
Moving Object Tracking

Harpreet S. Sawhney
hsawhney@sarnoff.com

Princeton University
COS 429 Lecture

Apr. 8, 2004



Recapitulation : Last Lecture

• Moving object detection as robust regression with outlier 
detection

• Simultaneous multiple surface/moving object estimation

• Expectation-Maximization (EM) algorithm as a formal 
mechanism for multiple model estimation & its application to 
multiple motion detection and estimation



The Tracking Problem
• Maintain identity across time of designated or automatically 

detected objects



The Tracking Problem : Issues
• Object Detection : Designated or automatically detected

• Object State Instantiation: Object representation
– Position, Velocity, Shape, Color, Appearance, Template…

• State Prediction: 
– Having seen                      what state do these measurements predict for the 

next time instant i?
– Need a representation for                                       

• Data Association:
– Which of the measurements at the i-th instant correspond to the predicted 

state at that instant ?
– Use                                            to establish the correspondence

• State Update:
– With the corresponding measurement established for instant i, compute  

an estimate of the optimal new state through 
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Object Detection

Designated Object

• User specifies a template

• The system converts that template into an appropriate
representation to be tracked



Object Detection

Fixed Cameras

• Model the background using a reference image or 
a reference distribution

• Detect objects as changes with respect to the reference



Object Detection

Moving Cameras

• Align consecutive frames using the
now well-known techniques studied
in this class

• Use frame differencing between
aligned frames to detect changes
designated as new objects



Simple Tracker : Blob tracker

• Change-based tracker: 
– Approach

• Align video images
• Detect regions of change
• Track change blobs

– Problem with this approach is that it uses no appearance
information

• difficult to deal with stalled or close-by objects



Moving Blobs



Simple Tracker - Correlation Based

• Correlation-based tracker: 
– Approach

• Initialize the templates and the supports of foreground 
objects

• Estimate motion by correlation  

– The problem with this approach is that it does not 
simultaneously compute the segmentation and 
appearance

• No accurate segmentation or region of support ⇒ may 
drift over time.

• Get confused by cluttered backgrounds



Problems with the simple trackers

• They lack the two key ingredients for optimal tracking:
– State prediction
– Optimal state updation

• Since measurements are never perfect --- each has some 
uncertainty associated with it --- optimal state prediction 
and updation need to take the uncertainties into account

• Furthermore, the object representation needs to be richer
– Not just a change blob, or fixed template
– Optimal method for updating the state



Kalman Filtering

• Assume that results of experiment
(i.e., optical flow) are noisy
measurements of system state

• Model of how system evolves
• Prediction / correction framework
• Optimal combination

of system model and observations

Rudolf Emil Rudolf Emil KalmanKalman

Acknowledgment: much of the following material is based on theAcknowledgment: much of the following material is based on the
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Simple Example

• A point whose position remains constant : x
– Say a temperature reading

• Noisy measurement of that single point z1

• Variance σ1
2 (uncertainty σ1)

• Best estimate of true position

• Uncertainty in best estimate

11̂ zx = 11̂ zx =

22
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Simple Example

• Second measurement z2, variance σ2
2

• Best estimate of true position 

• Uncertainty in best estimate
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Online Weighted Average

• Combine successive measurements into constantly-
improving estimate

• Uncertainty decreases over time

• Only need to keep current measurement,
last estimate of state and uncertainty

We have essentially computed the Least Squares OR Minimum 
Variance OR Maximum Likelihood estimate of X given a number

of noisy measurements Z through an incremental method



Terminology

• In this example, position is state 
– in general, any vector

• State evolves over time according to a dynamic model or 
process model
– (in this example, “nothing changes”)

• Measurements are related to the state according to a 
measurement model
– (possibly incomplete, possibly noisy)

• Best estimate of state     with covariance Px̂x̂



Tracking Framework
• Very general model:  

– We assume there are moving objects, which have an underlying state 
X

– There are measurements Z, some of which are functions of this state
– There is a clock

• at each tick, the state changes
• at each tick, we get a new observation

• Examples
– object is ball, state is 3D position+velocity, measurements are stereo 

pairs
– object is person, state is body configuration, measurements are 

frames, clock is in camera (30 fps)



Bayesian Graphical Model

1-kX

1-Zk

kX 1kX +

kZ 1k+Z
K K

State Variables:  
Those that tell us about objects & their states

But they are hidden, cannot be directly observed 

Dynamic Model

Measurements:  
Can be directly observed

Are noisy, uncertain

Measuement Model



Bayesian Formulation

1-k1-k1-k1-kkkkkk dx)z|x(p)x|x(p)x|z(p)z|x(p ∫∫∫∫κ=

)z|x(p kk Posterior probability after latest measurement

)x|z(p kk Likelihood of the current measurement

)x|x(p 1-kk Temporal prior from the dynamic model

)z|x(p 1-k1-k Posterior probability after previous measurement

κ Normalizing constant



The Kalman Filter

• Key ideas: 
– Linear models interact uniquely well with Gaussian noise

• make the prior Gaussian, 
• everything else Gaussian and the calculations are easy

– Gaussians are really easy to represent
• once you know the mean and covariance, you’re done



Linear Models

• For “standard” Kalman filtering, everything must be linear

• System / Dynamical model:

• The matrix Φk is state transition matrix

• The vector ξk represents additive noise, assumed to have 
covariance Q : N(0;Q)

111 −−− +Φ= kkkk xx ξ 111 −−− +Φ= kkkk xx ξ

)Q;x(N~x k1-kkk Φ )Q;x(N~x k1-kkk Φ



Linear Models

• Measurement model / Likelihood model:

• Matrix H is measurement matrix

• The vector µ is measurement noise, assumed to 
have covariance R : 

)R;xH(N~z
xHz

kkkk

kkkk µ+=
)R;xH(N~z

xHz

kkkk

kkkk µ+=

);0(N µ



Position-Velocity Model

• Points moving with constant velocity
• We wish to estimate their PV state at every time instant
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Prediction/Correction

• Predict new state

• Correct to take new measurements into account
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Kalman Gain

• Weighting of process model vs. measurements

• Compare to what we saw earlier:
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Optimal Linear Filter

kkkkk zK)-(x̂K)(x̂ +′′′′=+

Predicted 
state

MeasurementOptimal
Linear Estimate

Under Gaussian assumptions, linear estimate is the optimal

Estimation Error: )(x~x)(x̂ kkk ++=+

kkkkkkkkk vK)-(x~KxI]-HKK[)(x~ +′′′′++′′′′=+
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kK Is obtained by minimizing the variance of the state estimate 



Results: Position-Only Model

MovingMoving StillStill

[Welch & Bishop][Welch & Bishop]



Results: Position-Velocity Model

[Welch & Bishop][Welch & Bishop]

MovingMoving StillStill



Extension: Multiple Models

• Simultaneously run many KFs with different 
system models

• Estimate probability each KF is correct

• Final estimate: weighted average



Results: Multiple Models

[Welch & Bishop][Welch & Bishop]



Results: Multiple Models

[Welch & Bishop][Welch & Bishop]



Results: Multiple Models

[Welch & Bishop][Welch & Bishop]



Extension: SCAAT

• H be different at different times
– Different sensors, types of measurements
– Sometimes measure only part of state

• Single Constraint At A Time (SCAAT)
– Incorporate results from one sensor at once
– Alternative: wait until you have measurements 

from enough sensors to know complete state 
(MCAAT)

– MCAAT equations often more complex, but 
sometimes necessary for initialization



UNC HiBall

• 6 cameras, looking at LEDs on ceiling
• LEDs flash over time

[Welch & Bishop][Welch & Bishop]



Extension: Nonlinearity (EKF)

• HiBall state model has nonlinear degrees of 
freedom (rotations)

• Extended Kalman Filter allows nonlinearities by:
– Using general functions instead of matrices
– Linearizing functions to project forward
– Like 1st order Taylor series expansion
– Only have to evaluate Jacobians (partial derivatives), not 

invert process/measurement functions



Other Extensions

• On-line noise estimation

• Using known system input (e.g. actuators)

• Using information from both past and future

• Non-Gaussian noise and particle filtering



Data Association

• Nearest Neighbors
– choose the measurement with highest probability given 

predicted state
– popular, but can lead to catastrophe

• Probabilistic Data Association
– combine measurements, weighting by probability given 

predicted state
– gate using predicted state



Video based Tracking : Complexities

• In addition to position and velocity, object state may include:
– Appearance, shape, specific object models : people, vehicles, etc.

• Camera may move in addition to the object
– Track background as well as the foreground

• Measurement model and the associated likelihood 
computation is more complex:
– Compute the likelihood of the presence of a head-n-shoulders person 

model at a given location in the image

• Multiple objects need to be tracked simultaneously
– Measurements need to be optimally associated with a set of models 

rather than a single model as in the previous examples 



Application - Tracking vehicles in aerial 
videos

ResultsVideo Stream

Tracking
System

• The goals of a tracking system are to
– detect new moving objects
– maintain identity of objects, handle multiple objects and 

interactions between them.  e.g. passing, stopped, etc.
– provide information regarding the objects, e.g. shape, 

appearance and motion.



Tracking as a continuous motion 
segmentation problem

• Tracking problem ⇔ continuous motion segmentation 
problem: estimation of a complete representation of 
foreground and background objects over time.  

• Complete representation (Layer) includes:
– motion of objects and background
– shape of objects and support
– appearance of objects

• Key: constraints



Layer based motion analysis method

• Simultaneously achieve motion and 
segmentation estimation (EM algorithm)

– Estimate segmentation based on motion 
consistency

– Estimate motion based on segmentation



Motion layer representations -
models/constraints

Local constraints Global constraints Multi-frame consistency

Motion

Smooth dense flow:
Weiss 97

2D affine:
Darrell91, Wang93, 
Hsu94, Sawhney96,
Weiss 96, Vasconcelos97

3D planar: Torr99

2D rotation and translation &
constant velocity:
This paper

Segmentation

MRF segmentation
prior:
Weiss96, 
Vasconcelos97

Background+Gaussian
segmentation prior:

This paper - Section 2.1

Constant segmentation prior:

This paper - Elliptical shape prior

Appearance
Constant appearance:
This paper



Dynamic Layer Representation

• Spatial and temporal constraints on the layer segmentation, 
motion, and appearance

• EM algorithm for maximum a posteriori estimation

• Layer ownership is constrained by a parametric shape 
distribution, instead of a local smoothness constraint.  It 
prevents the layer evolving into arbitrary shapes, and 
enables tractable estimation over time.



Representation and constraints -
segmentation and appearance

• Segmentation prior model
• background + elliptical shapes
• constant value over time

• Appearance model -
• constant value over time

},{ ttt sl=Φ
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Layer j
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tA

Background 
layer



Representation and constraints -
motion

• Motion  model  
– motion

• foreground
– translation + rotation
– constant velocity model

• background
– planar surface

),( ttt u ωΘ =

tu

tω



MAP estimation
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MAP estimation - formulation

• Notation
– current image is      .  Current state is                       

.

• Estimation
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Optimization using EM algorithm

• The general Expectation Maximization algorithm
– observation       and parameter
– objective function:

– equivalent to iteratively improving conditional expectation 

• For the dynamic layer tracker:

• Optimize      over  
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• Optimization over motion, segmentation, and 
appearance correspond to the following three steps:

– layer motion estimation based on current segmentation and 
appearance ⇒ weighted correlation or direct method

– layer segmentation estimation ⇒ competition between 
motion layers

– layer appearance estimation ⇒ Kalman filtering of 
appearance

Optimization - 3 steps 



Optimization - flow chart

estimate motion

tΘ
estimate shape
prior 

tΦ

update ownership
jih ,

estimate appearance
tA

update ownership
jih ,

update ownership
jih ,

frame t-1

frame t

frame t+1



Optimization - illustration

appearance t-1

frame  t

motion 
estimation

shape 
estimation

appearance 
estimationshape prior t-1

motion t-1

appearance t

shape prior t

motion t



Optimization - equations

• Motion estimation
– weighted SSD

• Ownership estimation - gradient method

• Appearance estimation
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Inference of object status

• A state transition graph is designed to 

– trigger events such as object initialization, object 
elimination

– infer object states such as moving, stopping, two 
objects that are close to each other, etc.



Inference of Object Status

Conditions
NS  =  normal SSD score
OB =  out of scope
LT =  NM for a long time
ZM=  zero motion estimation
NB  =  new blob, no object covering 
a blob
NM =  no motion blob covering the 
object
SI    =  significant increase of SSD

disappearnew moving

stop

occluded

NB

NM & SI

NM &!SI&ZM

!NM&NS

OB|LT

!NS|OB|LT

OB

!NM&NS

NM | OB

!NM

NM&!SI&!ZM

NM |{!NM&!NS}

NM&NS

!NM & !OB



Implementation - Sarnoff Layer 
Tracker

• Performance:
– Originally developed on a PC, ported to SGI Octane. 20-25 

Hz for one object over a single processor.

Airborne Video Surveillance System (tracking component)

Sarnoff
VFE 200 SGI Octane

Video 
Stream



Results

• Turning



Results

• Turning

(a) (b) (c)



Results

• Passing - opposite directions



Results

• Passing - opposite directions

(a) (b) (c)



Results

• Passing - the same direction



Results

• Passing - the same direction

(a) (b) (c)



Results

• Stop, Passing



Results

• Stop, Passing

(a) (b) (c)



Implementation - Sarnoff Layer 
Tracker

• Motion estimation:
– 95% of computation is for motion estimation.  Currently, 

weighted SSD correlation is used.  Searching in a 13x13 
window at half resolution, for 3 different angles.  The size of 
the object is around 40x40 pixels.

• Ownership estimation
– change image is integrated into the formulation to further 

improve the robustness.

• Appearance estimation
– appearance model for the background is not computed, 

instead, the previous image is used.   



An Alternative Appearance Model

• In the previous model, appearance gets incrementally 
averaged over time since it is part of the state vector

• A more sophisticated appearance model allows for 
averaging as well as keeping up with frame-to-frame 
appearance changes:

– Jepson et al.’s WSL model
– A mixture model of appearance
– Estimated incrementally using online EM



WSL Adaptive Model in 1D

Mixture model for current data (4 dof): 
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Stable Process:
variance 



On-Line Approximate EM

One EOne E--Step:Step: Compute data ownerships only at current time 
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Estimation of Motion Parameters

)|(log),,|(log)( 111 −−− += ttttttt pDADLO uuuu
likelihood prior

To estimate the motion model parameters we 
maximize the sum of log likelihood and log prior :

where:
warp parameters:
data at time t-1:

appearance model:
parametric motion:
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Optimization Details

Data Likelihood:

data from time t is warped back to t-1 and compared    
to predictions from the tracking region at time t-1. 

∏
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models for flow (Jepson & Black, 1993).
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Real-Time Tracking



Adaptive
Background

Modeling

Foreground
Detection

Frame-to-
frame

Tracking

State
Machine

Filtered 
Representation

Filtered Background 
Model

Detected change 
objects

Major Components of a Tracker



System state at time t At time (t+1) System state at time (t+1)

Object (green box) as seen 
at time t. (latest model of 
appearance)

Object appearance as 
learnt from recent past. 
(learnt model of 
appearance)

Probabilistic visibility 
mask, brighter the pixel, 
more likely that it belongs 
to the object

• Velocity estimate

• Depth if available

motion 
estimation

appearance 
estimation

visibility
estimation

• Velocity estimate

• Depth if available

Latest appearance 
model

Updated learnt 
model

Updated visibility 
mask

Tracker Block Diagram

Occlusion 
handling



System state at time t=1 System state at time t=8 System state at time t=16 System state at time t=27

Occlusion is detected at this 
frame

Note learnt model is much 
more immune to occlusions 
than the latest model.

The appearance models and 
visibility mask are still 
frozen to t=8 because of 
occlusion

The object reappears after 
occlusion, and the models 
and visibility mask are 
updated

Sample Progress of the Tracker



Tracker Features

• Non-parametric distribution based background representation.
– Resilient to environmental effects like wind-induced motion, heat-

induced scintillation etc.

• Foreground extraction based on pyramid filters and flow.
– Tunable for different scenarios: outdoors, indoors.

• Comprehensive tracking based on appearance, motion and shape.
– Automatically adapts to smooth and sudden changes of 

appearance.
– Automatically weights appearance and shape matching.
– Precise motion estimation based on optical flow.

• State machine that exploits appearance, motion and shape.
– Handles occlusions, and confusing events with multiple objects.



Example: Outdoors



Example: Indoor Overhead



Example: Airport Overhead



Example: Airport (Light Traffic)



Example: Airport Sequence



Example: Hallway Sequence



Example: Hallway Sequence



3D Tracking with Presence of Clutter and Multi-Camera Handoff

Video of Camera 1 and Camera 2

Camera 2

Handing-off from camera 1 to camera 2

Camera 1



3D Tracking in Outdoor Scenarios

Original video
Video with entire mob being 
tracked simultaneously

• Each color represents a 
different person in the image

• Note the 3D tracker can 
distinguish between people and 
their shadows

Depth Map Video



3D Tracking in Outdoor Scenarios

Original video
Video with people and vehicles 
being tracked simultaneously

Each color represents a 
different person/vehicle 
in the image

Depth Map Video




