Stream SGI Oct
e Performance: VFE 200 clane

— Originally developed on a PC, ported to SGI Octane. 20-25
Hz for one object over a single processor.



Results

e Turning




Results

e Turning
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Results

e Passing - opposite directions




Results

e Passing - opposite directions
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Results

e Passing - the same direction




Results

e Passing - the same direction




Results

, Passing

e Stop




Results

e Stop, Passing
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Implementation - Sarnoff Layer
Tracker

e Motion estimation:

— 95% of computation is for motion estimation. Currently,
weighted SSD correlation is used. Searching in a 13x13
window at half resolution, for 3 different angles. The size of

the object is around 40x40 pixels.

e Ownership estimation
— change image is integrated into the formulation to further
iImprove the robustness.

e Appearance estimation

— appearance model for the background is not computed,
Instead, the previous image is used.



An Alternative Appearance Model

* In the previous model, appearance gets incrementally
averaged over time since it is part of the state vector

* A more sophisticated appearance model allows for
averaging as well as keeping up with frame-to-frame
appearance changes:

— Jepson et al.’s WSL model
— A mixture model of appearance
— Estimated incrementally using online EM



WSL Adaptive Model in 1D

Stable Proczess:
/_ variance O¢
Wandering Process: 5
constant variance O,

Lost Process
( d00-11]

- . . —
1 0.5 5 0 sy 0.5 1 G

Mixture model for current data (4 dof):

P(d: | q¢,my,0i1) = MsPs(Cilqe) + My Pw(dedi) + M pr (d)

i ~ I 7

stable paramezters mixing probabilities
q; = (Usy,05y) m; = (ms,m,,m)



On-Line Approximate EM

One E-Step: Compute data ownerships only at current time

m; -1 P;(0; 91, 0;2)
p(d; [q¢-1,m;4,d;_y)

0;(d) = ) O{w, s,1}

One M-Step: Update weighted it"-order data moments
M} = ao;(d) d; + (1-a) My JO{w,s 1}

Updated mixing probabilities (O™ order moments):
_ 0 -
m;(d) = M}, j O{w,s,1}

Updated mean and variance of stable process:




Estimation of Motion Parameters

To estimate the motion model parameters we
maximize the sum of log likelihood and log prior :

O(u,) = logL(D; |u;, A4, D) + log p(u; |u,,)
likelihood prior
where:

warp parameters: u,
data at time t-1: Dy ={d(x,tD}+ |
appearance model: A =(q;,m,)

parametric motion: Xt = W(X¢_1;uy)



Optimization Detalls

Data Likelihood:
L(D; |ug, A1, D) = p(d(w(x;u),t) | A1, d(x, t-1)

xLRt-1
data from time t is warped back to t-1 and compared
to predictions from the tracking region at time t-1.

Motion Prior:
p(u; |u—y) = G(ut,()'g) G(“t_ut—l,a'lz)

¢ $

slow smooth

Fitting process for w, is similar to fitting mixture
models for flow (Jepson & Black, 1993).



Real-Time Tracking



Filtered
Representation

Adaptive
Background
Modeling

l

Filtered Background
Model

Detected change
objects

Foreground
Detection

Major Components of a Tracker

Frame-to-
frame
Tracking

State
Machine




Tracker Block Diagram

System state at time t At time (t+1) System state at time (t+1)

Object (green box) as seen

at timet. (latest model of rﬁ;ﬁ appearance
appearance) l

Object appearance as motion appearance visibility Updated learnt
learnt from recent past. Tlestimation | estimation | | estimation [ model

(learnt model of

appearance) T

24 Probabilistic visibility _ U[;)g?tedvisibility
= mask, brighter the pixel, > Occlusion m
more likely that it belongs handling

to the object

* Veocity estimate
* Velocity estimate * Depthif available
* Depthif available




Sample Progress of the Tracker

Occlusion is detected at this
frame

Note learnt mode! is much
more immune to occlusions
than the latest moddl.

N E

The appearance models and
visibility mask are till
frozen to t=8 because of
occlusion

The object reappears after
occlusion, and the models
and visibility mask are
updated

System state at time t=1

System state at time t=8

System state at time t=16

System state at time t=27




Tracker Features

Non-parametric distribution based background representation.

— Resilient to environmental effects like wind-induced motion, heat-
induced scintillation etc.

Foreground extraction based on pyramid filters and flow.
— Tunable for different scenarios: outdoors, indoors.

Comprehensive tracking based on appearance, motion and shape.

— Automatically adapts to smooth and sudden changes of
appearance.

— Automatically weights appearance and shape matching.
— Precise motion estimation based on optical flow.

State machine that exploits appearance, motion and shape.
— Handles occlusions, and confusing events with multiple objects.



Example: Outdoors




Example: Indoor Overhead




Example: Airport Overhead




Example: Airport (Light Traffic)

a72312002 6:10:17 PM



Example: Airport Sequence




Example: Hallway Seguence




Example: Hallway Sequence




3D Tracking with Presence of Clutter and Multi-Camera Handoff

Video of Camera 1l and Camera 2

Handing-off from camera 1 to camera 2



3D Tracking in Outdoor Scenarios

Original video

Depth Map Video

Video with entire mob being
tracked simultaneoudly

 Each color represents a
different person in the image

* Note the 3D tracker can
distinguish between people and
thelir shadows



3D Tracking in Outdoor Scenarios

pts

Original video

Video with people and vehicles
being tracked simultaneously

Each color represents a
different person/vehicle
In the image

Depth Map Video






